基准电压源选择技巧
电压基准的特性及选用解析

电压基准的特性及选用摘要从实际应用角度,介绍了电压基准的种类及特点,主要技术参数,选用电压基准的方法和注意事项。
关键词齐纳基准带隙基准XFET基准初始精度温度系数一、电压基准及其应用领域电压基准可提供一个精度远比电压稳压器高的多的精确输出电压,作为某个电路系统中的参考比较电压,因而称其为基准。
电压基准在某些方面与电压稳压器类似,但二者的用途绝然不同。
电压稳压器除了向负载输出一个稳定电压外还要供给功率。
电压基准的主要用途是为系统或负载提供一个精确的参考电压,而其输出电流通常在几至几十个毫安。
电压基准的用途十分广泛,典型的应用常见于数据采集系统,用于为模数变换器或数模变换器提供一个基准参考电压。
另外,它还可用于各类开关或线性电压变换电路、仪器仪表电路和电池充电器中。
二、电压基准的主要参数1.初始精度(Initial Accuracy初始精度用于衡量一个电压基准输出电压的精确度或容限,即电压基准工作时其输出电压偏离其正常值的大小。
通常,初始精度采用百分数表示,它并非是一个电压单位,故需换算才能获得电压偏离值的大小。
例如,一个标称电压为2.5V的基准, 初始精度为±%,则其电压精度范围为:5.2~5.21x±±%.25.2V475V525.0025.2在厂商的数据手册中,初始电压精度通常是在不加载或在特定的负载电流条件下测量的。
对于电压基准而言,初始精度是一个最为重要的性能指标之一。
2.温度系数(Temperature Coefficient温度系数(简称TC用于衡量一个电压基准,其输出电压因受环境温度变化而偏离正常值的改变程度,它也是基准电压最重要的性能指标之一,通常用ppm/C表示(ppm 是英文part per million的缩写,1ppm表示百万分之一。
例如,一个基准标称电压为10V,温度系数为10ppm/C ,则环境温度每变化1C ,其输出电压改变10VX10X10- 6=100叮。
3.7、基准参考电压

3.7基准参考电压源的选择大多数数字电路、混合信号和模拟电路需要使用电压基准源,因此了解基准源的工作原理、参数和选择方法,对於系统设计是一个很重要的。
本节比较了齐纳二极管、隐埋齐纳二极管和带隙电压基准三种电压基准源的优点和缺点,列出了使用时潜在的问题,介绍了它们的应用范围。
讨论了在设计系统时,选择电压基准源需要考虑的问题。
3.7.1基准源的类型基准源主要有齐纳二极管、隐埋齐纳二极管和带隙电压基准三种,它们都可以设计成两端并联式电路或者三端串联式电路。
齐纳二极管是工作在反向偏置的二极管,需要一个串联的限流电阻。
在要求高精度和低功耗的情况下,齐纳二极管通常是不适合的。
例如,BZX84C2V7LT1齐纳二极管的标称输出电压Vout是2.5V,有±8%的公差,各个器件之间的输出电压会在2.3V到2.7V的范围内变化。
理想的电压基准源应该是内阻为零,不论电流是流进去还是流出来,都应当保持输出电压恒定。
内阻为零的基准源是不存在的,然而内阻只有毫欧数量级的基准源是可以做得到的。
齐纳二极管的内阻较大,电流为5mA时内阻为100Ω,1mA时600Ω。
齐纳二极管在电压箝位电路中很有用,它们的箝位电压范围宽,从2V至200V,功率可以从几毫瓦到几瓦。
表1比较了这三种电压基准源的优点、缺点,列出了使用时潜在的问题。
表3.7.1. 三种电压基准源的比较注1:带隙半导体、直接带隙和间接带隙ZnO是一种直接带隙半导体材料,为什么说它是直接带隙的?直接带隙会导致它有什么样的特点?直接带隙半导体材料就是导带最小值(导带底)和满带最大值在k空间中同一位置。
电子要跃迁到导带上产生导电的电子和空穴(形成半满能带)只需要吸收能量。
间接带隙半导体材料导带最小值(导带底)和满带最大值在k空间中不同位置。
形成半满能带不只需要吸收能量,还要改变动量。
间接带隙半导体材料导带最小值(导带底)和满带最大值在k空间中不同位置。
电子在k状态时的动量是(h/2pi)k,k不同,动量就不同,从一个状态到另一个必须改变动量。
如何为ADC选择最合适的基准电压源放大器(最全)word资料

如何为ADC选择最合适的基准电压源放大器(最全)word资料主题: 驱动精密ADC:如何为您的ADC选择最合适的基准电压源和放大器?精彩问答:[问:callhxw]如何评定一颗ADC非线性?丢码?[答:Jing]you can use ADC"s INL and DNL parameter to evaluate the non-linearity and you can also use ENOB parameter to check code loss. Thanks!Generally ENOB releated with ADC"s SNR[2020-2-28 10:32:08][问:吉星]在差分输入时,不考虑直流,使用差分放大器和变压器哪个更好.[答:Mariah]Transformer is better for the better noise and distortion performance, especially in very high frequencies.[2020-2-28 10:32:14][问:Jane Yang]请问应如何处理板级噪声对于高精度AD的影响?特别是输入部分的噪声?[答:Jing]This is a good question and it"s very difficult to answer. Generally, You should consider all the input noise derived from sensor/AMP/BUFFER. You can also use a LPF to reduce the input noise. Remember the BGP of AMP should be 100x of ADC"s throughput. Thanks![2020-2-28 10:34:30][问:石林艳]AD变换的参考基准源很重要,对模拟供电电源和数字供电电源的要求也很高吗[答:Rui]模拟供电电源,和数字供电电源相对基准源来说,精度要求相对较低,一般情况下用10uF的电容和0.1uF滤波即可。
选择电压基准需要考虑哪些参数

选择电压基准需要考虑哪些参数在模拟和混合信号电路中,以电压基准为标准测量其他信号。
电压基准的不准确及其变化会直接影响整个系统的准确度。
我们来看一下,选择电压基准时,准确度规格和其他标准是如何起作用的。
初始精度指的是,在给定温度(通常是25°C)时测得的输出电压的变化幅度。
尽管各个电压基准的初始输出电压可能有所不同,但是如果给定基准的初始输出电压是恒定的,就很容易校准。
温度漂移也许是评估电压基准性能时使用最为广泛的性能规格,因为温度漂移显示输出电压随温度的变化。
温度漂移由电路组件的瑕疵和非线性引起。
很多器件的温度漂移都以ppm/°C 为单位规定,是主要的误差源。
器件的温度漂移如果是一致的,就可以进行一定程度的校准。
关于温度漂移有一种常见的错误认识,那就是:它是线性的。
但是,不应该想当然地认为基准的漂移量在较小的温度范围内就会较小。
温度系数(TC)通常是用一种“箱形法”来规定,以表达整个工作温度范围内可能出现的误差情况。
它是通过划分整个温度范围内的最小-最大电压差,并除以总温度范围来计算的(图1)。
这些最小和最大电压值可能并不出现在极端温度下,因而形成了TC 远远大于针对整个规定温度范围计算之平均值的区域。
对于最谨慎调谐的基准(这通常可通过其非常低的温度漂移予以识别)而言尤其如此,在此类基准中,已经对线性漂移分量进行了补偿,留下的是一个残余非线性TC。
图1:电压基准温度特性温度漂移性能规格的最佳用途是,计算所规定温度范围内的最大总体误差。
在未规定温度范围的情况下计算误差,一般是不可取的,除非非常了解温度漂移特性。
长期稳定性衡量基准电压随时间推移的变化趋势,不受其他变量影响。
初始漂移大部分是由机械应力变化引起的,是由引线框架、芯片和模具所用化合物的膨胀率不同导致的。
这种应力效应往往产生很大的初始漂移,但漂移随时间推移很快减小。
初始漂移也和电路元。
电压基准源

CMOS基准源
是什么?如何构造?应用?优缺点?
01.为了解决三极管出现的问题, 提出的仅使用MOS管构建的电压基 准源。 理论基础:用MOS管的迁移率和阈值电压存在的温度特性进行 正负温度补偿。 T B μ n (T ) μ n (T0 )( ) MOS管迁移率的温度特性可描述为: T0 MOS管阈值电压的温度特性可描述为:Vthn (T ) Vthn (T0 ) BV (T T 0 ) 其中 B μ n, B Vthn 分别是迁移率和阈值电压的温度指数。
具体的应用电路
图1、电压相加形四位R-2RT型电阻网络DAC
图2、并行比较型ADC
02
电压基准源如何构造
1、齐纳击穿 2、带隙温度补偿 3、其他
齐纳管式电压基准源
是什么?如何构造?应用?优缺点?
01. 利用pn结反向击穿的稳压特性 制作的稳压管
图3、理想情况下二极管的伏安特性曲线
齐纳管式电压基准源
图9、能隙基准源典型电路3
假设n 9。 ln 9 2.197, 则k 10.5。
能隙温度补偿基准源
是什么?如何构造?应用?优缺点?
04.优缺点
优点:1、温度系数低 2、原理相对简单 3、工作电压较低 缺点:1、使用了BJT,与主流CMOS工艺不兼容。 (失调问题) 2、器件面积较大。 3、对电流增益β的要求较高。 4、VBE 线性化模型不够精确。
03. 应用电路
限流电阻的选取:
Vref Iref
(Vin(max) Vref ) 50mA I LOAD (min)
RS
(Vin(min) Vref ) 100uA I LOAD (max)
图5、MAX6330器件典型应用
如何选择电压基准

谨慎 调 谐的基 准 (这 通常 可通 过其 非 常低 的温度 漂 比,长期 漂移 往往 发生得 较慢 ,并 随时 间 推移 而减
移于 以识 别 )而言 尤其 如此 ,在 此类 基 准 中 ,已经 对 小 。因此 ,长 期漂 移常 常 以 “漂 移 /、/丽 ”为单位 规 线 性 漂移 分量进 行 _『补偿 ,留下 的是一 个残 余 非线 定 。温度 较高 时 .电压基 准往 往老 化更快 、
准时 ,准确 度规 格 和其他 标准 是如何 起作 用 的 。
仞 始 精度 指 的是 ,在 给定 温度 (通 常 是 25 oc)
时 洲得 的输 出电压 的变化 幅度 。尽 管各 个 电压基 准
的_ 幸JJ始 输 电压可 能有所 不 同 ,但 是 如果给 定 基准
的l辛』J始输 m 电压 是 恒定 的 ,就很 容 易校 准 。
温 度 漂移也 许 是评估 电压 基准 性能 时使 用最 为 广 泛 的性能 规格 , 为温 度 漂移显 示输 出 电压 随温
图 1 电压 基 准 温 度 特 性
度 的 化 温度 漂移 由电路组 件 的瑕疵 和非 线性 引 性 TC。
起 很 多器件 的温度 漂 移都 以 ppm/%为单 位 规定 ,
的性 能规 格包 括 :
保 证适合 这 种变 化幅 度 ,这常 常迫 使 电路 消耗 比标
温度 漂移 性能 规格 的最佳 用途 是 ,计算 所 规定
是 丰 的误 差 源 .、器件 的温度 漂移 如果 是一 致 的 ,就 温度 范 内的最大 总体 误差 。在 未规 定温 度范 围 的
可以进 行一 定 程度 的校 准 。
情 况 下计 算误 差 ,一 般是 不 可取 的 ,除非 非 常 了解 温
电压基准的特性及选用解析

电压基准的特性及选用摘要从实际应用角度,介绍了电压基准的种类及特点,主要技术参数,选用电压基准的方法和注意事项。
关键词齐纳基准带隙基准 XFET基准初始精度温度系数一、电压基准及其应用领域电压基准可提供一个精度远比电压稳压器高的多的精确输出电压,作为某个电路系统中的参考比较电压,因而称其为基准。
电压基准在某些方面与电压稳压器类似,但二者的用途绝然不同。
电压稳压器除了向负载输出一个稳定电压外还要供给功率。
电压基准的主要用途是为系统或负载提供一个精确的参考电压,而其输出电流通常在几至几十个毫安。
电压基准的用途十分广泛,典型的应用常见于数据采集系统,用于为模数变换器或数模变换器提供一个基准参考电压。
另外,它还可用于各类开关或线性电压变换电路、仪器仪表电路和电池充电器中。
二、电压基准的主要参数1. 初始精度(Initial Accuracy初始精度用于衡量一个电压基准输出电压的精确度或容限,即电压基准工作时,其输出电压偏离其正常值的大小。
通常,初始精度采用百分数表示,它并非是一个电压单位,故需换算才能获得电压偏离值的大小。
例如,一个标称电压为2.5V的基准,初始精度为±1%,则其电压精度范围为:5.2~5.2=1×±=±%.25.2V475V525.0025.2在厂商的数据手册中,初始电压精度通常是在不加载或在特定的负载电流条件下测量的。
对于电压基准而言,初始精度是一个最为重要的性能指标之一。
2. 温度系数(Temperature Coefficient温度系数(简称TC用于衡量一个电压基准,其输出电压因受环境温度变化而偏离正常值的改变程度,它也是基准电压最重要的性能指标之一,通常用ppm/℃表示(ppm是英文part per million的缩写,1ppm表示百万分之一。
例如,一个基准标称电压为10V,温度系数为10ppm/℃,则环境温度每变化1℃,其输出电压改变10V×10×10-6=100μV。
模拟集成电路的基准电压源

模拟集成电路的基准电压源模拟集成电路是现代电子技术中不可或缺的一部分,而基准电压源则是模拟集成电路中的重要组成部分。
基准电压源是指在一定条件下提供稳定、可靠且精确的电压输出的电路或器件。
它在模拟集成电路中起到了至关重要的作用,可以提供准确的参考电压,用于校准和补偿其他电路的偏差,从而提高整个模拟集成电路的性能和可靠性。
基准电压源的设计需要考虑多个因素,包括温度稳定性、供电电压变化对输出电压的影响、噪声等。
在模拟集成电路中,为了保证基准电压源的稳定性和精度,通常会采用多种技术和电路来实现。
下面将介绍几种常见的基准电压源设计方法。
首先是电压分压型基准电压源。
这种电路通过将参考电压分压得到所需的输出电压。
它可以使用稳定的电阻分压比例来实现,也可以使用二极管的温度特性来实现。
这种方法简单易用,但对供电电压变化和温度变化较为敏感,需要在设计中进行适当补偿和校准。
其次是电流源型基准电压源。
这种电路将电流源的稳定性转化为输出电压的稳定性。
电流源型基准电压源通常采用差分放大电路和反馈电路来实现,可以提供较高的稳定性和精度。
同时,它对供电电压的变化和温度的变化也具有较好的抵抗能力。
但它的设计和调整较为复杂,需要精确的参数匹配和校准。
另外还有基于参考电压源的基准电压源。
这种电路通过使用稳定的参考电压源和放大电路来实现输出电压的稳定。
参考电压源可以使用稳压二极管、参考电压芯片等来提供,而放大电路可以使用运算放大器等来实现。
这种方法的优点是稳定性和精度较高,但对供电电压变化和温度变化仍然具有一定的敏感性。
除了以上几种方法外,还有一些特殊的基准电压源设计,如基于温度补偿的基准电压源、基于电压比较的基准电压源等。
这些方法在特定的应用中可以提供更高的稳定性和精度。
基准电压源在模拟集成电路中起到了至关重要的作用。
它可以提供稳定、可靠且精确的电压输出,用于校准和补偿其他电路的偏差。
不同的基准电压源设计方法有各自的优缺点,需要根据具体的应用需求进行选择和优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基准电压源选择技巧
基准电压源电路
有许多方法可以设计基准电压源IC,而每种方法都有特定的优点和缺点。
基于齐纳二极管的基准电压源
深埋齐纳型基准电压源是一种相对简单的设计。
齐纳(或雪崩)二极管具有可预测的反向电压,该电压具有相当好的
温度稳定性和非常好的时间稳定性。
如果保持在较小温度范围内,这些二极管通常具有非常低的噪声和非常好的时间稳定性,因此其适用于基准电压变化小的应用。
与其他类型的基准电压源电路相比,这种稳定性可归
因于少元件数量和小芯片面积,而且齐纳元件的构造很精巧。
然而,初始电压和温度漂移的变化相对较大,这很常见。
可以增加电路来补偿这些缺陷,或者提供一系列输出电压。
分流和串联基准电压源均使用齐纳二极管。
带隙基准电压源
齐纳二极管虽然可用于制作高性能基准电压源,但缺
乏灵活性。
具体而言,它需要7V以上的电源电压,而且提供
的输出电压相对较少。
相比之下,带隙基准电压源可以产生各种各样的输出电压,电源裕量非常小(通常小于100mV)。
带隙
基准电压源可设计用来提供非常精确的初始输出电压和很低的温度漂移,无需的耗时在应用中校准。
带隙操作基于双极结型晶体管的基本特性。
图1所示为一个基本带隙基准电压源。
可以看出,一对不匹配的双极结型晶体管的VBE具有与温度成正比的差异。
这种差异可用来产生一个电流,其随温度线性上升。
当通过电阻和晶体管驱动该电流时,如果其大小合适,晶体管的基极-发射极电压随温度的变化会抵消电阻两端的电压变化。
虽然这种抵消不是完全线性的,但可以通过附加电路进行补偿,使温度漂移非常低。
图1:设计带隙电路提供理论上为零的温度系数
基本带隙基准电压源背后的数学原理很有意思,因为它将已知温度系数与独特的电阻率相结合,产生理论上温度漂
移为零的基准电压。
图1显示了两个晶体管,经调整后,Q10的发射极面积为Q11的10倍,而Q12和Q13的集电极电流保持相等。
这就在两个晶体管的基极之间产生一个已知电压:其中,k为玻尔兹曼常数,单位为J/K(1.38×10-23),T为开氏温度(273+T(°C));q为电子电荷,单位为库仑
(1.6x10-19)。
在25°C时,kT/q的值为25.7mV,正温度系数为86μV/°C。
?VBE为此电压乘以ln(10)或2.3,25°C时电压约为60mV,温度系数为0.2mV/°C。
将此电压施加到基极之间连接的50k电阻,产生一个与温度成比例的电流。
该电流偏置二极管Q14,25°C时其电压为575mV,温度系数为-2.2mV/°C。
电阻用于产生具有正温度系数的压降,其施加到Q14二极管电压上,从而产生大约1.235V的基准电压电位,理论上温度系数为0mV/°C。
这些压降如图1所示。
电路的平衡提供偏置电流和输出驱动。
分数带隙基准电压源
这种基准电压源基于双极晶体管的温度特性设计,但输出电压可以低至只有数mV。
它适用于超低电压电路,特别是阈值必须小于常规带隙电压(约1.2V)的比较器应用。
图2所示为LM10的核心电路,同正常带隙基准电压源相似,其中结合了与温度成正比和成反比的元件,以获得恒定的200mV基准电压。
分数带隙基准电压源通常使用?VBE 产生一个与温度成正比的电流,使用VBE产生一个与温度成反比的电流。
二者以适当的比例在一个电阻元件中合并,以产生不随温度变化的电压。
电阻大小可以更改,从而改变基准电压而不影响温度特性。
这与传统带隙电路的不同之处在于,分数带隙电路合并电流,而传统电路倾向于合并电压,通常是发射极、基极电压和具有相反温度漂移(TC)的I?R。
像LM10电路这样的分数带隙基准电压源在某些情况下同样是基于减法。
某些器件具有微功率、低电压400mV基准和放大器的串联基准。
因此,可以通过改变放大器的增益来改变基准电压,并提供一个缓冲输出。
使用这种简单电路可以产生低于电源电压0.4V至几毫伏的任何输出电压。
图3:支持与低至400mV的阈值进行比较
有些器件其将400mV基准电压源与比较器相结合,是集成度更高的解决方案,可用作电压监控器或窗口比较器。
400mV基准电压源可以监控小输入信号,从而降低监控电路的复杂性(图3);它还能监控采用非常低电源电压工作的电路元件。
如果阈值较大,可以添加一个简单的电阻分压器(图4)。
这些产品均采用小尺寸封装(SOT23),功耗很低(低于10μA),支持宽电源范围(1.4V至18V)。
图4:通过输入电压分压来设置较高阈值
选择基准电压源
了解所有这些选项之后,如何为应用选择恰当的基准电压源呢?以下是一些用来缩小选择范围的窍门:
● 电源电压非常高?选择分流基准电压源。
● 电源电压或负载电流的变化范围很大?选择串联基准电压源。
● 需要高功效比?选择串联基准电压源。
● 确定实际温度范围。
温度范围包括0°C至70°C、-40°C至85°C和-40°C至125°C。
● 精度要求应切合实际。
了解应用所需的精度非常重要。
这有助于确定关键规格。
考虑到这一要求,将温度漂移乘以指定温度范围,加
上初始精度误差、热迟滞和预期产品寿命期间的长期漂移,再减去任何将在出厂时校准或定期重新校准的项,便得到总体精度。
对于要求最苛刻的应用,还可以加上噪声、电压调整率和负载调整率误差。
例如:
一个基准电压源的初始精度误差为0.1%(1000ppm),-40°C至85°C范围内的温度漂移为25ppm/°C,热迟滞为
200ppm,峰峰值噪声为2ppm,时间漂移为50ppm/√kHr。
那么在电路建成时总不确定性将超过4300ppm。
在电路通电后的前1000小时,这种不确定性增加
50ppm。
初始精度可以校准,从而将误差降低至
3300ppm+50ppm?√(t/1000小时)。
● 实际功率范围是什么?最大预期电源电压是多少?是否存在基准电压源IC必须承受的故障情况,例如电池电源切断或热插拔感应电源尖峰等?这可能会显著减少可选择的基准电压源数量。
● 基准电压源的功耗可能是多少?基准电压源往往分为几类:
大于1mA,~500μA,<300μA,<50μA,<10μA,<1μA。
● 负载电流有多大?负载是否会消耗大量电流或产生基准电压源必须吸收的电流?很多基准电压源只能为负载提供很小电流,很少基准电压源能够吸收大量电流。
负载调整率规格可以有效说明这个问题。
● 安装空间有多少?基准电压源的封装多种多样,包括金属帽壳、塑料封(DIP、SOIC、SOT)和非常小的封装,例如采用2mmx2mm DFN的产品。
人们普遍认为,较大封装的基准电压源因机械应力引起的误差要小于较小封装的基准电压源。
虽然确有某些基准电压源在使用较大封装时性能更好,但有证据表明,性能差异与封装大小没有直接关系。
更有可能的是,由于采用较小封装的产品使用的芯片较小,所以必须对性能进行某种取舍以适应芯片上的电路。
通常,封装的安装方法对性能的影响比实际封装还要大,密切注意安装方法和位置可以最大限度地提高性能。
此外,当PCB弯曲时,占位面积较小的器件相比占位面积较大的器件,应力可能更小。