马尔科夫模型简介共53页
马尔可夫链模型简介

马尔可夫链模型简介设考察对象为一系统,若该系统在某一时刻可能出现的事件集合为,}{N N E E E E E E ⋅⋅⋅⋅⋅⋅,2,1,2,1,两两互斥,则陈i E 为状态。
N i ⋅⋅⋅=,2,1。
称该系统从一种状态i E 变化到另一状态j E 的过程称为状态转移,并把整个系统不断实现状态转移的过程称为马尔可夫过程。
定义1 具有下列两个性质的马尔可夫过程称为马尔可夫链: (1)无后效性,即系统的第n 次实验结果出现的状态,只与第1-n 次有关,而与它以前所处的状态无关;(2)具有稳定性,该过程逐渐趋于稳定状态,而与初始状态无关。
定义2 向量),,,(21n u u u u ⋅⋅⋅= 成为概率向量,如果u 满足:⎪⎩⎪⎨⎧=⋅⋅⋅=≥∑=nj jj u nj u 11,,2,10 定义3 如果方阵P 的每行都为概率向量,则称此方阵为概率矩阵。
如果矩阵A 和B 皆为概率矩阵,则AB ,k A ,k B 也都是概率矩阵(k 为正整数)。
定义4 系统由状态i E 经过一次转移到状态j E 的概率记为ij P ,称矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=3212222111211N N N N N P P P P P P P P P P 为一次(或一步)转移矩阵。
转移矩阵必为概率矩阵,且具有以下两个性质: 1、P P P k k )1()(-=; 2、k k P P =)(其中)(k P 为k 次转移矩阵。
定义5 对概率矩阵P ,若幂次方)(m P 的所有元素皆为正数,则矩阵P 称为正规概率矩阵。
(此处2≥m )定理1 正规概率矩阵P 的幂次方序列P ,2P ,3P ,…趋近于某一方阵T ,T 的每一行均为同一概率向量t ,且满足t tP = 。
马尔可夫链模型如下:设系统在0=k 时所处的初始状态 ),,()0()0(2)0(1)0(N S S S S ⋅⋅⋅=为已知,经过k 次转移后的状态向量 ),,()()(2)(1)(k N k k k S S S S ⋅⋅⋅=),2,1(⋅⋅⋅=k ,则⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=NN N N N N k P P P P P P P P P S S 212222111211)0()( 此式即为马尔可夫链预测模型。
马尔可夫模型简介及应用(Ⅱ)

马尔可夫模型简介及应用马尔可夫模型是一种概率模型,被广泛应用于各种领域,包括自然语言处理、金融市场分析、天气预测等。
它的核心思想是用状态和状态之间的转移概率来描述系统的演化规律。
在本文中,我们将介绍马尔可夫模型的基本原理、常见的应用场景以及一些相关的进展。
马尔可夫模型的基本原理马尔可夫模型的核心思想是马尔可夫性质,即未来的状态只与当前状态有关,与过去的状态无关。
这个性质可以用数学表示为:P(X_{n+1}|X_n,X_{n-1},...,X_1) = P(X_{n+1}|X_n)其中,X表示系统的状态,n表示时间步。
这个性质意味着系统的未来状态只受当前状态的影响,而与过去的状态无关。
基于这个性质,我们可以建立马尔可夫链,描述系统在不同状态之间的转移概率。
如果系统的状态空间是有限的,那么我们可以用状态转移矩阵来表示这些转移概率。
状态转移矩阵的(i,j)元素表示系统从状态i转移到状态j的概率。
常见的应用场景马尔可夫模型在自然语言处理中有着广泛的应用。
例如,在语言模型中,我们可以用马尔可夫链来描述单词之间的转移规律,从而建立一个自动文本生成模型。
在金融市场分析中,马尔可夫模型可以用来建立股票价格的模型,从而预测未来的价格走势。
在天气预测中,我们可以用马尔可夫链来描述天气状态之间的转移规律,从而预测未来的天气情况。
此外,马尔可夫模型还被广泛应用于生物信息学、图像处理、信号处理等领域。
在生物信息学中,马尔可夫模型可以用来建立DNA序列的模型,从而研究基因的演化规律。
在图像处理中,马尔可夫随机场可以用来建立像素之间的相关性模型,从而进行图像分割、降噪等任务。
在信号处理中,马尔可夫模型可以用来建立信号的模型,从而进行语音识别、音频压缩等任务。
进展与展望随着深度学习的兴起,马尔可夫模型也得到了更深入的研究。
例如,一些研究者将马尔可夫模型与神经网络相结合,提出了深度马尔可夫模型,用于处理时间序列数据。
此外,一些研究者还提出了非线性马尔可夫模型,用于描述一些复杂的系统。
马尔科夫模型

马尔科夫模型
马尔科夫(Andrey Markov,1856-1922)
“下⼀时刻的状态只与当前状态有关,与上⼀时刻状态⽆关”的性质,称为⽆后效性或者马尔可夫性。
具有这种性质的过程称为马尔可夫过程。
时间、状态都是离散的马尔可夫过程称为马尔可夫链。
马尔可夫假设:给定时间线上有⼀串事件顺序发⽣,假设每个事件的发⽣概率只取决于前⼀个事件。
这串事件构成的因果链被称作马尔可夫链。
3个事件的概率链式调⽤:
P(a,b,c)=P(a|b,c)∗P(b,c)=P(a|b,c)∗P(b|c)∗P(c)
推⼴到N个事件,概率链式法则长这样:
P(X1,X2,...X n)=P(X1|X2,X3...X n)∗P(X2|X3,X4...X n)...P(X n−1|X n)∗P(X n)
条件概率是指事件A在事件B发⽣的条件下发⽣的概率。
条件概率表⽰为:P(A|B),读作“A在B发⽣的条件下发⽣的概率”。
P(A|B)=P(AB) P(B)
Processing math: 100%。
隐马尔可夫模型.pptx

第28页/共85页
学习问题
• Baum-Welch重估计公式
• 已知X和 的情况下,t时刻为状态i,t+1时刻为状态j的后验概率
θ
ij
(t
)
i
(t
1)aij P(XT
b |
jk
θ)
j
(t
)
向前
向后
T
jl (t)
t 1 l
bˆ v(t )vk
jk
T
jl (t)
t 1 l
第29页/共85页
例如:ML估计
第10页/共85页
估值问题
• 直接计算HMM模型产生可见长度为T的符号序列X的概率
其中,
表示状态 的初始概率
假设HMM中有c个隐状态,则计算复杂度为
!
例如:c=10,T=20,基本运算1021次!
(1)
第11页/共85页
O(cTT )
估值问题
• 解决方案
• 递归计算
t时刻的计算仅涉及上一步的结果,以及
x1和x3统计独立,而 其他特征对不独立
第32页/共85页
相关性例子
• 汽车的状态 • 发动机温度 • 油温 • 油压 • 轮胎内气压
• 相关性 • 油压与轮胎内气压相互独立 • 油温与发动机温度相关
第33页/共85页
贝叶斯置信网
• 用图的形式来表示特征之间的因果依赖性 • 贝叶斯置信网(Bayesian belief net) • 因果网(causal network) • 置信网(belief net)
P(θi )
P(θi | X)
θi P(X | θi )
第20页/共85页
解码问题
马尔可夫模型介绍(从零开始)

马尔可夫模型介绍(从零开始)(一):定义及简介:介绍(introduction)通常我们总是对寻找某一段时间上的模式感兴趣,这些模式可能出现在很多领域:一个人在使用电脑的时候使用的命令的序列模式;一句话中的单词的序列;口语中的音素序列。
总之能产生一系列事件的地方都能产生有用的模式。
考虑一个最简单的情况:有人(柯南?)试图从一块海藻来推断天气的情况。
一些民间的传说认为“soggy”的海藻意味着潮湿(wet)的天气,“dry”的海藻预示着晴朗(sun)。
如果海藻处于中间状态“damp”,那就无法确定了。
但是,天气的情况不可能严格的按照海藻的状态来变化,所以我们可以说在一定程度上可能是雨天或是晴天。
另一个有价值的信息是之前某些天的天气情况,结合昨天的天气和可以观察到的海藻的状态,我们就可以为今天的天气做一个较好的预报。
这是在我们这个系列的介绍中一个非常典型的系统。
∙首先我们介绍一个可以随时间产生概率性模型的系统,例如天气在晴天或者雨天之间变动。
∙接下来我们试图去预言我们所不能观察到的"隐形"的系统状态,在上面的例子中,能被观察到的序列就是海藻的状态吗,隐形的系统就是天气情况∙然后我们看一下关于我们这个模型的一些问题,在上面那个例子中,也许我们想知道1. 如果我们观察一个星期每一天的海藻的状态,我们是否能知相应的其天气情况2. 如果给出一个海藻状态的序列,我们是否能判断是冬天还是夏天?我们假设,如果海藻干(dry)了一段时间,那就意味着是夏天如果海藻潮湿(soggy)了一段时间,那可能就是冬天。
(二):生成模式(Generating Patterns)∙确定的模式(Deterministic Patterns)考虑交通灯的例子,一个序列可能是红-红/橙-绿-橙-红。
这个序列可以画成一个状态机,不同的状态按照这个状态机互相交替我们可以注意到,每一个状态都只依赖于此前的状态,如果当前的是绿灯,那么接下来就是橙灯,这就是一个确定型的系统。
马尔科夫模型(转载)

隐马尔可夫模型(一)——马尔可夫模型马尔可夫模型(Markov Model)描述了一类随机变量随时间而变化的随机函数。
考察一个状态序列(此时随机变量为状态值),这些状态并不是相互独立的,每个状态的值依赖于序列中此状态之前的状态。
数学描述:一个系统由N个状态S= {s1,s2,...s n},随着时间的推移,该系统从一个状态转换成另一个状态。
Q= {q1,q2,...q n}为一个状态序列,q i∈S,在t时刻的状态为q t,对该系统的描述要给出当前时刻t所处的状态s t,和之前的状态s1,s2,...s t, 则t时刻位于状态q t的概率为:P(q t=s t|q1=s1,q2=s2,...q t-1=s t-1)。
这样的模型叫马尔可夫模型。
特殊状态下,当前时刻的状态只决定于前一时刻的状态叫一阶马尔可夫模型,即P(q t=s i|q1=s1,q2=s2,...q t-1=s j) =P(q t=s i|q t-1=s j)。
状态之间的转化表示为a ij,a ij=P(q t=s j|q t-1=s i),其表示由状态i转移到状态j的概率。
其必须满足两个条件: 1.a ij≥ 0 2.=1对于有N个状态的一阶马尔科夫模型,每个状态可以转移到另一个状态(包括自己),则共有N2次状态转移,可以用状态转移矩阵表示。
例如:一段文字中名词、动词、形容词出现的情况可以用有3个状态的y一阶马尔科夫模型M 表示:状态s1:名词状态s2:动词状态s3:形容词状态转移矩阵: s1 s2 s3A=则状态序列O=“名动形名”(假定第一个词为名词)的概率为:P(O|M) = P(s1,s2,s3,s4} = P(s1)*p(s2|s1)p(s3|s2)p(s1|s3)=p(s1)*a12*a23*a31=1*0.5*0.2*0.4=0.04在马尔可夫模型中,每一个状态都是可观察的序列,是状态关于时间的随机过程,也成为可视马尔可夫模型(Visible Markov Model,VMM)。
第六章 马尔可夫模型

网格(Trellis)
问题1评价(Evaluation)
• 给定一个模型 (S, K,, A, B),如何高效地计算 某一输出字符序列的概率 P(O | )
o1
ot-1
ot
ot+1
oT
O (o1...oT ), ( A, B, ) 计算 P(O | )
方案1
x1
xt-1
xt
xt+1
xT
• i : [p(t_i|*start*)] 状态t_i的起始概率 • aij : [p(t_j|t_i)] 从状态 t_i 到状态 t_j的转移概率 • bjk : [p(w_k|t_j)] 状态t_j的词w_k发射概率
参数训练
• 模型的参数未知
– 假设有已经标注好的语料库:
• S = w1,w2…wn • T = t1,t2…tn
马尔可夫模型
马尔可夫模型
• 马尔可夫模型是一种统计模型,广泛地应用在语 音识别,词性自动标注,音字转换,概率文法 等各个自然语言处理的应用领域。
• 马尔可夫(1856~1922),苏联数学家。切比雪 夫的学生。在概率论、数论、函数逼近论和微 分方程等方面卓有成就。
• 经过长期发展,尤其是在语音识别中的成功应 用,使它成为一种通用的统计工具。
马尔可夫过程程序
t:= 1;
以概率i在状态 si 开始 (i.e., X1=i) Forever do
Mproovbeafbriolmitystaaitje(si.ieto.,
state
Xt+1
s=j
with
j)
Emit observation probability bijk
symbol
马尔科夫模型

马尔柯夫模型这种方法目前广泛应用于企业人力资源供给预测上,其基本思想是找出过去人力资源变动的规律,来推测未来人力资源变动的趋势。
模型前提为:1、马尔柯夫性假定,即t+1时刻的员工状态只依赖于t时刻的状态,而与t-1、t-2时刻状态无关。
2、转移概率稳定性假定,即不受任何外部因素的影响。
马尔柯夫模型的基本表达式为:Ni(t)=ΣNi(t-1)Pji+V i(t)(i,j=1,2,3……,k t=1,2,3……,n)式中:k—职位类数;Ni(t)—时刻t时I类人员数;Pji—人员从j类向I类转移的转移率;V i(t)—在时间(t-1,t)内I类所补充的人员数。
某类人员的转移率(P)=转移出本类人员的数量/本类人员原有总量这种方法的基本思想是:找出过去人事变动的规律,以此来推测未来的人事变动趋势步骤第一步是做一个人员变动矩阵表,表中的每一个元素表示一个时期到另一个时期(如从某一年到下一年)在两个工作之间调动的雇员数量的历年平均百分比(以小数表示)。
一般以5——10年为周期来估计年平均百分比。
周期越长,根据过去人员变动所推测的未来人员变动就越准确。
用哲学历年数据束代表每一种工作中人员变动的概率。
就可以推测出未来的人员变动(供给量)情况。
将计划初期每一种工作的人员数量与每一种工作的人员变动概率相乘,然后纵向相加,即得到组织内部未来劳动力的净供给量马尔可夫法的基本思想是找出过去人力资源变动的规律,来推测末来人力资源义动的趋势。
马尔可夫预测模型建立的基础是:马尔柯夫性假定和转移概率稳定性假定,其中马尔柯夫性假定是指事物本阶段的状态只与前一阶段的状态有关,而与以前其他仟何阶段的状态都无关,用于人力资源则指t+时刻的员工状态只依赖于t时刻的状态,而与t-1、t-2时刻状态无关:转移概率稳定性假定,是指在状态变化的过程中,状态数始终保持不变,即不受任何外部因素的影响。
其基本表达式为:。
(i,j=1,2,3……,kt=1,2,3……,n)式中:k—职位类数;Ni(t)—时刻t时I类人员数:Pji—人员从j类向I类转移的转移率;VI(t)一在时间(t-1,t)内I类所补充的人员数。