常用仪器分析方法概述
仪器分析方法范文

仪器分析方法范文仪器分析方法是现代科学研究中的一种重要手段,通过对样品进行分析和检测,可以得出样品的成分、结构、性质和含量等信息。
仪器分析方法可分为物理方法、化学方法和生物方法等多种类型,下面将对一些常见的仪器分析方法进行介绍。
1.质谱分析法质谱分析法是一种通过对样品原子或分子进行离子化,利用其在电场中的质量-电荷比(m/z)差异进行分析的方法。
根据质谱仪器的不同,可分为质谱仪、气相色谱-质谱联用仪、液相色谱-质谱联用仪等。
质谱分析法在有机化学、天然产物分析、环境监测等领域得到了广泛应用。
2.光谱分析法光谱分析法是通过测量样品在不同波长或波数的电磁辐射下与光的相互作用,获得样品的光谱信息,从而获得样品的结构、成分和性质等信息。
根据测量的参数不同,可分为紫外可见光谱、红外光谱、拉曼光谱、核磁共振光谱、质子共振波谱等。
3.色谱分析法色谱分析法是一种利用色谱柱将混合物中的组分进行分离的方法,再通过检测器对分离后的组分进行检测和分析。
根据移动相的不同,色谱分析法可分为气相色谱、液相色谱、超高效液相色谱等。
色谱分析法在生化分析、环境监测、食品安全等领域有着广泛应用。
4.电化学分析法电化学分析法是一种利用电化学原理对样品进行分析和测量的方法。
常用的电化学分析法包括电位滴定法、电位分析法、极谱法、电化学检测法等。
电化学分析法在电池材料研究、腐蚀分析、环境监测等方面有着重要应用。
5.能谱分析法能谱分析法是一种利用粒子或辐射与样品相互作用所产生的能谱信息进行分析的方法。
常用的能谱分析法包括γ射线能谱、中子活化分析、X 射线荧光光谱、电子能谱等。
能谱分析法在核工业、材料科学、生物医学等领域有着广泛应用。
6.其他仪器分析方法除了上述常见的仪器分析方法外,还有一些其他的仪器分析方法,如负电荷分析方法、光电子能谱、反射分光光度法、热分析法等。
总之,仪器分析方法是实现对样品进行定量和定性分析的一种重要手段。
不同的仪器分析方法在不同领域有着广泛应用,为科学研究和工业生产提供了强有力的支持。
10第十章仪器分析法概述

6
0.167
7
0.168
8
0.166
9
0.170
10
0.167
解:求出平行测定信号的标准偏差:
x x 3 i S 1 . 83 10 b n 1
2
根据测量信号的平均值与已知样品质量求出灵敏度 k: A=km
A 0 .167 1 k 668 mg 3 m 0 .0500 5 .00 10 3 3 S 3 1 . 83 10 b m 8 .22 ng DL k 668
电重量分析法 (电沉析法)
电流与时间
电解后电极增重
3.色谱法
(流动相) (固定相外形) (分离机理)
填充柱色谱
气相色谱
毛细管柱色谱
经典
固体吸附剂 液体(固体) 键合相
吸附 分配 分配
色 谱 法
柱色谱
高压
液相色谱
平板色谱
固体吸附剂 离子交换树脂 聚合物间隙 液体(固体) 键合相分配
吸附色谱 吸附 离子色谱 静电 排阻色谱 筛分 分配色谱 分配 亲和色谱 分配/亲和
例:以0.0500 mgL-1的Co标准液(浓度接近空白 值),在石墨炉原子吸收分光光度计上,每次以 5.00 mL与去离子水交替连续测定,共测10次,所 得数据如下表,试计算该原子吸收分光光度计对 Co的检出限。
测定次数
吸光度A
1
0.165
2
0.170
3
0.166
4
0.165
5
0.168
测定次数
标准工作曲线图
标准溶液系列配制
cx
c
(2)标准加入法
取若干份体积相同的试液
仪器分析知识点总结大全

仪器分析知识点总结大全仪器分析是化学分析的重要分支,它利用特殊的仪器对物质进行定性、定量和结构分析。
以下是对常见仪器分析方法的知识点总结。
一、光学分析法(一)原子吸收光谱法(AAS)原子吸收光谱法是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量的一种方法。
其原理是:当光源发射的某一特征波长的辐射通过原子蒸气时,被原子中的外层电子选择性地吸收,使透过原子蒸气的入射辐射强度减弱,其减弱程度与蒸气相中该元素的原子浓度成正比。
原子吸收光谱仪主要由光源、原子化器、分光系统和检测系统组成。
优点:选择性好、灵敏度高、分析范围广、精密度好。
局限性:多元素同时测定有困难、对复杂样品分析干扰较严重。
(二)原子发射光谱法(AES)原子发射光谱法是依据原子或离子在一定条件下受激而发射出特征光谱来进行元素定性和定量分析的方法。
原理是:当原子或离子受到热能或电能激发时,核外电子会从基态跃迁到激发态,处于激发态的电子不稳定,会迅速返回基态,并以光的形式释放出能量,产生发射光谱。
其仪器包括激发光源、分光系统和检测系统。
优点:可同时测定多种元素、分析速度快、选择性好。
缺点:精密度较差、检测限较高。
(三)紫外可见分光光度法(UVVis)该方法是基于分子的紫外可见吸收光谱进行分析的。
原理是:分子中的价电子在不同能级之间跃迁,吸收特定波长的光,从而产生吸收光谱。
仪器主要由光源、单色器、吸收池、检测器和信号显示系统组成。
应用广泛,可用于定量分析、定性分析以及化合物结构研究。
(四)红外吸收光谱法(IR)红外吸收光谱法是利用物质对红外光区电磁辐射的选择性吸收来进行结构分析和定量分析的一种方法。
原理是:分子的振动和转动能级跃迁产生红外吸收。
仪器包括红外光源、样品室、单色器、检测器和记录仪。
常用于有机化合物的结构鉴定。
二、电化学分析法(一)电位分析法通过测量电极电位来确定物质浓度的方法。
包括直接电位法和电位滴定法。
常用仪器分析方法概论.

第十三*常用仪分析方法轨淹第一节仪器分析简介仪器分析法是通过测定物质的光、电、 磁等物理化学性质来确定其化学组 含量和化学结构的分析方法。
热、 -\6*豪方法试样质!n/mg试液体积/mL常量分析>100>10半微量分析10~1001~10微量分析0・1~100.1-1超微量分析<0.1<0.01•灵敏度高,检出限量可降低.样品用量由化学分析的mL、mg级降低到pg、|1L级,S至至低。
适合于微量、痕量和超痕量成分的测定。
•选择性好:仪器分析方法可以通过选择或调整测定的条件,使共存的组分测定时,相互间不产生干扰。
•操作简便,分析速度快,容易实现自动化。
•相对误差较大:化学分析一般用于常量和高含量成分分析,准确度较高,误差小于千分之几。
多数仪器分析相对误差较大,一般为5%,不适用于常量和高含量成分分析。
•需要价格比较昂贵的专用仪器。
仪器分析与化学分析关系仪器分析是在化学分析基础上的发展-不少仪器分析方法的原理,涉及到有关化学分析的基本理论;-不少仪器分析方法,还必须与试样处理、分离及掩蔽等化学分析手段相结合,才能完成分析的全过程。
-仪器分析有时还需要采用化学富集的方法提高灵敏度;-有些仪器分析方法,如分光光度分析法,由于涉及大量的有机试剂和配合物化学等理论,所以在不少书籍中,把它列入化学分析。
仪器分析与化学分析关系•应该指出,仪器分析本身不是一门独立的学科,而是务种仪器方法的组合。
这些仪器方法在化学学科中极其重要,已不单纯地应用于分析的目的,而是广泛地应用于研究和解决各种化学理论和实际问题。
因此,将它们称为“化学分析中的仪器方法' 更为确切。
4和滞Vi• 20世纪40~50年代兴起的材料科学,60 ~70年代发展起来的环境科学都促进了分析化学学科的发展。
80年代以来,生命科学的发展也促进分析化学一次巨大的发展。
如生命科学研究的进展,需要对多肽、蛋白质、核酸等生物大分子进行分析,对生物药物分析,对超微量生物活性物质,如单个细胞内神经传递物质的分析以及对生物活体进行分析。
仪器分析方法

仪器分析方法仪器分析方法是化学分析中常用的一种技术手段,它通过利用各种仪器设备对样品进行分析,从而得到样品的成分、结构和性质等信息。
仪器分析方法的发展,为化学分析提供了更加准确、快速、灵敏的手段,广泛应用于环境监测、食品安全、药物研发等领域。
本文将就常见的仪器分析方法进行介绍和分析。
一、光谱分析。
光谱分析是利用物质对光的吸收、发射、散射等特性进行分析的一种方法。
常见的光谱分析包括紫外可见吸收光谱、红外光谱、拉曼光谱等。
这些方法通过测量样品对特定波长的光的吸收或散射情况,从而得到样品的成分和结构信息。
光谱分析方法具有快速、非破坏性、灵敏度高的特点,被广泛应用于化学分析领域。
二、色谱分析。
色谱分析是利用物质在固定相和流动相作用下的分离和检测特性进行分析的一种方法。
常见的色谱分析包括气相色谱、液相色谱、超高效液相色谱等。
这些方法通过样品在色谱柱中的分离和检测,从而得到样品中各种成分的含量和结构信息。
色谱分析方法具有分离效果好、分析速度快、灵敏度高的特点,被广泛应用于食品安全、环境监测等领域。
三、质谱分析。
质谱分析是利用物质在电场或磁场中的运动特性进行分析的一种方法。
常见的质谱分析包括质子磁共振质谱、质子转移反应质谱、质子撞击电离质谱等。
这些方法通过测量样品中各种离子的质荷比,从而得到样品的成分和结构信息。
质谱分析方法具有高分辨率、高灵敏度、高准确度的特点,被广泛应用于药物研发、生物分析等领域。
四、电化学分析。
电化学分析是利用物质在电极上的电化学反应特性进行分析的一种方法。
常见的电化学分析包括极谱法、循环伏安法、恒电位法等。
这些方法通过测量样品在电极上的电流和电压变化,从而得到样品的成分和性质信息。
电化学分析方法具有灵敏度高、实时性好、样品准备简单的特点,被广泛应用于环境监测、能源材料等领域。
综上所述,仪器分析方法在化学分析中具有重要的地位和作用,它为化学分析提供了更加准确、快速、灵敏的手段。
随着科技的不断发展,仪器分析方法将会不断完善和创新,为人类的健康和环境保护提供更多的支持和帮助。
仪器分析及其方法

仪器分析及其方法仪器分析是指利用各种仪器设备进行样品分析的科学技术领域。
它是现代分析化学的重要分支,具有高准确度、高灵敏度、高选择性等特点,广泛应用于环境监测、药品检测、食品安全等领域。
仪器分析的方法主要包括物质分离、物质识别与测定、物质结构研究等方面。
下面我们详细介绍几种常见的仪器分析方法。
一、光谱分析法:光谱分析法利用物质与电磁波相互作用的原理,通过测量样品在不同波长或频率下的吸收、发射、散射等光谱特性来进行分析。
常见的光谱分析方法有紫外可见吸收光谱法、红外光谱法、核磁共振光谱法等。
二、电化学分析法:电化学分析法是利用电化学基本原理,通过物质与电极界面的电化学反应产生的电流、电势等信号来进行分析。
常见的电化学分析方法包括电位滴定法、极谱分析法、循环伏安法等。
三、色谱分析法:色谱分析法是以固定相与流动相之间的分配作用对物质进行分离与测定的方法。
常见的色谱分析方法有气相色谱法、液相色谱法、超临界流体色谱法等。
四、质谱分析法:质谱分析法是利用物质的质量与电荷比在磁场中的运动轨迹和谱图进行分析的方法。
常见的质谱分析方法有质谱仪法、飞行时间质谱法、离子阱质谱法等。
五、核素分析法:核素分析法是利用放射性核素的独特性质进行分析的方法。
常见的核素分析方法有放射计数法、伽马射线分析法、中子活化分析法等。
六、电子显微镜分析法:电子显微镜分析法是利用电子束与样品相互作用所产生的信号来进行分析的方法。
常见的电子显微镜分析方法包括扫描电子显微镜、透射电子显微镜等。
七、光电分析法:光电分析法是利用光电效应测量电流或电压信号进行分析的方法。
常见的光电分析方法有光电比色法、光电导比法、光电堆积法等。
这些仪器分析方法各具特点,可以根据不同样品的性质和需要选择相应的方法进行分析。
仪器分析方法的发展使得分析结果更加准确、灵敏,缩短了分析时间,提高了工作效率,大大推动了科学研究和工业生产的进程。
仪器分析方法

仪器分析方法仪器分析方法是化学分析中常用的一种手段,它通过利用各种仪器设备对样品进行分析,从而获得样品的物理性质、化学成分和结构信息。
仪器分析方法在现代化学研究和工业生产中起着至关重要的作用,它不仅可以提高分析的准确性和灵敏度,还可以扩大分析的范围和深度,因此受到了广泛的关注和应用。
常见的仪器分析方法包括光谱分析、色谱分析、质谱分析、电化学分析等。
光谱分析是利用物质对光的吸收、散射、发射等现象进行分析的方法,包括紫外可见光谱、红外光谱、拉曼光谱等。
色谱分析则是利用物质在固定相和流动相之间的分配行为进行分析的方法,包括气相色谱、液相色谱等。
质谱分析是利用物质的质谱图谱进行分析的方法,可以提供物质的分子结构和分子量信息。
电化学分析则是利用物质在电化学条件下的行为进行分析的方法,包括电位滴定、极谱分析、电化学发光等。
在实际的化学分析中,选择合适的仪器分析方法是十分重要的。
首先要根据样品的性质和分析的目的来选择合适的仪器,不同的仪器有不同的适用范围和灵敏度。
其次要根据分析的要求来确定分析的条件和方法,包括样品的前处理、仪器的操作参数等。
最后要对分析结果进行准确的解释和评价,确保分析结果的可靠性和准确性。
仪器分析方法的发展离不开仪器设备的不断创新和进步。
随着科学技术的不断发展,新型的仪器设备不断涌现,为化学分析提供了更多更好的选择。
例如,高分辨质谱仪、核磁共振仪、原子力显微镜等先进仪器设备的出现,使得化学分析的灵敏度和分辨率得到了极大的提高,为科学研究和工业生产提供了更可靠的技术支持。
总之,仪器分析方法是化学分析中不可或缺的一部分,它通过利用各种仪器设备对样品进行分析,为科学研究和工业生产提供了重要的技术手段。
随着仪器设备的不断创新和进步,仪器分析方法将会在化学领域发挥越来越重要的作用,为人类的发展和进步做出更大的贡献。
现代仪器分析方法

现代仪器分析方法
现代仪器分析方法包括:
1. 液相色谱法(HPLC):用于分离和测定液体和溶液中的化学成分。
2. 气相色谱法(GC):用于分离和测定气体和挥发性液体中的化学成分。
3. 质谱法(MS):用于确定化合物的分子式、结构和质量。
可以与色谱法结合使用,例如气相色谱-质谱联用(GC-MS)。
4. 原子吸收光谱法(AAS):用于测定金属元素的含量和浓度。
5. 荧光光谱法:测量物质在吸收紫外或可见光后放射出的荧光。
6. 红外光谱法(IR):用于确定物质中的官能团和分子结构。
7. 核磁共振光谱法(NMR):用于确定物质的分子结构和官能团。
8. X射线衍射法(XRD):用于确定物质的结晶结构。
9. 表面分析技术(如扫描电子显微镜(SEM)和透射电子显微镜(TEM)):用于观察和分析材料的表面形貌和结构。
10. 热分析技术(如差示扫描量热仪(DSC)和热重分析(TGA)):用于测量材料在不同温度下的热稳定性和热性质。
这些现代仪器分析方法在科学研究、环境监测、食品安全、制药和化工等领域广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
紫外吸光光度法 比色法,可见吸光光度法
红外光谱法 红外光谱法 红外光谱法 微波光谱法 核磁共振光谱法
可见光:人眼能感觉到的光
单色光:具有同一波长的光称为单色光; 复合光:由不同波长的单色光组合得到的光称为 复合光。
当光照射某物质时,物(基态) + h M*(激发态)
E = h
3. 吸收曲线
吸光度: 物质对不同波长单色光的吸收程度,用 A表示
(1)吸收曲线的绘制
li
I0
Ai
KMnO4
波长(nm):400 420 440 460 480 …… 吸光度: A1 A2 A3 A4 A5 ……
吸光度(A):
A = -lgT = lg I0
It
I0 = Ia + It
T It A T It A
当 T=1 (I=I0) 时, A=0
透光率越大,溶液对光的吸收越少, 吸光度越大,溶液对光的吸收越多。
2. Lamber-Beer定律
c一定,
b1
I0
I0
KMnO4
bA
A∝ b A = k1·b
光的波长越短,光的能量就越大;
光的波长越长,光的能量就越小。
波谱名称 γ射线 X射线 远紫外
近紫外 可见光 近红外 中红外 远红外 微波 射频
电磁波谱
波长范围 0.005 ~ 0.17nm
0.1 ~ 10nm 10 ~ 200nm
分析方法 中子活化分析,穆斯堡尔谱法
X射线光谱法 真空紫外光谱法
200 ~ 400nm 400 ~ 760nm
I0
KMnO4
绿色
I0
CuSO4
黄色
I0
Fe(SCN)3
I0
蓝绿色
互补色光:两种光按一定比例组合得到白光,称这 两种颜色的光为互补色光。这两种颜色称为互补色。
蓝绿 绿 黄绿
绿蓝 白光
橙
蓝 紫 紫红
红
光的互补示意图
2. 物质对光的选择性吸收
选择性吸收:物质对不同波长的单色光表现 出不同的吸收能力,这一性质称为选择性吸收。
I0 = Ir + Ia + It
t
若Ir抵消 I0 = Ia + It
透射比(T):
T def It I0
若I0 不变,It增大 当 It = I0 ,T=1
T def It I0
T增大
若I0 不变,It减小 T减小 当 It = 0 ,T=0
T的数值范围:0 ~ 1之间,
T%
百分透光度
T%的数值范围:0 ~ 100 之间。
最大吸收波长 —lmax
525nm
lmax = 525nm
图 —不同浓度KMnO4溶液的吸收曲线
(2)吸收曲线的作用 1、可对物质作定性分析;
高锰酸钾
2、定量分析时,选择测定波长的重要依据。
不同浓度KMnO4溶液的吸收曲线图
一般,选择测定波长:lmax
(二)光吸收的基本原理
1. 透射比和吸光度
例 用邻菲罗啉法测定铁,已知Fe2+的质量浓度为1.0 ×10-3g ·L-1,用2cm吸收池,在波长508nm处测得吸光 度为0.308,计算Fe(Ⅱ) -邻菲罗啉配离子的摩尔吸收系 数。
解:Fe2+浓度为:
c(Fe2+ )
(Fe2+ )
M (Fe2+ )
1.0 103g L1 55.85g mol1
应用Lamber-Beer定律时,需注意: ① 溶液的组成标度为物质的量浓度时
A = κbc
κ— 摩尔吸收系数 c — mol ·L-1 b — cm κ单位:L ·mol -1 ·cm-1
κ = —A— bc
当 b = 1cm, c = 1mol ·L-1 时,κ=A
κ反映用吸光光度法测定该物质时的灵敏度
第十四章 常用仪器分析方法概述
仪器分析:是以测定物质的物理性质或物理 化学性质为基础建立一种分析方法
确定物质的化学组成 用途 确定物质的含量
确定物质的结构
取样量少 测定速度快 特点 灵敏 准确 光学分析法 分类 色谱分析法 电化学分析法
第一节 光学分析法
原理:基于物质对光的吸收或激发后光的发射
特点: (1)测定的灵敏度高 (2)测定的准确度较高 (3)仪器化 (4)应用广泛
② 溶液的组成标度为质量浓度时:
A
=
E 1% 1 cm
bρ
E1% 1 cm
—比吸光系数
单位:mL·g-1 ·cm-1
κ与
E
1%的关系为:
1 cm
κ =10
E M 1%
1 cm B
MB—吸光物质B的摩尔质量
③ 吸光度具有加和性
例: 物质 M1 M2 M3 …… 吸光度 A1 A2 A3 ……
A = A1+A2+ ···+Ai = b (κ1c1+κ2c2+ ···+κici )
吸收光谱法
光学分析法
紫外-可见吸光光度法 红外光谱法 核磁共振谱 原子吸收光谱法
发射光谱法
荧光光谱法 原子发射光谱法
一、紫外-可见分光光度法
(一)物质的吸收光谱
1. 光的基本性质
c = l v v = c/ l E = hv E = hc/ l
h—普朗克(Plank)常量 c等于3×108m·s-1
I01 + I02
I01 + I02
b2
KMnO4
Lamber定律
c1
b一定,
c2
I0
I0
KMnO4
KMnO4
cA
A∝c A = k2 ·c Beer定律
Lamber-Beer定律
A = kbc
式中:A — 吸光度
k— 吸光系数
(1)物质的本性 (2)入射光波长 (3)溶剂、温度
b — 液层厚度(cm)
c — 溶液组成标度
A = -lgT A = kbc = -lgT
A-c 标准曲线
标准曲线的偏离
(1)光学因素引起的偏离
① 非单色光引起的偏离
单色光波长(nm):λ1 λ2
吸光度: A1 A2
l 1
I01 A1= lg I1 = κ1bc
I02
l 2
A2= lg I2
= κ2bc
I1= I0110 - κ1bc I2= I0210 – κ2bc
实际测定时,只能测得它们的总吸光度 A总。 总入射光强度为 I01+I02, 总透射光强度为 I1+I2 ,故:
1.8 105 mol L1
1mol Fe2+能生成1mol 邻菲罗啉形成配离子,因此配离子 浓度也为1.8 ×10-5mol ·L-1。
κ = —A—= bc
0.38
= 1.1×104L·mol-1·cm-1
1.8×10-5mol ·L-1×2cm
(三) 吸光光度法的误差 1. 偏离朗伯-比尔定律的原因