水凝胶溶胀度
甲壳胺水凝胶的溶胀性能

甲壳胺水凝胶的溶胀性能David R Rohindra, Ashveen V Nand, Jagjit R KhurmaDepartment of Chemistry, The University of the South Pacific, Suva, Fiji 摘要:甲壳胺与戊二醛交联制备甲壳胺水凝胶。
通过凝胶介质在不同pH值和不同温度下的溶胀来衡量交联和非交联水凝胶的溶胀性。
根据pH值,温度和交联度来观察凝胶的溶胀性。
通过傅里叶变换红外光谱(FT - IR)和差示扫描量热法(DSC)来对凝胶薄膜进行表征。
随着凝胶交联度的增加玻璃化转变温度(Tg)和凝胶自由水量下降。
关键词:甲壳胺,水凝胶,溶胀性,热性能。
一.导言水凝胶的交联大分子网络在水或生物液体中的膨胀。
在其溶胀状态下可以做为伤口敷料和控制药物释放的载体,所以他们已经成为活性载体的一个选择。
他们的主要缺点是机械强度低。
交联水凝胶,可以加强其结构。
交联剂有很多,如甲醛,环氧化合物化合物,醛和淀粉。
最常用的交联剂是戊二醛。
大部分的亲水聚合物已准备研究水凝胶,甲壳胺是其中之一。
甲壳胺是甲壳素的脱乙酰衍生的不溶于水的聚合物,目前在自然界中的昆虫的外骨骼,外壳蟹,虾,龙虾等和真菌的细胞壁可以发现。
甲壳素和甲壳胺的化学结构的差异在于脱乙酰度。
由于其无毒无味,在动物组织中的生物相容性,医疗和制药应用和可生物降解的属性,使得目前甲壳胺的利润丰厚。
甲壳胺水凝胶像其它水凝胶一样含有大量水分。
一部分水与聚合物紧密结合,另一部分是自由水。
水在交联和不交联的甲壳胺中形成一个立体的网络结构。
甲壳胺基于水凝胶表现出良好的生物相容性,低退化和易于加工的性能。
这些水凝胶的吸水和脱水能力取决于组成和环境可利用范围,以方便药物的释放,其生物降解性和应用,如形成凝胶的能力。
与其它聚合物混合可以改变甲壳胺的物理和机械性能,是甲壳胺交联并应用于实际的一个既方便又有效的方法。
在大鼠的肌肉活体组织免疫研究中甲壳胺与戊二醛交联表现出很好的应用前景。
明胶-异丙基丙烯酰胺水凝胶的溶胀性

明胶-异丙基丙烯酰胺水凝胶的溶胀性吉静,黄明智(北京化工大学材料科学与工程学院,北京100029)高分子凝胶是由具有网状结构的聚合物和溶剂组成的。
交联高聚物的溶胀过程实际上是两种相反趋势的平衡过程,溶剂试图渗透到网络内部,使体积溶胀导致三维分子网络的伸展,交联点之间的分子链的伸展降低了它的构象熵值,分子网络的弹性收缩力,力图使网络收缩。
当两种相反的倾向互相抵消时,达到溶胀平衡。
高分子凝胶的溶胀特性与溶质和溶剂的性质、温度及网络交联结构有关。
它们的定量关系可用Flory-Huggins渗透压说明。
带电的PNIPAM微凝胶因其在LCST上下分散状态的不同,可用于石油储罐中的原油回收[1]。
将PNIPAM与明胶(geltin)结合制成的水凝胶不仅具有温度敏感性,明胶的两性带电,使其更具有pH敏感性[2],有望应用在更复杂的环境中。
水凝胶的一个重要性质是平衡溶胀度,如分散状态、可控的释药方式可以通过水凝胶的溶胀度控制。
因此,可借助高分子网络凝胶结构、形态的微观控制,来影响其宏观的溶胀度。
由于水凝胶在生物医药、分离工程、石油化工等多项领域的应用[6~8],与其溶胀度的大小、变化有密切的关系,而影响水凝胶溶胀度的因素是多方面的,了解这些因素对水凝胶溶胀度的影响,可为更好地应用水凝胶提供理论指导。
尽管有关PNIPAM的研究很多[3~5],但还未见这一领域结合天然高分子明胶的研究。
因此,本实验的主要目的是研究影响明胶-PNIPAM水凝胶平衡溶胀度的因素。
1实验部分1 .1材料N-异丙基丙烯酰胺(NIPAM),化学纯;明胶,K-911216,开平明胶厂;过硫酸铵(APS),AR级,北京化学试剂三厂;N,N,N,N-四甲基乙二胺(TEMED),CP级,北京化学试剂三厂;N,N-亚甲基双丙烯酰胺(BIS),AR级,北京化学试剂公司;戊二醛溶液(GLA,质量分数25%),CP级,北京华博源科技开发中心。
1.2水凝胶的制备将明胶、N-异丙基丙烯酰胺、TEMED、BIS溶解于去离子水中,待完全溶解后,加入APS,同时通入氮气;再加入GLA,或BIS,或BIS和GLA,并快速搅拌均匀,室温下静置2h,分别制成geltinx-PNIPAM,geltin-PNIPAMx,geltinx-PNIPAMx3种交联结构的水凝胶。
水凝胶调查报告

水凝胶调查报告一、引言1.水凝胶(Hydrogel)的定义以水为分散介质的凝胶。
具有交联结构的水溶性高分子中引入一部分疏水基团而形成能遇水膨胀的交联聚合物。
是一种高分子网络体系,性质柔软,能保持一定的形状,能吸收大量的水。
凡是水溶性或亲水性的高分子,通过一定的化学交联或物理交联,都可以形成水凝胶。
这些高分子按其来源可分为天然和合成两大类。
天然的亲水性高分子包括多糖类(淀粉、纤维素、海藻酸、透明质酸,壳聚糖等)和多肽类(胶原、聚L-赖氨酸、聚L-谷胺酸等)。
合成的亲水高分子包括丙烯酸及其衍生物类(聚丙烯酸,聚甲基丙烯酸,聚丙烯酰胺,聚N-聚代丙烯酰胺等)。
2.水凝胶的用途作为一种高吸水高保水材料,水凝胶被广泛用于多种领域,如:干旱地区的抗旱,农用薄膜、建筑中的结露防止剂、调湿剂、石油化工中的堵水调剂,原油或成品油的脱水,在矿业中的抑尘剂,食品中的保鲜剂、增稠剂,医疗中的药物载体等等。
值得注意的是,不同的应用领域应该选用不同的高分子原料,以满足不同的需求。
二.水凝胶方面近五年的文章发表情况1.Nature以hydrogel为主题进行搜索,找到近五年的文章,数据统计如下:2010年34篇2009年83篇2008年73篇2007年76篇2006年53篇2.中国学术期刊网络出版总库:(关键词:水凝胶)2010年20篇2009年186篇2008年167篇2007年161篇2006年135篇3.中国博士学位论文全文数据库:(关键词:水凝胶)2009年8篇2008年9篇2007年4篇2006年9篇4.中国优秀硕士学位论文全文数据库:(关键词:水凝胶)2009年32篇2008年22篇2006年48篇2006年19篇从统计数字来看,近年来对水凝胶的研究越来越多。
10年截止到3月份,国内外都各有大量的文章出现,从整个趋势看,水凝胶又是今年的研究热点,值得我们关注。
三.不同水凝胶的制备的研究1.红薯淀粉水凝胶制备以红薯淀粉为原料,以4-二甲基氨基吡啶为催化剂,于水相中经过醋酸酐酯化处理制备红薯淀粉水凝胶。
gelma的溶胀率

gelma的溶胀率
GelMA(明胶甲基丙烯酸酯)是一种生物相容性良好的水凝胶材料,广泛应用于组织工程和药物传递等领域。
溶胀率是指材料在吸收溶剂(如水)后体积增大的程度,是GelMA 水凝胶材料重要的物理性能之一。
GelMA的溶胀率受到多种因素的影响,包括其浓度、交联程度、pH值、温度以及溶剂种类等。
一般来说,GelMA水凝胶具有较高的溶胀率,这得益于其丰富的亲水基团和三维网络结构。
当GelMA水凝胶与水接触时,水分子会通过扩散作用进入凝胶网络内部,与亲水基团发生相互作用,导致凝胶体积增大。
在实际应用中,人们可以通过调节GelMA的浓度和交联程度来控制其溶胀率。
一般来说,随着GelMA浓度的增加,凝胶网络的密度增大,溶胀率相应降低;而交联程度的提高则会增强凝胶网络的稳定性,同样导致溶胀率降低。
此外,pH值和温度等环境因素也会对GelMA 的溶胀率产生影响。
在酸性条件下,GelMA分子链上的羧基会质子化,增强凝胶的亲水性,从而提高溶胀率;而在较高温度下,水分子的热运动加剧,有利于水分子进入凝胶网络内部,同样会提高溶胀率。
GelMA的溶胀率对于其在组织工程和药物传递等领域的应用具有重要意义。
例如,在组织工程中,适当的溶胀率可以模拟细胞外基质的微环境,有利于细胞的粘附、增殖和分化;而在药物传递中,溶胀率则会影响药物的释放速率和释放量。
因此,研究和调控GelMA的溶胀率对于优化其应用性能具有重要意义。
水凝胶溶胀度-推荐下载

水凝胶的溶胀性与抗张强度高分子凝胶是由具有网状结构的聚合物和溶剂组成的。
水凝胶在水中可显著溶胀。
溶胀性是指凝胶吸收液体后自身体积明显增大的现象,这是弹性凝胶的重要特性,凝胶的溶胀可分为两个阶段:第一阶段是溶剂分子钻入凝胶中与大分子相互作用形成溶剂化层,此过程很快,伴有放热效应和体积收缩现象(指凝胶体积的增加比吸收的液体体积小)第二阶段是液体分子的继续渗透,;这时凝胶体积大大增加。
溶胀的大小可用溶胀度(swelling capacity)来衡量。
交联高聚物的溶胀过程实际上是两种相反趋势的平衡过程,溶剂试图渗透到网络内部,使体积溶胀导致三维分子网络的伸展,交联点之间的分子链的伸展降低了它的构象熵值,分子网络的弹性收缩力,力图使网络收缩。
当两种相反的倾向互相抵消时,达到溶胀平衡。
高分子凝胶的溶胀特性与溶质和溶剂的性质、温度及网络交联结构有关。
温度敏性水凝胶是指能随环境温度变化发生体积突变现象的一类水凝胶。
这种凝胶具有一定比例的疏水和亲水基团,温度的变化可影响这些基团的疏水作用以及大分子链间的氢键作用,从而使凝胶结构改变,发生体积变化。
由于温度敏感性水凝胶的独特响应性,在药物可控释放、生物传感器、生物机械以及膜分离系统等方面有着极其重要的应用价值。
自20世纪80年代Tanaka等报道了聚N-异丙基丙烯酰胺(PNIPAAm)水凝胶的温度敏感性后,水凝胶的温度敏感性受到了广泛的关注。
聚N-异丙基丙烯酰胺凝胶属于低温溶解型温度敏感性水凝胶,它在较小的温度范围内可表现出明显的亲水和疏水变化,从而表现出低温溶胀高温收缩的性能,其临界溶解温度下限在32℃左右。
Inomata,Seker以及Kim等分别合成了N取代基不同的聚N取代丙烯酰胺类水凝胶,较深入地探讨了这类水凝胶的温度敏感性机理。
Takei 等研究发现,当NIPAm与亲水单体共聚时,聚合物的临界溶解温度会升高; 与疏水单体共聚时,聚合物的临界溶解温度则下降。
壳聚糖水凝胶溶胀

壳聚糖水凝胶溶胀壳聚糖水凝胶的溶胀性是指在一定条件下,壳聚糖水凝胶能够吸收水分并膨胀成为一种含水凝胶状态。
壳聚糖在水溶液中可以与水分子形成氢键,形成三维网状结构,从而形成凝胶状态。
壳聚糖水凝胶的溶胀性是其重要的物理化学性质之一,对于其在生物医学领域的应用具有重要的意义。
壳聚糖水凝胶溶胀性的研究对于了解壳聚糖水凝胶的物理化学性质,优化其制备工艺和控制其性能具有重要的意义。
与此同时,壳聚糖水凝胶的溶胀性还与其在生物医学领域的应用息息相关,影响着其在药物传递、组织工程、生物传感等方面的性能表现。
壳聚糖水凝胶溶胀性的影响因素影响壳聚糖水凝胶溶胀性的因素有很多,主要包括壳聚糖水凝胶的制备工艺、壳聚糖的分子量、壳聚糖的交联度、水溶液的pH值、离子强度、温度等因素。
下面分别从这几个方面进行阐述。
一、壳聚糖水凝胶的制备工艺壳聚糖水凝胶的制备工艺会直接影响其溶胀性。
通常来说,壳聚糖水凝胶的制备工艺包括溶液浓度、溶液pH值、溶液温度、溶液离子强度、交联剂种类和用量等因素。
这些因素会影响到壳聚糖分子间的相互作用、壳聚糖链的空间构象、壳聚糖水凝胶的孔隙结构等,从而影响其水凝胶溶胀性能。
二、壳聚糖的分子量壳聚糖的分子量也会影响其水凝胶的溶胀性。
一般来说,分子量较小的壳聚糖更容易形成水凝胶,并且其水凝胶的溶胀性更好。
这是因为分子量较小的壳聚糖更容易形成氢键,从而形成较为致密的水凝胶结构。
而高分子量的壳聚糖由于其分子链较长,链间交联较少,容易形成疏松的凝胶结构,其溶胀性则相对较差。
三、壳聚糖的交联度壳聚糖的交联度也是影响其水凝胶溶胀性能的重要因素。
一般来说,交联度较高的壳聚糖更容易形成致密的水凝胶结构,并且其水凝胶的溶胀性更好。
这是因为交联度较高的壳聚糖分子链之间的交联点较多,链之间的空间结构更加致密,从而形成较为均匀的水凝胶结构。
而交联度较低的壳聚糖由于交联点较少,链之间的结构较为疏松,其水凝胶的溶胀性相对较差。
四、水溶液的pH值水溶液的pH值对壳聚糖水凝胶的溶胀性能有很大影响。
水凝胶溶胀行为

水凝胶溶胀行为
水凝胶是一类胶体物质,在水中溶胀后会形成透明的胶体溶液。
水凝胶具有极强的吸水性能,可以吸收其重量数倍的水分。
因此,在各种领域都有广泛的应用,如农田保水、化妆品、医疗敷料等。
水凝胶溶胀行为是指水凝胶在水中吸水膨胀的过程。
水凝胶吸收水分后,其分子链结构会发生变化,进而影响其溶胀行为。
根据不同的水凝胶成分和吸水条件,水凝胶的溶胀行为也会有所不同。
常见的水凝胶有聚丙烯酰胺凝胶(PAM)、聚丙烯酸钠凝胶(PAAS)等。
这些水凝胶都具有强烈的亲水性,能够快速吸收水分。
在接触水分后,水凝胶的结构会逐渐膨胀,直至达到平衡状态。
平衡状态下,水凝胶与周围的水分含量相当,不会进一步膨胀或收缩。
水凝胶溶胀行为的影响因素主要有以下几个方面:
第一,水分含量。
水凝胶的溶胀行为与周围环境的湿度有关。
通常情况下,水凝胶在湿度较高的环境中溶胀更为明显。
第二,温度。
水凝胶的溶胀行为也与温度相关。
在高温下,水凝胶分子链的运动更为活跃,导致更大程度的溶胀。
第三,药物添加。
某些药物可影响水凝胶的分子结构,从而影响其溶胀行为。
例如,添加NaCl可以增强PAAS凝胶的吸水能力,而添加有机溶剂可以减缓水凝胶的溶胀速率。
水凝胶的溶胀行为是其重要的性能指标之一。
了解水凝胶的溶胀行为对于合理选择和应用具有重要意义,同时也为研发新型水凝胶材料提供了参考依据。
水凝胶溶胀度

水凝胶的溶胀性与抗张强度高分子凝胶是由具有网状结构的聚合物和溶剂组成的。
水凝胶在水中可显著溶胀。
溶胀性是指凝胶吸收液体后自身体积明显增大的现象,这是弹性凝胶的重要特性,凝胶的溶胀可分为两个阶段:第一阶段是溶剂分子钻入凝胶中与大分子相互作用形成溶剂化层,此过程很快,伴有放热效应和体积收缩现象(指凝胶体积的增加比吸收的液体体积小)第二阶段是液体分子的继续渗透,;这时凝胶体积大大增加。
溶胀的大小可用溶胀度(swelling capacity)来衡量。
交联高聚物的溶胀过程实际上是两种相反趋势的平衡过程,溶剂试图渗透到网络内部,使体积溶胀导致三维分子网络的伸展,交联点之间的分子链的伸展降低了它的构象熵值,分子网络的弹性收缩力,力图使网络收缩。
当两种相反的倾向互相抵消时,达到溶胀平衡。
高分子凝胶的溶胀特性与溶质和溶剂的性质、温度及网络交联结构有关。
温度敏性水凝胶是指能随环境温度变化发生体积突变现象的一类水凝胶。
这种凝胶具有一定比例的疏水和亲水基团,温度的变化可影响这些基团的疏水作用以及大分子链间的氢键作用,从而使凝胶结构改变,发生体积变化。
由于温度敏感性水凝胶的独特响应性,在药物可控释放、生物传感器、生物机械以及膜分离系统等方面有着极其重要的应用价值。
自20世纪80年代Tanaka等报道了聚N-异丙基丙烯酰胺(PNIPAAm)水凝胶的温度敏感性后,水凝胶的温度敏感性受到了广泛的关注。
聚N-异丙基丙烯酰胺凝胶属于低温溶解型温度敏感性水凝胶,它在较小的温度范围内可表现出明显的亲水和疏水变化,从而表现出低温溶胀高温收缩的性能,其临界溶解温度下限在32℃左右。
Inomata,Seker以及Kim等分别合成了N取代基不同的聚N取代丙烯酰胺类水凝胶,较深入地探讨了这类水凝胶的温度敏感性机理。
Takei 等研究发现,当NIPAm与亲水单体共聚时,聚合物的临界溶解温度会升高; 与疏水单体共聚时,聚合物的临界溶解温度则下降。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水凝胶的溶胀性与抗张强度
高分子凝胶是由具有网状结构的聚合物和溶剂组成的。
水凝胶在水中可显着溶胀。
溶胀性是指凝胶吸收液体后自身体积明显增大的现象,这是弹性凝胶的重要特性,凝胶的溶胀可分为两个阶段:第一阶段是溶剂分子钻入凝胶中与大分子相互作用形成溶剂化层,此过程很快,伴有放热效应和体积收缩现象(指凝胶体积的增加比吸收的液体体积小)第二阶段是液体分子的继续渗透,;这时凝胶体积大大增加。
溶胀的大小可用溶胀度(swelling capacity)来衡量。
交联高聚物的溶胀过程实际上是两种相反趋势的平衡过程,溶剂试图渗透到网络内部,使体积溶胀导致三维分子网络的伸展,交联点之间的分子链的伸展降低了它的构象熵值,分子网络的弹性收缩力,力图使网络收缩。
当两种相反的倾向互相抵消时,达到溶胀平衡。
高分子凝胶的溶胀特性与溶质和溶剂的性质、温度及网络交联结构有关。
温度敏性水凝胶是指能随环境温度变化发生体积突变现象的一类水凝胶。
这种凝胶具有一定比例的疏水和亲水基团,温度的变化可影响这些基团的疏水作用以及大分子链间的氢键作用,从而使凝胶结构改变,发生体积变化。
由于温度敏感性水凝胶的独特响应性,在药物可控释放、生物传感器、生物机械以及膜分离系统等方面有着极其重要的应用价值。
自20世纪80年代Tanaka 等报道了聚N-异丙基丙烯酰胺(PNIPAAm)水凝胶的温度敏感性后,水凝胶的温度敏感性受到了广泛的关注。
聚N-异丙基丙烯酰胺凝胶属于低温溶解型温度敏感性水凝胶,它在较小的温度范围内可表现出明显的亲水和疏水变化,从而表现出低温溶胀高温收缩的性能,其临界溶解温度下限在32℃左右。
Inomata,Seker以及Kim等分别合成了N取代基不同的聚N取代丙烯酰胺类水凝胶,较深入地探讨了这类水凝胶的温度敏感性机理。
Takei 等研究发现,当NIPAm与亲水单体共聚时,聚合物的临界溶解温度会升高; 与疏水单体共聚时,聚合物的临界溶解温度则下降。
国内对聚N取代丙烯酰胺类水凝胶的温度敏感性也进行了一些研究。
张先正等以AAm与NIPAAm共聚合成了具有快速温度敏感的水凝胶,研究发现AAm的用量对凝胶临界溶解温度有着较大的影响。
王昌华等利用丙烯酸(3-磺酸钾)丙酯(SPAP)与NIPAAm共聚,制备了P(NIPAAm-co-SPAP)水凝胶,发现该凝胶的临界溶解温度在人体温度(37 ℃)附近。
另外,一些研究还发现,有些水凝胶的溶胀比随温度的升高而增加,反之则降低,表现为热胀性,这类水凝胶称为高温溶解型温度敏感性水凝胶。
Hiroki 等合成的聚 (N,N-二甲基丙烯酰胺-co-丙烯酰胺-co-甲基丙烯酸丁酯)与聚丙烯酸的互穿网络水凝胶就具有这种温度响应特性。
当前合成出的温度敏感性水凝胶普遍存在强度较低的弱点。
这主要是由于温度敏感性水凝胶一般含有一定比例的疏水和亲水基团,凝胶内部容易出现相分离,使得凝胶在溶胀后内部出现裂纹而容易破碎。
温度敏感性水凝胶的这一弱点,在很大程度上限制了它在生物机械以及膜分离系统等领域的应用。
因此,如何在保证凝胶温度敏感性的前提下,制备出强度较高的水凝胶,是一个急需解决的问题。
在凝胶的众多增强方法中,互穿网络(IPN)技术是一个很好的选择。
利用互穿网络技术合成出的水凝胶,既能保持原有各组分的特性,又能通过聚合物网络间的相互缠结而起到对凝胶的增强作用。
水凝胶的溶胀度除了受环境条件(温度、pH值)的影响以外,还受自身结构、
介质的离子强度的影响。
同一条件下的交联密度越大,溶胀度越小;对于配比不同的水凝胶而言,配比的影响取决于温度和选择交联剂用量的标准的用量。
●凝胶消溶胀性能的测定
将在50 ℃下达到溶胀平衡的水凝胶准确称重然后迅速将凝胶放入60 ℃的去离子水中。
每隔一定时间将凝胶取出,擦干表面水份,称重。
凝胶含水率(WR)可由下式进行计算。
其中, Wd代表干凝胶的质量; We代表凝胶在50 ℃下达到溶胀平衡的质量; Wt 代表凝胶在60 ℃蒸馏水中消溶胀一定时间后的质量。
●凝胶抗压缩强度的测定
由于吸水后的凝胶的抗压缩力学性能与橡胶接近,因此用橡胶的压阻实验来表征凝胶的抗压缩强度。
将干凝胶放入去离子水中,控制吸水时间以得到溶胀度相同的凝胶,然后将凝胶放入密闭容器中,在30 ℃的环境下放置4 h,使凝胶溶胀均匀,凝胶的溶胀度由Eq。
将凝胶切成10 mm×10 mm×10 mm的正方体,在CMT-6104型万能力学测试仪上进行凝胶的橡胶压阻性能测试,压缩速度为 1 mm/min,直至凝胶破裂。
凝胶的抗压缩强度(stress strength)由以下公式计算:
其中F为试样截面受到的力,S为试样的截面积。
●敷料的功能与主要指标
理想的敷料应具有如下功能[[33]:防止水分与体液的损失;覆盖及保护创面不受感染;
良好的生物相容性;透气,保湿性良好:与创面有有较好的粘合力,不产生变形;有足
够的机械强度支持细胞分化增生;表面具有足够的细胞吸附能力,有利于细胞的薪附和
生长;能够促进上皮组织和肉芽的正常生长,促进伤口愈合,不留疤痕;材料来源充足,
易于制作、加工等。
评价敷料性能的主要指标如下:
(1)机械性能:主要是抗张强度((tensil strength)和人体舒适性(comfortablity)。
前者反
映敷料抵抗外力破坏的能力;后者体现敷料的柔顺性,反映敷料在外力作用下的变形特
点。
(2)细菌屏障作用:理想的创面敷料应能对微生物侵入起到阻隔的作用,有效地保
护创面,防止感染。
(3)粘附性:即敷料均匀、紧密地粘附在创面的能力,以撕脱力表示。
(4)吸收容量:即敷料吸收创面渗出液及有害物质的能力,吸收容量较大的敷料能
够防止创面积液,减少细菌生长,从而促进愈合。
(5)水蒸气透过率:适当的水蒸气透过率可使创面保持一个理想的湿度环境,防止
积液的同时也能保持创面湿润,有利于促进愈合。
(6)氧气通透性:氧气能够提高成纤维细胞的活性,有利于上皮组织成份胶原蛋白
的合成和表皮细胞的生长。
(7)其他:对于新开发的敷料应进行必要的毒性、抗原性及过敏性测试。
若敷料中
加入了药物,需进行体外释药实验及探明其协同作用。
●抗菌机理
抗菌剂是对霉菌、细菌等微生物高度敏感的化学物质,它能通过化学反应或物理作用杀死与其接触的微生物。
抗菌材料是指经过抗菌剂处理后具备了抗微生物性能的材料,在其使用过程中可以抑制对人类的正常生活和生产环境有害的微生物的生长和繁殖。
人体在正常的代谢过程中,不断产生酸性物质和碱性物质,也从食物中摄取酸性物质和碱性物质,酸性物质和碱性物质在人体内不断变化,但由于人体具有一定的酸碱平衡调节能力,所以正常情况下体内酸碱能保持相对平衡,这个平衡就是酸碱平衡,平衡范围为酸碱度(即pH值)7.35-7.45,平均为7.41,呈弱碱性。
如果人体内的pH值经常低于7.35,就称为酸性体质。
人体的正常pH值为7.35-7.45,呈弱碱性,人体的免疫细胞最适宜的pH值条件就是7.35-7.45。
在这个条件下,免疫细胞的战斗力最强,人体的免疫力功能最好,但是如果pH值发生偏差造成下降,免疫细胞的活性将大幅度降低,免疫功能将随之减弱,而一些病毒和病菌却是在酸性条件下活性最强。
●水凝胶的制备
目前水凝胶的合成所采用的原料以液体和固体为主。
较常用的聚合方法有溶液法、反向悬浮法、反向乳液法和分散聚合法等。
引发方式除化学引发外,还有射线辐射引发、光引发、等离子体引发等,后几种引发方式由于未加化学引发剂,所制得的体系较为纯净。
溶液法
将单体溶于水中形成溶液,在适当的引发条件下引发反应,在一定温度下反应一定时间后,出料,得到凝胶状弹性体,经切碎、烘干、粉碎、筛分等工序即可得到产品。
溶液法具有实施方法简单、体系纯净、交联结构均匀且不存在有机溶剂的使用及回收问题等优点。
但溶液法还存在一些不足,如:反应过程中粘度增大,反应热难以排出;单体浓度低,设备利用率低和生产能力低;体系含水量较大,产品的后处理工序所需能量大
反相悬浮法
反相悬浮法是以油类为分散介质,单体的水溶液为分散相,引发剂溶解在水相中进行聚合的一种聚合方法。
该体系一般包括单体、分散介质、分散剂、水溶性引发剂四个基本组成部分。
反相悬浮法具有反应散热快、控温比溶液法容易,产品分子量比溶液聚合高,杂质含量比乳液聚合产品低,以及所得粒状产品不需粉碎工序等特点。
该方法在制备聚丙烯酸钠高吸水树脂中被广泛采用。
但反相悬浮法也存在一些不足,如较难获得稳定的反应体系,反应中容易结块、粘壁、所得产品不如溶液法纯净等,且存在有机溶剂的使用、回收及污染等问题。
反相乳液法
将分散介质(油相)加到反应器中,再加入一定量的乳化剂达到其临界胶束浓度,充分搅拌,使乳化剂溶解并搅拌均匀,加热到反应温度,然后将单体滴加到反应器中形成稳定的乳液,同时滴加引发剂引发反应。
一定时间后停止反应,破乳,得到含水量较低的浆料,经过一系列的后处理工序得到粉末状的产品。
反相乳液法具有聚合速率快,产物分子量高等特点,但也存在反相悬浮法存在的缺点。
在实际应用中,用反相乳液聚合法制备高吸水树脂并不多见。
辐射引发聚合法
所谓辐射引发聚合法即在高能射线照射下引发反应合成水凝胶的方法。
辐射引发聚合法无需引发剂,具有工艺简单、成本低、吸水倍率高等优点,逐渐成为一种引人注目的技术之一。