碳纳米管的纯化方法及其装置

合集下载

碳纳米管的过氧化氢法纯化研究

碳纳米管的过氧化氢法纯化研究

碳纳米管的过氧化氢法纯化研究摘要本文首先介绍碳纳米管的发现,碳纳米管的结构;详细介绍了碳纳米管的制备的方法,重点讲述碳纳米管的各种纯化方法;也对碳纳米管的应用进行描述,对碳纳米管的未来提出展望。

实验部分首先讲述了用来制备碳纳米管的催化剂的制备,接着讲述碳纳米管的制备,重点讲述用过氧化氢纯化碳纳米管的整个实验流程,并把实验中遇到的问题,以及如何解决这些问题进行了阐述。

最后把实验数据进行处理,将纯化后的碳纳米管做表征,通过扫描电子显微镜,拉曼普图和热重分析的研究,得出在此条件下过氧化氢法纯化碳纳米管的最佳浓度。

关键词:碳纳米管过氧化氢纯化扫描电子显微镜拉曼光谱热重分析Oxidative purification of catalytically prepared carbon nanotubeswith H2O2AbstractKey Words: Carbon nanotubes; H2O2; Purification; SEM;目录摘要 (I)ABSTRACT (II)第一章文献综述 (1)1.1 碳纳米管的结构 (1)1.2 碳纳米管的制备 (1)1.2.1电弧法 (1)1.2.2催化法 (2)1.2.3激光蒸发法 (3)1.3 碳纳米管的纯化 (3)1.3.1物理纯化方法 (4)1.3.2 化学纯化法 (5)1.3.3 综合纯化法 (8)1.4 碳纳米管的应用 (9)1.5 展望 (9)第二章实验部分……………………………………………………………2.1催化剂的制备 (9)2.2 碳纳米管的制备 (9)2.2.1制备碳纳米管的仪器2.2.2碳纳米管的制备2.3过氧化氢法纯化碳纳米管 (10)2.2.2 网站导航的表现形式 (12)2.3 使用所见既所得工具创建网站导航 (14)2.4 网站导航设计的一般原则 (17)……结语 (104)参考文献 (106)致谢 (107)文献综述自从1991年日本NEC的lijima用真空电弧蒸发石墨电极,并对产物作高分辨率透射电镜(HRTEM)分析,发现了具有纳米尺寸的碳的多层管状物碳纳米管(CNTs),碳纳米管特殊的结构以及性能引起了科学家的兴趣。

碳纳米管的制备技术与应用

碳纳米管的制备技术与应用

碳纳米管的制备技术与应用碳纳米管(Carbon nanotubes,CNTs)是一种以碳元素为原材料制备的一维纳米材料,由于其具有良好的力学性能、电学特性以及化学稳定性等特点,已经成为当今研究领域中最为热门的材料之一。

本文将介绍碳纳米管的制备技术以及其在各个领域的应用。

一、碳纳米管的制备技术碳纳米管的制备技术可以分为两种类型:单壁碳纳米管(Single-walled carbon nanotubes,SWCNTs)和多壁碳纳米管(Multi-walled carbon nanotubes,MWCNTs)。

1. SWCNTs的制备技术SWCNTs是由单个碳原子组成的圆柱形分子,其直径只有1纳米左右,是碳纳米管中最小的一种。

目前SWCNTs的制备技术主要有以下几种:(1) 弧放电法:将石墨电极在惰性气体氛围下通电,随着通电时间的延长,在电极表面就会形成一个由碳原子组成的弧,此时就会产生SWCNTs。

(2) 化学气相沉积法:将碳源放入通有气源的高温管道中,在特定的条件下产生SWCNTs。

(3) 气味解法:将金属铝、镁等材料和碳合成物物质放入高温的石墨炉中加热,从而产生SWCNTs。

2. MWCNTs的制备技术MWCNTs是由许多个碳单层环形结构套在一起形成的管状结构,由于其具有较高的机械强度和导电性能,因此在材料科学等领域有着广泛的应用。

其制备主要有以下几种方式:(1) 化学气相沉积法:将碳源放入通有气源的高温管道中,在特定的条件下产生MWCNTs。

(2) 电磁纺丝法:将金属铜制成细丝,并加热到一定温度,然后向铜丝上喷射石墨或其它碳源,从而产生MWCNTs。

(3) 化学还原法:将单壁和多壁碳纳米管分散在水溶液中,然后将还原剂缓慢加入到溶液中,之后用超离心机或过滤器将沉淀的MWCNTs分离出来。

二、碳纳米管在材料科学中的应用碳纳米管因其高催化性能、热稳定性及导电性能等优异特点,将在材料科学领域中得到广泛的应用。

多壁碳纳米管的纯化方法

多壁碳纳米管的纯化方法

多壁碳纳米管的纯化方法多壁碳纳米管(Multiwalled carbon nanotubes,简称MWCNTs)是由多个同心圆的石墨层所构成的碳纳米管结构。

在制备过程中,MWCNTs 往往伴随着杂质和残留物,因此需要进行纯化处理以去除这些杂质,以保证其物理和化学性质的纯净性。

本文将介绍一些常用的多壁碳纳米管的纯化方法。

1.酸洗法:酸洗法是最常用的多壁碳纳米管纯化方法之一、首先,将MWCNTs加入到强酸(如浓硝酸和浓硫酸的混合物)中,然后在搅拌的条件下进行酸洗。

酸洗的过程可以去除大部分的杂质和残留物,如金属催化剂、沉淀物和有机物。

洗涤完毕后,用去离子水或酒精洗涤脱离酸性环境,并使用离心机将碳纳米管进行沉淀、干燥和分散。

2.热处理法:热处理法是另一种常用的多壁碳纳米管纯化方法。

该方法通过高温处理MWCNTs来去除残留的催化剂和有机物。

在热处理的过程中,MWCNTs通常被置于空气或惰性气体气氛中进行。

其中,空气气氛中的高温处理(通常在500-600摄氏度)会氧化MWCNTs表面的残留有机物,而惰性气体气氛中的高温处理(通常在700-1000摄氏度)可以去除残留的催化剂。

3.离子液体浸渍法:离子液体浸渍法是一种相对温和的多壁碳纳米管纯化方法。

首先,将离子液体溶解在合适的溶剂中,然后将MWCNTs置于溶液中浸泡。

通过离子液体的相互作用,MWCNTs表面的杂质和残留物可以与离子液体结合并溶解,从而达到纯化的目的。

最后,用溶剂将MWCNTs洗涤干净,并用离心机进行沉淀、干燥和分散。

4.气相氧化法:气相氧化法是一种纯化效果较好的方法,可以去除大多数的残留物和杂质。

在气相氧化法中,MWCNTs通常被置于高温氧气或臭氧气氛中进行氧化处理。

这样可以使残留的有机物氧化为揮发性物质并挥发出去,同时氧化能够引发石墨层之间的氧化和断裂,有助于去除残留的催化剂。

总结起来,多壁碳纳米管的纯化方法有酸洗法、热处理法、离子液体浸渍法和气相氧化法等,每种方法都有其特点和适用场景。

碳纳米管的制备方法和应用

碳纳米管的制备方法和应用

碳纳米管的制备方法和应用碳纳米管是由纳米级的碳原子构成的一种纳米材料,具有独特的物理和化学性质,被广泛应用于各个领域。

本文将探讨碳纳米管的制备方法以及其在材料科学、电子学和生物医学中的应用。

一、碳纳米管的制备方法目前,常见的碳纳米管制备方法主要有化学气相沉积法、电化学沉积法、电弧放电法和碳热还原法等。

化学气相沉积法是制备碳纳米管最常用的方法之一。

该方法利用金属催化剂(如铁、铜等)和含碳的气体(如一氧化碳、甲烷等)在高温下反应,生成碳纳米管。

这种方法可以控制碳纳米管的尺寸和结构,制备出高质量的碳纳米管。

电化学沉积法是一种较为简单和经济的制备方法。

通过在电极表面施加电压,使金属离子在电极上还原并沉积成碳纳米管。

这种方法可以在常温下进行,对环境友好,但产出的碳纳米管质量较低。

电弧放电法是一种高温高压条件下制备碳纳米管的方法。

通过在金属电极之间施加高电压,形成电弧放电,使电极表面的碳物质蒸发并在高温高压下形成碳纳米管。

这种方法制备出的碳纳米管尺寸较大,结构较不规则。

碳热还原法是使用碳源将金属氧化物还原成金属,并在高温下生成碳纳米管。

这种方法能够制备出高纯度的碳纳米管,但操作条件较为复杂。

二、碳纳米管在材料科学中的应用由于碳纳米管具有优异的力学性能、导电性和热导性,因此在材料科学中有广泛的应用。

碳纳米管可以添加到复合材料中,提高材料的力学性能和导电性。

此外,碳纳米管还可以用于制备超级电容器和锂离子电池,因为其具有较大比表面积和良好的电化学性能。

另外,由于碳纳米管具有较高的比表面积和孔隙结构,可以用作吸附剂来去除水和气体中的有害物质。

碳纳米管的应用还延伸到柔性电子学和传感器领域,用于制备柔性显示器件和高灵敏度的传感器,如压力传感器和化学传感器等。

三、碳纳米管在电子学中的应用碳纳米管由于其独特的电子性质,被广泛应用于电子学领域。

碳纳米管可以用作场发射源,用于制备高亮度和高分辨率的显示器件。

此外,碳纳米管也可以用于制备柔性电子器件,如柔性电池和柔性晶体管等,具有重要的应用价值。

碳纳米管的制备方法

碳纳米管的制备方法

碳纳米管的制备方法碳纳米管(Carbon Nanotubes, CNTs)是一种具有优异性能和广泛应用前景的纳米材料,具有极高的比表面积、优异的导电性和热导率,因此在材料科学、纳米技术、能源存储等领域有着重要的应用价值。

碳纳米管的制备方法多种多样,下面将介绍几种常见的制备方法。

1. 化学气相沉积法(Chemical Vapor Deposition, CVD)。

化学气相沉积法是目前制备碳纳米管最常用的方法之一。

在CVD过程中,碳源气体(如甲烷、乙烯等)与载气(如氢气、氨气等)在高温条件下通过催化剂(如铁、镍、钴等)的作用下发生化学反应,生成碳原子,最终在催化剂表面形成碳纳米管。

CVD方法制备的碳纳米管质量较高,但是需要高温和高真空条件,设备成本较高。

2. 弧放电法(Arc Discharge)。

弧放电法是一种较为简单的碳纳米管制备方法,通过在高温下将碳源(如石墨)和金属催化剂(如铁、钴、镍等)放电,产生高温等离子体,从而在合成碳纳米管。

弧放电法制备的碳纳米管质量较高,但是产率较低,且需要严格控制反应条件。

3. 化学气相沉积法(Chemical Vapor Deposition, CVD)。

化学气相沉积法是目前制备碳纳米管最常用的方法之一。

在CVD过程中,碳源气体(如甲烷、乙烯等)与载气(如氢气、氨气等)在高温条件下通过催化剂(如铁、镍、钴等)的作用下发生化学反应,生成碳原子,最终在催化剂表面形成碳纳米管。

CVD方法制备的碳纳米管质量较高,但是需要高温和高真空条件,设备成本较高。

4. 气相凝结法(Gas-phase Condensation)。

气相凝结法是一种通过在高温下将碳源气体(如甲烷、乙烯等)在惰性气体氛围中加热,然后通过快速冷却的方法制备碳纳米管。

在气相凝结法中,碳原子在高温下先形成团簇,然后在快速冷却的条件下形成碳纳米管。

这种方法制备的碳纳米管产率较高,但是质量相对较低。

5. 水热法(Hydrothermal Synthesis)。

碳纳米管的合成和应用

碳纳米管的合成和应用

碳纳米管的合成和应用碳纳米管(Carbon Nanotubes, CNTs)是由纯碳构成的一种纳米材料,以其独特的物理和化学性质,在材料科学、生物医学等众多领域都有重要的应用和研究价值。

本文将从碳纳米管的合成方法、结构特征以及应用等方面进行讨论。

一、碳纳米管的合成方法碳纳米管最早是由日本科学家Sumio Iijima于1991年发现,并提出了一种制备碳纳米管的方法——电弧放电法。

该方法是通过电弧放电在高温下制备,得到的碳纳米管平均直径为10-20nm。

随后,人们发现在碳纳米管形成的高温条件下,化学气相沉积法(Chemical Vapor Deposition, CVD)也可以用来合成碳纳米管。

通过CVD法合成的碳纳米管平均直径可以达到数纳米级别。

此外,离子束辅助CVD、体积扩散法、等离子炮击法等方法也被用来合成碳纳米管。

这些方法各有优缺点,可以根据具体应用需求选择合适的方法。

二、碳纳米管的结构特征碳纳米管分为单壁碳纳米管(Single-Walled Carbon Nanotubes, SWNTs)和多壁碳纳米管(Multi-Walled Carbon Nanotubes, MWNTs)两种。

SWNTs是由一个或几个碳原子层叠而成的单层碳纳米管,直径在1-2nm左右;MWNTs则是由多层碳原子管叠加在一起构成的,直径在10-30nm左右。

SWNTs的结构主要包括芳香环、周边的螺旋结构以及端部的官能团等。

SWNTs具有高比表面积和高机械性能,同时还有超疏水性、高导电性和热导率等重要的物理和化学性质。

MWNTs的壁层数越多,直径越大,内壁和外壁之间的距离也越大。

MWNTs的直径越大,其比表面积也越小,但其机械性能就越强。

MWNTs和SWNTs相比,其电导率、热导率和力学性能都要略低。

同时,MWNTs相较于SWNTs更便于分散处理,应用更为广泛。

除了单壁和多壁两种结构外,根据碳纳米管的管径、手性和烯结构等进一步可将碳纳米管细分为不同类型,如外径为几百纳米的纳米线状碳纳米管和手性控制的带有特定电学性质的碳纳米管等。

碳纳米管的提纯

碳纳米管的提纯

碳纳米管的提纯碳纳米管的提纯可分为物理提纯和化学提纯。

1、物理提纯:物理提纯是根据碳纳米管与杂质的粒径、形状、电性等物理性质的差异,借助于超声分散、离心分离、微孔过滤、空间排阻色谱法、电泳法等物理方法将CNTs 和杂质相互分离而达到提纯目的。

通常先通过超声分散使黏附在碳纳米管壁上的无定形碳、碳纳米颗粒脱落下来,使覆盖在催化剂颗粒上的石墨层剥离。

然后离心分离,由于碳纳米管比无定形碳、石墨粒子、碳纳米颗粒等杂质的粒度大,所以离心分离时,碳纳米管先沉积下来,而粒度较小的碳纳米颗粒、石墨粒子等却悬浮在溶液之中,将悬浮液在加压或者超声振荡的协助下通过微孔过滤膜,就可以将粒度小于微孔过滤膜孔径的杂质粒子除去。

空间排阻色谱法是根据待纯化样品中分子的大小不同来实现分离。

和一般液相色谱法不同,空间排阻法采用的填充剂是一种表面惰性、含有许多大小不同的孔洞的立体网状物质。

这些孔洞的大小与被分离样品的大小相当,碳纳米管由于分子较大不能进入孔洞而被排斥,随着流动相移动而最先流出;中等大小的分子则渗入到较大孔洞之中,受到较小孔洞的排斥,滞后流出;最小的分子则能渗入到各种尺孔洞之中,完全不受排斥,最后流出。

电泳法是Yamamoto 等利用电泳原理提出的。

该方法根据电泳速率不同将CNTs 与其它杂质颗粒分离,且所得CNTs 未受到损坏。

其做法是先将传统电弧放电法所制备的CNTs 充分分散于异丙醇溶液中,离心除去较大的碎片,然后在充满分散液的容器中放入两个间距为0. 4mm 的共面铝电极。

因为CNTs 有电各向异性这一特征,所以当两个电极之间加上交变电场时,在电场的作用下,CNTs 将向阴极移动,并沿着电场方向进行有规律的定向排列。

研究人员认为电泳法为单根碳纳米管的选择和操作提供了可能。

2、化学提纯:化学提纯包括氧化法和非氧化法,以下是对氧化法的介绍:氧化法是利用氧化剂对CNTs 与杂质之间的氧化速率不同来完成的。

CNTs 的管壁是由六元环碳原子构成,两端通常被五元环、七元环碳原子构成的半球形帽所封闭。

碳纳米管材料的制备与应用

碳纳米管材料的制备与应用

碳纳米管材料的制备与应用随着科技的不断发展,人类需要的材料也越来越多样化。

其中,碳纳米管材料已经逐渐成为各个领域的研究热点。

碳纳米管是由碳原子组成的管状结构,具有优异的电学、热学和机械性能,因此在材料科学、能源、电子学、生物医学等领域都有广泛的应用。

本文将着重讨论碳纳米管的制备与应用。

一、碳纳米管的制备方法碳纳米管的制备方法分为两类:化学气相沉积(CVD)和物理气相沉积(PVD)。

其中,化学气相沉积是目前主流的制备方法。

1. CVD法CVD法是一种将碳源物质通过高温反应在衬底上形成碳纳米管的方法。

该方法在过去几十年间被广泛应用。

其原理是将在高温下分解的碳源物质(MgO、Fe、Co、Ni等金属薄膜)与甲烷(CH4)等碳源反应,生成碳纳米管。

产生的碳纳米管在金属薄膜上进行生长,成品碳纳米管可以被用于许多领域,如生物医学、电子学和机械工程。

2. PVD法PVD法是物理气相沉积法,是将高温高真空条件下的碳到金属薄膜表面,使其发生化学反应产生的碳纳米管。

PVD法和CVD法相比,能够控制制备的材料的形态,所以在某些行业中得到了广泛应用。

二、碳纳米管的应用碳纳米管可应用于生物医学、电子,机械工程等诸多领域中。

下面我们将简述几个典型应用案例。

1.生物医学碳纳米管是最有前途的纳米生物材料之一,具有良好的潜在应用前景。

例如,在体内使用碳纳米管作为药物载体能够提高药物在体内的分布,从而改善治疗效果。

同时还可以在生物医学领域中应用到组织修复等方面。

虽然在生物医学应用领域,碳纳米管还有各种缺陷需要克服,但其无疑是一个相当有前景的材料。

2. 电子碳纳米管在电子领域中的应用被认为是随着大小更小的范围的涌现而产生的。

碳纳米管的应用在电学方面主要有两个方面:体积很小时还能保持完美的电性;因其结构的高度均匀性而成本效益较高。

3. 机械工程由于碳纳米管的力学性质优异,具有较高的韧性和高强度,可以有效解决一些结构耐磨、化学稳定度和热稳定度较差、承载能力不足,同时仍具有大量不仅仅是机架化的性能的问题,也具有广泛的应用和前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【ZL03150121.4】
●摘要
本发明公开了属于纳米材料制备技术领域的利用气相选择性氧化除去碳相杂质的一种碳纳米管的纯化方法及其装置。

该装置为纳米聚团流化床反应器,由气体分布器、流化床床体、气固分离器、装料口与卸料口组成。

碳纳米管的纯化方法是利用从纳米聚团流化床反应器底部通入的氧化性气体和流化气体,使固体物料处于流化状态,碳纳米管粗产品在被流化的同时发生选择性氧化反应,将无定形碳及包覆在催化剂表面的碳层除掉,从而得到纯化的碳纳米管。

采用流化床反应器易于保持均匀的温度场与浓度场,对纯化过程有利。

该装置结构简单,处理量大,物料装卸方便,即可间歇操作也可连续操作。

●权利要求
1. 一种碳纳米管的纯化方法,其特征在于:所述碳纳米管的纯化方法是利用从纳米聚团流化床反应器底部通入的氧化性气体和流化气体的冲击力,搅动反应器内的固体物料3,使其流化并发生选择性氧化反应,将碳纳米管粗品中的无定形碳及包覆在催化剂表面的碳层除掉;其纯化过程为:将含有带载体催化剂及碳相杂质的碳纳米管粗品固体物料3从反应器上部的装料口6加入,氧化性气体从流化床反应器床体4底部连续通入,经过气体分布器1后,使碳纳米管粗产品被流化并同时发生选择性氧化反应,残余气体及气体产物经气固分离器5从流化床反应器床体4顶部排出;当氧化性气体用量小,不足以使固体物料流化时,补充惰性气体如氮气作为流化气。

反应后的固体物料3从流化床反应器下部的卸料口7卸出。

2.根据权利要求1所述碳纳米管的纯化方法,其特征在于:所述带载体的催化剂为:Fe/MgO、Fe/Al2O3、Fe/SiO2、Fe-Mo/MgO、Ni/MgO,其在反应过程中兼有催化及热载体作用,利于保持反应器内均匀的温度场;反应后可利用相应的酸溶液除去催化剂,得到高纯碳纳米管。

3.根据权利要求1所述碳纳米管的纯化方法,其特征在于:所述氧化性气体为:氧气、空气、CO2、H2O蒸汽。

相关文档
最新文档