行星齿轮机构结构与工作原理

行星齿轮机构结构与工作原理
行星齿轮机构结构与工作原理

行星齿轮机构结构与工作原理

1、行星齿轮机构的基本结构

行星齿轮机构有很多类型,其中最简单的行星齿轮机构是由1个太阳轮、1个齿圈、1个行星架和支承在行星架上的几个行星齿轮组成的,称为1个行星排。

行星齿轮机构中的太阳轮、齿圈及行星架有一个共同的固定轴线,行星齿轮支承在固定于行星架的行星齿轮轴上,并同时与太阳轮和齿圈啮合。当行星齿轮机构运转时,空套在行星架上的行星齿轮轴上的几个行星齿轮一方面可以绕着自己的轴线旋转,另一方面又可以随着行星架一起绕着太阳轮回转,就像天上行星的运动那样,兼有自转和公转两种运动状态(行星齿轮的名称即因此而来),在行星排中,具有固定轴线的太阳轮、齿圈和行星架称为行星排的3个基本元件。

2、行星齿轮机构的类型

行星齿轮机构可按不同的方式进行分类

(1)按照齿轮的啮合方式分类

按照齿轮的啮合方式不同,行星齿轮机构可以分为外啮合式和内啮合式两种。外啮合式行星齿轮机构体积大,传动效率低,故在汽车上已被淘汰;内啮合式行星齿轮机构结构紧凑,传动效率高,因而在自动变速器中被广为使用。

(2)按照齿轮的排数分类

按照齿轮的排数不同,行星齿轮机构可以分为单排和多排两种。

多排行星齿轮机构是由几个单排行星齿轮机构组成的。汽车自动变速器中,行星排的多少因挡位数的多少而有所不同,一般三挡位有2个行星排,四挡位(具有超速挡的)有3个行星排,通常使用的是由2个或2个单排行星的齿轮机构组成的多排行星齿轮机构。

(3)按照太阳轮和齿圈之间的行星齿轮组数分类

按照太阳轮和齿圈之间的行星齿轮组数的不同,行星齿轮机构可以分为单行星齿轮式和双行星齿轮式两种。

双行星齿轮机构在太阳轮和齿圈之间有两组互相啮合的行星齿轮,其外面一组行星齿轮和齿圈啮合,里面一组行星齿轮和太阳轮啮合。它与单行星齿轮机构在其它条件相同的情况下相比,齿圈可以得到反向传动。

用行星齿轮机构作为变速机构,由于有多个行星齿轮同时传递动力,而且常采用内啮合式,充分利用了齿圈中部的空间,故与普通齿轮变速机构相比,在传递同样功率的条件下,可以大大减小变速机构的尺寸和重量,并可实现同向、同轴减速传动;另外,由于采用常啮合传动,动力不间断,加速性好,工作也可靠。

3、行星齿轮机构的变速原理

由于单排行星齿轮机构有两个自由度,因此它没有固定的传动比,不能直接用于变速传动。为了组成具有一定传动比的传动机构,必须将太阳轮、齿圈和行星架这三个基本元件中的一个加以固定(即使其转速为0,也称为制动),或使其运动受到一定的约束(即让该构件以某一固定的转速旋转),或将某两个基本元件互相连接在一起

(即两者转速相同),使行星排变为只有一个自由度的机构,获得确定的传动化。

设太阳轮的齿数为Z1,齿圈齿数为Z2,太阳轮、齿圈和行星架的转速分别为n1、n2、n3,并设齿圈与太阳轮的齿数比为α,即α=Z2/Z1

则行星齿轮机构的一般运动规律可表达为:

n1+αn2-(1+α)n3=0

由上式可以看出,在太阳轮、齿圈和行星架三个基本元件中,可任选两个分别作为主动件和从动件,而使另一个元件固定不动(使该元件转速为零)或使其运动受一定约束(使该元件的转速为某一定值),则整个轮系即以一定的传动比传递动力。不同的连接和固定方案可得到不同的传动比,三个基本元件的不同组合可有6种不同的组合方案,加上直接挡传动和空挡,共有8种组合,相应能获得5种不同的传动比。

ALAN

行星齿轮的原理理论讲解

行星齿轮机构和工作原理

§3-3 行星齿轮机构和工作原理 Ⅰ授课思路:在初步了解行星齿轮机构的组成的基础上,通过单排行星齿轮机构一般运动规律的特性方程结合力和反作用力的作用原理使学生掌握单排行星齿轮的工作原理。拓展学生的能力,使学生概括出单排行星齿轮的基本特征。Ⅱ过程设计: 1.提问问题,复习上次课内容(约3min) ⑴导轮单向离合器有哪几种?(楔块式、滚柱式) ⑵锁止离合器的作用?(提高传动效率,使液力变矩器有液力传动变为机械 传动) 2.导入新课(约1min) 自动变速器是怎样实现自动换挡的呢?这就是我们这节课讲的主要内容3.新课内容:具体内容见“授课内容”(约73min) 4.本次课内容小结(约2min) 5.布置作业(约1min) Ⅲ讲解要点:单排行星齿轮的工作原理和单排行星齿轮的基本特征这一主线进行讲解。 Ⅳ授课内容: 一、简单的行星齿轮机构的特点 行星齿轮机构的组成: 简单(单排)的行星齿轮机构是变速机构 的基础,通常自动变速器的变速机构都由两排 或三排以上行星齿轮机构组成。简单行星齿轮

机构包括一个太阳轮、若干个行星齿轮和一个齿轮圈,其中行星齿轮由行星架的固定轴支承,允许行星轮在支承轴上转动。行星齿轮和相邻的太阳轮、齿圈总是处于常啮合状态,通常都采用斜齿轮以提高工作的平稳性(如图l所示)。 如图2表示了简单行星齿轮机构,位于行星齿轮机构中心的是太阳轮,太阳轮和行星轮常啮合,两个外齿轮啮合旋转方向相反。正如太阳位于太阳系的中心一样,太阳轮也因其位置而得名。行星轮除了可以绕行星架支承轴旋转外,在有些工况下,还会在行星架的带动下,围绕太阳轮的中心轴线旋转,这就像地球的自转和绕着太阳的公转一样,当出现这种 情况时,就称为行星齿轮机构作用的传动 方式。在整个行星齿轮机构中,如行星轮 的自转存在,而行星架则固定不动,这种 方式类似平行轴式的传动称为定轴传动。 齿圈是内齿轮,它和行星轮常啮合,是内 齿和外齿轮啮合,两者间旋转方向相同。 行星齿轮的个数取决于变速器的设计负 荷,通常有三个或四个,个数愈多承担负 荷愈大。 简单的行星齿轮机构通常称为三构件机构,三个构件分别指太阳轮、行星架和齿圈。这三构件如果要确定相互间的运动关系,一般情况下首先需要固定其中的一个构件,然后确定谁是主动件,并确定主动件的转速和旋转方向,结果被动件的转速、旋转方向就确定了。 二、单排行星齿轮机构的工作原理 根据能量守恒定律,三个元件上输入和输出的功率的代数和应等于零,从而得到单排行星齿轮机构一般运动规律的特性方程。 特性方程:n1+an2-(1+a)n3=0 n1——太阳轮转速,n2——齿圈转速,n3——行星架转速,a——齿圈与太阳轮齿数比。 由特性方程可以看出,由于单排行星齿轮机构具有两个自由度,在太阳轮、环形

行星齿轮机构原理及应用

行星齿轮机构原理及应用 我们熟知的齿轮绝大部分都是转动轴线固定的齿 轮。例如机械式钟表、普通机械式变速箱、减速器,上面所有的齿轮尽管都在做转动,但是它们的转动中心(与圆心位置重合)往往通过轴承安装在机壳上,因此,它们的转动轴都是相对机壳固定的,因而也被称为"定轴齿轮"。 有定必有动,对应地,有一类不那么为人熟知的称为"行星齿轮"的齿轮,它们的转动轴线是不固定的,而是安装在一个可以转动的支架(蓝色)上(图中黑色部分是壳体,黄色表示轴承)。行星齿轮(绿色)除了能象定轴齿轮那样围绕着自己的转动轴(B-B)转动之外,它们的转动轴还随着蓝色的支架(称为行星架)绕其它齿轮的轴线(A-A)转动。绕自己轴线的转动称为"自转",绕其它齿轮轴线的转动称为"公转",就象太阳系中的行星那样,因此得 名。 也如太阳系一样,成为行星齿轮公转中心的那些轴线固定的齿轮被称为"太阳轮",如图中红色的齿轮。在一个行星齿轮上、或者在两个互相固连的行星齿轮上通常有两个啮合点,分别与两个太阳轮发生关系。如右图中,灰色的内齿轮轴线与红色的外齿轮轴线重合,也是太阳轮。 轴线固定的齿轮传动原理很简单,在一对互相啮合的齿轮中,有一个齿轮作为主动轮,动力从它那里传入,另一个齿轮作为从动轮,动力从它往外输出。也有的齿轮仅作为中转站,一边与主动轮啮合,另一边与从动轮啮合,动力从它那里通过。 在包含行星齿轮的齿轮系统中,情形就不同了。由于存在行星架,也就是说,可以有三条转动轴允许动力输入/输出,还可以用离合器或制动器之类的手段,在需要的时候限制其中一条轴的转动,剩下两条轴进行传动,这样一来,互相啮合的齿轮之间的关系就可以有多种组合:

行星齿轮结构及工作原理

行星齿轮机构和工作原理 一、 简单的行星齿轮机构的特点 行星齿轮机构的组成: 简单(单排)的行星齿轮机构是变速机构 的基础,通常自动变速器的变速机构都由两排 或三排以上行星齿轮机构组成。简单行星齿轮 机构包括一个太阳轮、若干个行星齿轮和一个 齿轮圈,其中行星齿轮由行星架的固定轴支 承,允许行星轮在支承轴上转动。行星齿轮和 相邻的太阳轮、齿圈总是处于常啮合状态,通 常都采用斜齿轮以提高工作的平稳性(如图l 所示)。 如图2表示了简单行星齿轮机构,位于行星齿轮机构中心的是太阳轮,太阳轮和行星轮常啮合,两个外齿轮啮合旋转方向相反。正如太阳位于太阳系的中心一样,太阳轮也因其位置而得名。行星轮除了可以绕行星架支承轴旋转外,在有些工况下,还会在行星架的带动下,围绕太阳轮的中心轴线旋转,这就像地球的自转和绕着太阳的公转一样,当出现这种 情况时,就称为行星齿轮机构作用的传动 方式。在整个行星齿轮机构中,如行星轮 的自转存在,而行星架则固定不动,这种 方式类似平行轴式的传动称为定轴传动。 齿圈是内齿轮,它和行星轮常啮合,是内 齿和外齿轮啮合,两者间旋转方向相同。 行星齿轮的个数取决于变速器的设计负 荷,通常有三个或四个,个数愈多承担负 荷愈大。 简单的行星齿轮机构通常称为三构件机构,三个构件分别指太阳轮、行星架和齿圈。这三构件如果要确定相互间的运动关系,一般情况下首先需要固定

其中的一个构件,然后确定谁是主动件,并确定主动件的转速和旋转方向,结 果被动件的转速、旋转方向就确定了。 二、 单排行星齿轮机构的工作原理 根据能量守恒定律,三个元件上输入和输出的功率的代数和应等于零,从而得到单排行星齿轮机构一般运动规律的特性方程。 特性方程:n1+an2-(1+a)n3=0 n1——太阳轮转速,n2——齿圈转速,n3——行星架转速,a——齿圈与太阳轮齿数比。 由特性方程可以看出,由于单排行星齿轮机构具有两个自由度,在太阳轮、环形内齿圈和行星架三个机构中,任选两个分别作为主动件和从动件,而使另一个元件固定不动,或使其运动受一定的约束(即该元件的转速为某定值),则机构只有一个自由度,整个轮系以一定的传动比传递动力。下面分别讨论三种情况。 1、齿圈固定,太阳轮为主动件且顺时针转动,而行星架则为被动件。太阳轮顺时针转动时,太阳轮轮齿必给行星轮齿A一个推力F 1 ,则行星轮应为逆时针 转动,但由于齿圈固定,所以齿圈轮齿必给行星轮齿B一个反作用力F 2 ,行星轮 在F 1和 F 2 合力作用下必绕太阳轮顺时针旋转,结果行星轮不仅存在逆时针自 转,并且在行星架的带动下,绕太阳轮中心轴线顺时针公转。在这种状态下,就出现了行星齿轮机构作用的传动方式,而且被动件行星架的旋转方向与主动件同方向。在这里,太阳轮是主动件而且是小齿轮,被动件行星架没有具体齿数的传动关系,因此定义行星架的当量齿数等于太阳轮和齿圈齿数之和。这样,太阳轮带动行星架转动仍属于小齿轮带动最大的齿轮,是一种减速运动且有最大的传动比。因为此时n2=0,故传动比 i13=n1?n3=1+a。(如图3)

行星齿轮机构练习答案

一、填空题。 1、单排行星齿轮机构是由一个太阳轮、一个齿圈、一个行星架和支承在行星架上的几个行星齿轮(一般3-6个)组成的,成为一个行星排。 2. 行星齿轮机构一般由太阳轮、行星齿轮、行星架和齿圈四个基本构件组成。 3.双排辛普森式行星齿轮变速器通常具有四个独立元件,分别是前排齿圈、前后太阳轮组件、后排行星架、前行星架和后齿圈组件。 4.拉维娜行星齿轮机构的主要组成有大太阳轮、小太阳轮、长行星轮、短行星齿轮和齿圈。 5、传动比等于从动齿轮的齿数除以主动齿轮的齿数。 6、倒档的实现是通过在两个齿轮之间附加一个惰轮。 7、当一个小齿轮驱动一个大齿轮时,转矩增大而转速降低。 · 8、在行星齿系中,如果齿圈固定和以太阳齿轮为主动件,则可以形成减速档。 9、如果行星齿轮机构中任意两元件以相同转速和相同方向转动,则第三元件与前二者一起同速转动,而形成直接档。 10、双行星轮式行星齿轮机构:太阳轮和齿圈之间有两组互相啮合的行星齿轮,其中外面一组行星齿轮和齿圈啮合,里面一组行星齿轮和太阳轮啮合。 二、简答题。 1. 简述单排行星齿轮机构的结构及其变速原理. 答:单排行星齿轮机构是由太阳轮,行星架(含行星轮),齿圈组成.固定其中任意一个件其它两个件分别作为输入输出件就得到一种传动比,这样有8种组合方式;当其中任两件锁为一体时相当于直接挡,一比一输出;当没有固定件时相当于空挡,无输出动力。 ^

/ 2、请画出单排行星齿轮机构简图。 3、请画出辛普森式行星齿轮机构简图。

1-前齿圈;2-前行星轮;3-前行星架和后齿圈组件4-前后太阳轮组件;5-后行星轮;6-后行星架 ¥

行星齿轮结构和工作原理要点

行星齿轮机构和工作原理 §3-3 行星齿轮机构和工作原理 Ⅰ授课思路:在初步了解行星齿轮机构的组成的基础上,通过单排行星齿轮机构一般运动规律的特性方程结合力和反作用力的作用原理使学生掌握单排行星齿轮的工作原理。拓展学生的能力,使学生概括出单排行星齿轮的基本特征。

Ⅱ过程设计: 1.提问问题,复习上次课内容(约3min) ⑴导轮单向离合器有哪几种?(楔块式、滚柱式) ⑵锁止离合器的作用?(提高传动效率,使液力变矩器有液力传动变为机械 传动) 2.导入新课(约1min) 自动变速器是怎样实现自动换挡的呢?这就是我们这节课讲的主要内容3.新课内容:具体内容见“授课内容”(约73min) 4.本次课内容小结(约2min) 5.布置作业(约1min) Ⅲ讲解要点:单排行星齿轮的工作原理和单排行星齿轮的基本特征这一主线进行讲解。 Ⅳ授课内容: 一、简单的行星齿轮机构的特点 行星齿轮机构的组成: 简单(单排)的行星齿轮机构是变速机构 的基础,通常自动变速器的变速机构都由两排 或三排以上行星齿轮机构组成。简单行星齿轮 机构包括一个太阳轮、若干个行星齿轮和一个 齿轮圈,其中行星齿轮由行星架的固定轴支 承,允许行星轮在支承轴上转动。行星齿轮和 相邻的太阳轮、齿圈总是处于常啮合状态,通 常都采用斜齿轮以提高工作的平稳性(如图l 所示)。 如图2表示了简单行星齿轮机构,位于行星齿轮机构中心的是太阳轮,太阳轮和行星轮常啮合,两个外齿轮啮合旋转方向相反。正如太阳位于太阳系的中心一样,太阳轮也因其位置而得名。行星轮除了可以绕行星架支承轴旋转外,在有些工况下,还会在行星架的带动下,围绕太阳轮的中心轴线旋转,这就像地球的

行星齿轮机构结构与工作原理

行星齿轮机构结构与工作原理 1、行星齿轮机构的基本结构 行星齿轮机构有很多类型,其中最简单的行星齿轮机构是由1个太阳轮、1个齿圈、1个行星架和支承在行星架上的几个行星齿轮组成的,称为1个行星排。 行星齿轮机构中的太阳轮、齿圈及行星架有一个共同的固定轴线,行星齿轮支承在固定于行星架的行星齿轮轴上,并同时与太阳轮和齿圈啮合。当行星齿轮机构运转时,空套在行星架上的行星齿轮轴上的几个行星齿轮一方面可以绕着自己的轴线旋转,另一方面又可以随着行星架一起绕着太阳轮回转,就像天上行星的运动那样,兼有自转和公转两种运动状态(行星齿轮的名称即因此而来),在行星排中,具有固定轴线的太阳轮、齿圈和行星架称为行星排的3个基本元件。 2、行星齿轮机构的类型 行星齿轮机构可按不同的方式进行分类 (1)按照齿轮的啮合方式分类 按照齿轮的啮合方式不同,行星齿轮机构可以分为外啮合式和内啮合式两种。外啮合式行星齿轮机构体积大,传动效率低,故在汽车上已被淘汰;内啮合式行星齿轮机构结构紧凑,传动效率高,因而在自动变速器中被广为使用。 (2)按照齿轮的排数分类 按照齿轮的排数不同,行星齿轮机构可以分为单排和多排两种。

多排行星齿轮机构是由几个单排行星齿轮机构组成的。汽车自动变速器中,行星排的多少因挡位数的多少而有所不同,一般三挡位有2个行星排,四挡位(具有超速挡的)有3个行星排,通常使用的是由2个或2个单排行星的齿轮机构组成的多排行星齿轮机构。 (3)按照太阳轮和齿圈之间的行星齿轮组数分类 按照太阳轮和齿圈之间的行星齿轮组数的不同,行星齿轮机构可以分为单行星齿轮式和双行星齿轮式两种。 双行星齿轮机构在太阳轮和齿圈之间有两组互相啮合的行星齿轮,其外面一组行星齿轮和齿圈啮合,里面一组行星齿轮和太阳轮啮合。它与单行星齿轮机构在其它条件相同的情况下相比,齿圈可以得到反向传动。 用行星齿轮机构作为变速机构,由于有多个行星齿轮同时传递动力,而且常采用内啮合式,充分利用了齿圈中部的空间,故与普通齿轮变速机构相比,在传递同样功率的条件下,可以大大减小变速机构的尺寸和重量,并可实现同向、同轴减速传动;另外,由于采用常啮合传动,动力不间断,加速性好,工作也可靠。 3、行星齿轮机构的变速原理 由于单排行星齿轮机构有两个自由度,因此它没有固定的传动比,不能直接用于变速传动。为了组成具有一定传动比的传动机构,必须将太阳轮、齿圈和行星架这三个基本元件中的一个加以固定(即使其转速为0,也称为制动),或使其运动受到一定的约束(即让该构件以某一固定的转速旋转),或将某两个基本元件互相连接在一起

行星齿轮机构运动规律 原理及应用分析

行星齿轮机构运动规律原理及应用分析 类型:转载来源:济民工贸的博客作者:齐兵责任编辑:李笛发布时间:2009年06月11日 我们熟知的齿轮绝大部分都是转动轴线固定的齿轮。例如机械式钟表、普通机械式变速箱、减速器,上面所有的齿轮尽管都在做转动,但是它们的转动中心(与圆心位置重合)往往通过轴承安装在机壳上,因此,它们的转动轴都是相对机壳固定的,因而也被称为"定轴齿轮"。 有定必有动,对应地,有一类不那么为人熟知的称为"行星齿轮"的齿轮,它们的转动轴线是不固定的,而是安装在一个可以转动的支架(蓝色)上(图中黑色部分是壳体,黄色表示轴承)。行星齿轮(绿色)除了能象定轴齿轮那样围绕着自己的转动轴(B-B)转动之外,它们的转动轴还随着蓝色的支架(称为行星架)绕其它齿轮的轴线(A-A)转动。绕自己轴线的转动称为"自转",绕其它齿轮轴线的转动称为"公转",就象太阳系中的行星那样,因此得名。 也如太阳系一样,成为行星齿轮公转中心的那些轴线固定的齿轮被称为"太阳轮",如图中红色的齿轮。在一个行星齿轮上、或者在两个互相固连的行星齿轮上通常有两个啮合点,分别与两个太阳轮发生关系。如右图中,灰色的内齿轮轴线与红色的外齿轮轴线重合,也是太阳轮。 轴线固定的齿轮传动原理很简单,在一对互相啮合的齿轮中,有一个齿轮作为主动轮,动力从它那里传入,另一个齿轮作为从动轮,动力从它往外输出。也有的齿轮仅作为中转站,一边与主动轮啮合,另一边与从动轮啮合,动力从它那里通过。

在包含行星齿轮的齿轮系统中,情形就不同了。由于存在行星架,也就是说,可以有三条转动轴允许动力输入/输出,还可以用离合器或制动器之类的手段,在需要的时候限制其中一条轴的转动,剩下两条轴进行传动,这样一来,互相啮合的齿轮之间的关系就可以有多种组合: 单排行星齿轮机构的结构组成为例 ● (1)行星齿轮机构运动规律 设太阳轮、齿圈和行星架的转速分别为n1、n2和n3,齿数分别为Z1、Z2、Z3;齿圈与太阳轮的齿数比为α。则根据能量守恒定律,由作用在该机构各元件上的力矩和结构参数可导出表示单排行星齿轮机构一般运动规律的特性方程式: n1+αn2-(1+α)n3=0和Z1+Z2=Z3 ●(2)行星齿轮机构各种运动情况分析 由上式可看出,由于单排行星齿轮机构具有两个自由度,在太阳轮、齿圈和行星架这三个基本构件中,任选两个分别作为主动件和从动件,而使另一元件固定不动(即使该元件转速为0),或使其运动受一定的约束(即该元件的转速为某定值),则机构只有一个自由度,整个轮系以一定的传动比传递动力。下面分别讨论各种情况。 行星齿轮机构各种运动情况分析 固定件主动件从动件转速成转向 太阳轮行星架齿圈增速同向 太阳轮齿圈行星架减速同向 齿圈行星架太阳轮增速同向 齿圈太阳轮行星架减速同向 行星架齿圈太阳轮增速反向 行星架太阳轮齿圈减速反向

最新拉维萘尔赫式行星齿轮变速器的结构与工作原理

拉维萘尔赫式行星齿轮变速器的结构与工 作原理

拉维萘尔赫式行星齿轮变速器的结构与工作原理 作者:admin 来源:本站整理发布时间:2008-4-19 19:44:55 减小字体增大字体在拉维萘尔赫式行星齿轮机构中设置了二个离合器、二个制动器和一个单向离合器,共有五个换档执行元件,即可使之成为一个具有三个前进档和一个倒档的三速行星齿轮变速器。采用这种变速器的有福特公司生产的FORDFMX自动变速器等。 前太阳轮、长行星轮、行星架和齿圈组成一个单行星轮式行星排,也称为前行星排;后太阳轮、短行星轮、长行星轮、行星架和齿圈组成一个双行星轮式行星排,也称后行星排。在五个换档执行元件中,离合器C1用于连接输入轴和后太阳轮,它在所有前进档中都处于接合状态,故称为前进离合器。而离合器C2用于连接输入轴和前太阳轮,它在倒档和三档(直接档)时接合,故称为倒档及直接档离合器。制动器B1用于固定前太阳轮,它在二档时工作,故称为二档制动器。制动器B2用于固定行星架,它在倒档或自动变速器选档杆位于前进低档时工作,故称为低、倒档制动器。单向离合器F1在逆时针方向对行星架有锁止作用,它只在一档时工作,故称为一档单向离合器。各换档执行元件在不同档位的工作情况见下表。下面分析拉维萘尔赫式三速行星齿轮变速器各档的动力传递路线和传动比。 拉维萘尔赫式三速行星齿轮变速器换档执行元件工件规律 选档杆位置档位换档执行元件 C1C2B1B2F1 D 1档○○2档○○ 3档○○ R倒档○○ S、L或2、1 1档○○ 2档○○ 注:○-接合、制动或锁止 1)一档 当选档杆位于前进档(D)位置而行星齿轮变速器处于一档时,前进离合器C1接合,输入轴经前进离合器C1和后太阳轮连接,使后太阳轮朝顺时针方向转动,并通过短行星轮和长行星轮带动齿圈朝顺时针方向旋转。由于齿圈通过输出轴和驱动轮连接,在汽车起步或一档行驶时,转速很低,长行星轮在带动齿圈朝顺时针方向转动的同时,对行星架产生一个朝逆时针方向的力矩,而行星架在一档单向离合器F1逆时针方向的锁止作用下固定不动,从而使发动机动力经输入轴、后太阳轮、短行星轮、长行星轮传给齿圈和输出轴。设齿圈与前后太阳轮的齿数之比分别为α1和α2。由于此时行星架固定不动,后排根据双行星齿轮运动特性方程:

行星齿轮结构原理

一)行星齿轮机构结构与工作原理 1、行星齿轮机构的基本结构 行星齿轮机构有很多类型,其中最简单的行星齿轮机构是由1个太阳轮、1个齿圈、1个行星架和支承在行星架上的几个行星齿轮组成的,称为1个行星排。 行星齿轮机构中的太阳轮、齿圈及行星架有一个共同的固定轴线,行星齿轮支承在固定于行星架的行星齿轮轴上,并同时与太阳轮和齿圈啮合。当行星齿轮机构运转时,空套在行星架上的行星齿轮轴上的几个行星齿轮一方面可以绕着自己的轴线旋转,另一方面又可以随着行星架一起绕着太阳轮回转,就像天上行星的运动那样,兼有自转和公转两种运动状态(将星齿轮的名称即因此而来),在行星排中,具有固定轴线的太阳轮、齿圈和行星架称为行星排的3个基本元件。 2、行星齿轮机构的类型 行星齿轮机构可按不同的方式进行分类 (1)按照齿轮的啮合方式分类 按照齿轮的啮合方式不同,行星齿轮机构可以分为外啮合式和内啮合式两种。外啮合式行星齿轮机构体积大,传动效率低,故在汽车上已被淘汰;内啮合式行星齿轮机构结构紧凑,传动效率高,因而在自动变速器中被广为使用。 (2)按照齿轮的排数分类 按照齿轮的排数不同,行星齿轮机构可以分为单排和多排两种。多排行星齿轮机构是由几个单排行星齿轮机构组成的。汽车自动变速器中,行星排的多少因挡位数的多少而有所不同,一般三挡位有2个行星排,四挡位(具有超速挡的)有3个行星排,通常使用的是由2个或2个单排行星的齿轮机构组成的多排行星齿轮机构。 (3)按照太阳轮和齿圈之间的行星齿轮组数分类 按照太阳轮和齿圈之间的行星齿轮组数的不同,行星齿轮机构可以分为单行星齿轮式和双行星齿轮式两种。 双行星齿轮机构在太阳轮和齿圈之间有两组互相啮合的行星齿轮,其外面一组行星齿轮和齿圈啮合,里面一组行星齿轮和太阳轮啮合。它与单行星齿轮机构在其它条件相同的情况下相比,齿圈可以得到反向传动。 用行星齿轮机构作为变速机构,由于有多个行星齿轮同时传递动力,而且常采用内啮合式,充分利用了齿圈中部的空间,故与普通齿轮变速机构相比,在传递同样功率的条件下,可以大大减小变速机构的尺寸和重量,并可实现同向、同轴减速传动;另外,由于采用常啮合传动,动力不间断,加速性好,工作也可靠。 3、行星齿轮机构的变速原理 由于单排行星齿轮机构有两个自由度,因此它没有固定的传动比,不能直接用于变速传动。为了组成具有一定传动比的传动机构,必须将太阳轮、齿圈和行星架这三个基本元件中的一个加以固定(即使其转速为0,也称为制动),或使其运动受到一定的约束(即让该构件以某一固定的转速旋转),或将某两个基本元件互相连接在一起(即两者转速相同),使行星排变为只有一个自由度的机构,获得确定的传动化。 设太阳轮的齿数为Z1,齿圈齿数为Z2,太阳轮、齿圈和行星架的转速分别为n1、n2、n3,并设齿圈与太阳轮的齿数比为α,即 α=Z2/Z1 则行星齿轮机构的一般运动规律可表达为: n1+αn2-(1+α)n3=0 由上式可以看出,在太阳轮、齿圈和行星架三个基本元件中,可任选两个分别作为主动件和从动件,而使另一个元件固定不动(使该元件转速为零)或使其运动受一定约束(使该

行星齿轮机构变速原理

汽车技术系教案 2014 /2015 学年第2学期 课程名称:汽车构造(二)授课教师:陈检龙 班级:2014级汽修春招班第24讲 题目:第24讲行星齿轮变速机构的结构原理(第九章传动系构造第四节自动变速器六、齿轮变速器)第 12 周星期二 第一节 本讲教学目标: 1、知识目标: ①了解行星齿轮变速机构的结构组成及种类; ②掌握一个单行星排的八种功能状态分析。 2、能力目标: ①通过掌握简单的行星齿轮机构的工作原理,为下面学习各种自动变速器的工作原理准备; ②锻炼学生们分析问题、思考问题的能力。 3、情感目标: 为学生树立自信心,激发出学生的学习动力。本讲主要内容:一、齿轮传动知识的回顾 二、行星齿轮机构中的一个单行星排的变速变向原理 教学重点:行星齿轮机构变速原理 教学难点:行星齿轮机构变速原理 计划课时:2h 教学方法及手段:导入、重点介绍、简介、对比介绍、归纳小结、多媒体 作业或课外阅读资料: 1.一个最简单的行星齿轮机构包含哪些功能元件?它们的运动轴线有什么关系? 2.行星排有哪些种类? 3.一个单行星排有几种功能状态? 4.在单行星排中,当行星架参与旋转运动时,其等效于什么样的齿轮?固定时呢?

上一讲回主页下一讲本讲教学内容: 由普通机械变速器的变速机构导入本讲内容: 重点介绍:·要求掌握行星齿轮变速机构的组成结构及变速原理。 课题导入 一、(提问)自动变速器的组成有几部分?是哪些? 答:包括四部分:液力变矩器、油泵、齿轮变速机构、控制系统。 二、(提问)液力变矩器能否取代齿轮变速机构?为何? 答:不能,因为其传动比较小,不能适应汽车各种运行条件的需要;且传动效率也不高,经济效率不好。 (因此,一般在自动变速器中,齿轮变速机构仍然是其变速的核心组成部分。) 三、(设问)齿轮变速机构有哪些种类? 普通齿轮变速机构,行星齿轮变速机构。 四、本课要解决的问题: 1、齿轮传动的基本知识回顾; 2、行星齿轮变速机构之——一个单行星排的变速原理。 一、齿轮传动的基本知识回顾 (一)齿轮传动种类: 包括平行轴齿轮传动,相交轴齿轮传动和交错轴齿轮传动三种。 (二)典型齿轮传动回顾 1、圆柱齿轮外啮合传动回顾 两轮转向相反,小带大减速,大带小升速。 1 2 2 1 12Z Z n n i- = - = 其中:1、2分别表示输入与输出汽车手动变速器就是以不同的直、斜齿圆柱齿轮成对(组)外啮合,并通过移动换挡齿轮或换挡接合套来实现变速和变向的。 2、圆柱齿轮内啮合传动回顾 两轮转向相同,小带大减速,大带小升速。 1 2 2 1 12Z Z n n i= = 其中:1、2分别表示输入与输出汽车自动变速器所用行星齿轮机构,既包含外啮合(太

行星齿轮结构及工作原理

行星齿轮机构和工作原理 一、简单的行星齿轮机构的特点  行星齿轮机构的组成:  简单(单排)的行星齿轮机构是变速机构 的基础,通常自动变速器的变速机构都由两排 或三排以上行星齿轮机构组成。简单行星齿轮 机构包括一个太阳轮、若干个行星齿轮和一个 齿轮圈,其中行星齿轮由行星架的固定轴支 承,允许行星轮在支承轴上转动。行星齿轮和 相邻的太阳轮、齿圈总是处于常啮合状态,通 常都采用斜齿轮以提高工作的平稳性(如图l 所示)。  如图2表示了简单行星齿轮机构,位于行星齿轮机构中心的是太阳轮,太阳 轮和行星轮常啮合,两个外齿轮啮合旋转方向相反。正如太阳位于太阳系的中心一样,太阳轮也因其位置而得名。行星轮除了可以绕行星架支承轴旋转外,在有些工况下,还会在行星架的带动下,围绕太阳轮的中心轴线旋转,这就像地球的自转和绕着太阳的公转一样,当出现这种 情况时,就称为行星齿轮机构作用的传动 方式。在整个行星齿轮机构中,如行星轮 的自转存在,而行星架则固定不动,这种 方式类似平行轴式的传动称为定轴传动。 齿圈是内齿轮,它和行星轮常啮合,是内 齿和外齿轮啮合,两者间旋转方向相同。 行星齿轮的个数取决于变速器的设计负 荷,通常有三个或四个,个数愈多承担负 荷愈大。  简单的行星齿轮机构通常称为三构件机构,三个构件分别指太阳轮、行星架和齿圈。这三构件如果要确定相互间的运动关系,一般情况下首先需要固定

其中的一个构件,然后确定谁是主动件,并确定主动件的转速和旋转方向,结 果被动件的转速、旋转方向就确定了。  二、单排行星齿轮机构的工作原理  根据能量守恒定律,三个元件上输入和输出的功率的代数和应等于零,从而得到单排行星齿轮机构一般运动规律的特性方程。  特性方程:n1+an2-(1+a)n3=0 n1——太阳轮转速,n2——齿圈转速,n3——行星架转速,a——齿圈与太阳轮齿数比。  由特性方程可以看出,由于单排行星齿轮机构具有两个自由度,在太阳轮、环形内齿圈和行星架三个机构中,任选两个分别作为主动件和从动件,而使另一个元件固定不动,或使其运动受一定的约束(即该元件的转速为某定值),则机构只有一个自由度,整个轮系以一定的传动比传递动力。下面分别讨论三种情况。  1、齿圈固定,太阳轮为主动件且顺时针转动,而行星架则为被动件。太阳轮 顺时针转动时,太阳轮轮齿必给行星轮齿A一个推力F1,则行星轮应为逆时针 转动,但由于齿圈固定,所以齿圈轮齿必给行星轮齿B一个反作用力F2,行星轮在F1和 F2合力作用下必绕太阳轮顺时针旋转,结果行星轮不仅存在逆时针自 转,并且在行星架的带动下,绕太阳轮中心轴线顺时针公转。在这种状态下, 就出现了行星齿轮机构作用的传动方式,而且被动件行星架的旋转方向与主动 件同方向。在这里,太阳轮是主动件而且是小齿轮,被动件行星架没有具体齿 数的传动关系,因此定义行星架的当量齿数等于太阳轮和齿圈齿数之和。这样,太阳轮带动行星架转动仍属于小齿轮带动最大的齿轮,是一种减速运动且有最 大的传动比。因为此时n2=0,故传动比 i13=n1?n3=1+a。(如图3)

行星齿轮结构和工作原理

行星齿轮机构和工作原理 § 3-3 行星齿轮机构和工作原理 I授课思路:在初步了解行星齿轮机构的组成的基础上,通过单排行星齿轮机构一般运动规律的特性方程结合力和反作用力的作用原理使学生掌握单排行星齿轮的工作原理。拓展学生的能力,使学生概括出单排行星齿轮的基本特征。

n 过程设计: 1 ?提问问题,复习上次课内容(约 3mi n ) ⑴ 导轮单向离合器有哪几种?(楔块式、滚柱式) ⑵锁止离合器的作用?(提高传动效率,使液力变矩器有液力传动变为机械 传动) 2 ?导入新课(约1mi n ) 自动变速器是怎样实现自动换挡的呢?这就是我们这节课讲的主要内容 3?新课内容:具体内容见“授课内容”(约73min ) 4. 本次课内容小结(约2min ) 5. 布置作业(约1mi n ) 川讲解要点:单排行星齿轮的工作原理和单排行星齿轮的基本特征这一主线进 行讲解。 IV 授课内容: 简单的行星齿轮机构的特点 行星齿轮机构的组成: 简单(单排)的行星齿轮机构是变速机构 的基 础,通常自动变速器的变速机构都由两排 或三排以 上行星齿轮机构组成。简单行星齿轮 机构包括一个 太阳轮、若干个行星齿轮和一个 齿轮圈,其中行星 齿轮由行星架的固定轴支 承,允许行星轮在支承轴 上转动。行星齿轮和 相邻的太阳轮、齿圈总是处于 常啮合状态,通 常都采用斜齿轮以提高工作的平稳 性(如图I 所示)。 如图2表示了简单行星齿轮机构,位于行星齿轮机构中心的是太阳轮,太阳 轮和行星轮常啮合,两个外齿轮啮合旋转方向相反。正如太阳位于太阳系的中心 一样,太阳轮也因其位置而得名。行星轮除了可以绕行星架支承轴旋转外, 在有 些工况下,还会在行星架的带动下,围绕太阳轮的中心轴线旋转,这就像地球的 图1 行星齿轮机构外形 I —竝圈轴;2—14圈;3■—行星集; 4—行星轮;5 —行星轮轴;白一太阳轮;

相关文档
最新文档