生物医学信号放大器
生物电放大器—心电图(ECG)前置放大器

昆明理工大学信息工程与自动化学院学生实验报告(2016 —2017 学年第一学期)课程名称:生物医学电子学开课实验室:信自111 实验日期:2016.12.28一、实验目的1、掌握三运算放大器组成差动放大器的原理;2、掌握元器件参数变化对放大器性能指标的影响;3、加深对生物电信号和生物电放大器的理解。
二、实验原理三运算放大器组成差动放大器具有高共模抑制比、高输入阻抗和可变增益等一系列优点,它是目前最典型的生理参数测量用的前置放大器,且已在各类生物医学仪器中获得广泛应用。
图2-1 心电图(ECG)前置放大器原理图如图2-1所示,是典型的三运算放大器组成的差动放大器,根据A1、A2、A3的理想特性,R5、R6、R7中的电流相等,得到622721511R U U R U U R U U o i i i i o -=-=- 从而导出(R6=R5))()(217511i i i o U U R R U U -=- )()(2175022i i i U U R R U U -=- 以上二式相加得))(21()(217521i i o o U U R R U U -+=- 由于)(21810o o o U U R R U --= 则其差模增益为)21(7581012R R R R U U U A i i o d +=-= 只要调节R7,就可改变三运算放大器的增益,而不影响整个电路的对称性。
三、实验内容及步骤1、用EWB 软件按图2-1三电极心电前置放大器电路图接线、设置各元器件参数、创建电路,接入示波器、,并保存电路。
2、激活仿真电路,用示波器、万用表,观察波形、读取实验数据,并记录于表2-1中。
模拟输入 输出示波器(波形) 万 用 表 交流档 直流档正弦波100μV/50H z2.2954mV 1.7997mV0V0 1.7998mV矩形波0.1mV/50H/90%0.6985mV0.2584mV 3模拟输入输出放大倍数放大倍数计算值正弦波100μV/50Hz2.2954mV22.95234;改变R11的数值使其零点漂移最小、记录下R11的数值;将三只运算放大器改设为理想运算放大器,记录有关数据、填入表2-3。
第3章生物医学常用放大器ppt课件-PPT课件

第三章 生物医学常用放大器
判定方法:
在直流通路中,如果有反馈存在,则为直流反馈。 在交流通路中,如果有反馈存在,则为交流反馈。 如果在直、交流通路中,反馈回路都存在,即为 交、直流反馈。 电路特点:(1)反馈网络中串接隔直电容,可以隔断 直流,反馈只对交流起作用。
(2)如果在起反馈作用电阻两端并联旁路
X d 净输入信号 X f 反馈信号
Xo
A F
输出信号 无反馈时的放大倍数 反馈网络的反馈系数
(1)由基本放大电路和反馈网络两部分组成。 (2)反馈信号与输入信号在放大器的输入端叠加。
X X X (3)基本放大器的净输入信号 d i f
第三章 生物医学常用放大器
(二)反馈的类型及其判定方法
第三章 生物医学常用放大器
(一)电压串联负反馈 电路如图所示(射随器) 反馈类型分析如下: Re 介于输入输出回路 之间,有反馈存在。 反馈电压 uf= uo , 反馈量 与 输出电压有关,为电压 反馈。
C1 + + ui
–
Rb + ud
–
+UCC + C2 + uf
–
Re
+ RL uo
–
从输入端来看:ud = ui –uf,以电压形式相加减, 故为串联反馈。
1.正反馈和负反馈 正反馈:反馈使净输入信号增加,使输出量增大。 负反馈:反馈使净输入信号减小,使输出量减小。 判定方法:采用瞬时极性法. (1)在放大器的输入端,假定输入信号电压ui处于某 一瞬时极性。如用“+”号。 (2)按照电压信号传输方向,根据放大器基-射同 相,基-集反相原则,判断反馈信号uf瞬时极性。 (3)如果反馈信号的瞬时极性使净输入减小,则为 负反馈;反之为正反馈。
反馈放大电路教案:理解反馈放大电路的基础知识

反馈放大电路是一种常见的电路设计技术,旨在增加电路的放大倍数以及稳定性。
在电子技术领域中,反馈放大电路的应用非常广泛,如音频放大器、电视调谐器以及放大器等等。
本篇文章将介绍反馈放大电路教案,以帮助初学者理解反馈放大电路的基础知识。
1.反馈放大电路的概念反馈放大电路是指将输出信号的一部分反馈回放大器输入端的电路,可以抑制非线性失真现象,提高电路的总体稳定性和性能。
反馈放大电路通常被分为两类,即正反馈放大电路和负反馈放大电路。
正反馈放大电路是指将一部分输出信号反馈到放大器输入端,导致放大器输出相反的信号;而负反馈放大电路则是将部分输出信号反馈回放大器输入端,使得放大倍数减小,电路稳定性更高。
2.反馈放大电路的分类与特点按照反馈信号来源的不同,可以将反馈放大电路分为电压反馈、电流反馈和混合反馈三种类型。
(1)电压反馈:电压反馈电路是指将放大器输出端的部分电压信号反馈到放大器输入端,以控制放大倍数和电路稳定性。
这种电路的典型代表是以放大器的输出电阻作为反馈电阻的反馈电路,主要特点是可靠性高,工作稳定,输出电压可靠。
(2)电流反馈:电流反馈是指将电路的输出电流信号反馈到放大器的输入端,通过控制输入电流来调节输出电压,使放大器达到所需的工作状态。
电流反馈具有快速和高精度的优点,是一种较为实用的反馈方式。
(3)混合反馈:混合反馈是指将电压反馈和电流反馈结合起来的一种反馈方式,通过电阻、电容等元器件的网络方式将反馈电压和反馈电流耦合在一起,达到输出电路的调节目的。
3.反馈放大电路的应用反馈放大电路广泛应用于各种电子器件中,以提高电路的性能和稳定性。
其主要应用包括以下几个方面:(1)音频放大器:音频放大器通常采用负反馈放大电路,以增加放大倍数,提高音质和稳定性。
(2)视频放大器:电视、监控等领域中的视频放大器,也采用负反馈放大电路,以提高图像的信噪比和清晰度。
(3)生物医学信号放大器:生物信号很小,需要进行放大和过滤,反馈放大电路也是实现这一目标的一个重要手段。
3生物医学常用放大器详解

反馈框图:
实际被放大信号
输入Xi
叠加 Xd
±
放大器A
反馈
信号 反馈网络F Xf
开环 输出Xo
闭环
取+ 加强输入信号 正反馈 用于振荡器
取 - 削弱输入信号 负反馈 用于放大器
负反馈的作用:稳定静态工作点;稳定放大倍数;提 高输入电阻;降低输出电阻;扩展通频带。
3.电压并联负反馈
+UCC
if
+
RF
ui Rs C1 A ib
Rc
-
C2
ic
RE
ii= if + ib
if 与ii 是并联关系
4.电流并联负反馈
三、负反馈对放大器性能的影响
1.降低放大倍数
+
ui –
u’i 基本放大
电路A
uo
uf 反馈回电
.
路F
A
Xo
.
——开环放大倍数
Xd
.
F
X
.
f
——反馈系数
共模信号(common-mode input signal):两个信号的 大小相等、极性相同。(噪声和干扰信号)。
2. 电路结构
T1和T2参数相同,具有相同的温度特性和静态工 作点,电路具有对称的结构。具有两个输入端和两个 输出端。成为双端输入—双端输出差分放大器。
3.抑制零漂的原理
当 ui1 = ui2 =0 时: uo= UC1 - UC2 = 0 当温度变化时:
uo= (UC1 + uC1 ) - (UC2 + uC2 ) = 0
实验计算机生物信号采集处理系统的认识及使用

四、实验方法与步骤
• 1.生物医学信号放大器使用介绍
PCLAB-UE生物医学信号采集处理系统
开 电 源
关
通道1
通道2
通道3
通道4
刺激输出
5V 10V
100V监听输出地线口USB接口 北京微信斯达科技发展有限责任公司
电源接口
2. Pclab-UE应用软件窗口界面功能介绍
3.一般生物医学信号采集的软件设置操作
• 第五步,对非电信号如血压、张力等可以进行定 标,执行“设置”菜单中的“当前通道定标”菜 单项进行定标。
• 第六步,单击工具栏上的按钮开始采样,在采样 的过程中可以实时调整输入范围、低通滤波、纵 向放缩等各项指标以使波形达到最好的效果,再 次单击此按钮则可停止采样。
4. 刺激器的设置与调整
• 第一步:打开刺激器设置面板,可以通过“设置”菜单下的“刺激器 设置”菜单项来实现,也可以通过工具栏上的按钮在控制面板和刺激 面板间进行切换,此时刺激面板就会代替放大器控制面板以方便您进 行刺激器的参数设置。
该系统由硬件和软件两大部分组成。
Pclab-UE生物信号采集处理系统(硬件)
硬件主要完成对各种生物电信号(如心电、肌电、 脑电)与非生物电信号(如血压、张力、呼吸)的 采集。并对采集到的信号进行调整、放大,进而对 信号进行模/数(A/D)转换,使之进入计算机。
PclabUE应用软件 运行时窗口 图。
• 打印输出:
对于采样波形的打印输出,可以先通过工具栏上 的“预览”按钮或“文件”菜单中的“打印预 览”菜单项来进行波形的预览,然后通过“文 件”菜单中的“打印”菜单项直接打印输出。 (也可以通过打印预览中的“打印”直接进行 打印输出)
作业与思考
第二章 生物电前置放大器

结论:共模增益Ac1=0 ,放大器的CMRR = ∞
实际情况: (1) CMRR 不可能 ∞;CMRRD (2) 电阻精度,CMRRR
22
影响差动放大器共模抑制能力的因素
1、由电阻失配所造成的CMRRR
Ad 1 + Ad CMRRR = = Ac 4
23
2、由定义可知,CMRRD即开环差动增益Ad’与 共模增益Ac’之比:
15
1.2 生物电前置放大器工作原理
低噪声低漂移
措施: 差动输入形式
电路对称结构,严格挑选器件
采用调制式直流放大器
设置“复零”电路,将基线在特殊情况下 复零
16
1.2 生物电前置放大器工作原理
设置保护电路
放大器输入保护(保护电路本身)
人体安全保护:输入端的电流电压必须在安全水平;
Ad ' CMRRD = Ac '
3、器件本身共模抑制比CMRRD对总共模抑制比 CMRR影响
Ad CMRRD CMRRR CMRR = = Ac CMRRD + CMRRR
24
1.2 生物电前置放大器工作原理
影响CMRR因素:
放大电路闭环增益
外电路电阻匹配精度 放大器件本身 CMRRD
6
1.1 生物信号基本特征
3、噪声强
噪声是指其它信号对所研究对象信号的干扰。
如电生理信号总是伴随着由于肢体动作、精神紧张等带来 的干扰,而且常混有较强的工频干扰;
诱发脑电信号中总是伴随着较强的自发脑电;从母腹取到
的胎儿心电信号常被较强的母亲心电所淹没。
交流电、电子元器件噪声干扰。
简述生物电信号对生物医学放大器的要求

简述生物电信号对生物医学放大器的要求生物电信号是生物体内产生的微弱电信号,对于生物医学放大器来说,这些信号的放大和测量至关重要。
以下是生物电信号对生物医学放大器的要求:1.高灵敏度:生物电信号非常微弱,有时只有几毫伏甚至几微伏,因此生物医学放大器需要具有高灵敏度才能检测到这些微弱信号。
高灵敏度的放大器能够将微弱的电信号转换为较大的输出电压或电流,方便后续的处理和测量。
2.低噪声:生物电信号的频率和幅度都存在很大的变化范围,因此生物医学放大器需要具有低噪声性能,以避免对信号的干扰和失真。
低噪声放大器能够将背景噪声降低到最小程度,提高信噪比,从而获得更准确的信号测量结果。
3.宽频带:生物电信号的频率范围很宽,从直流到几百千赫兹不等。
因此,生物医学放大器需要具有宽频带特性,以便能够覆盖生物电信号的整个频率范围。
宽频带放大器能够快速地响应各种频率的信号,并保持稳定的增益和相位响应。
4.低失调:生物电信号的直流电平可以很高,因此生物医学放大器需要具有低失调性能,以确保对信号的准确测量。
低失调放大器能够将输入信号中的直流分量准确地传递到输出端,从而提高测量的准确性和稳定性。
5.高增益:生物电信号的幅度通常很微弱,需要进行大幅度放大才能进行后续处理和测量。
因此,生物医学放大器需要具有高增益性能,以便将微弱信号放大到足够的幅度。
高增益放大器能够将输入信号进行大比例的放大,提高信号的可读性和可处理性。
6.低漂移:生物电信号的幅度和频率可能会随时间发生变化,因此生物医学放大器需要具有低漂移性能,以确保对信号的准确测量。
低漂移放大器能够将输入信号中的频率和幅度变化准确地传递到输出端,从而获得更稳定的测量结果。
7.多通道:生物电信号的采集通常需要同时对多个通道进行测量。
因此,生物医学放大器需要具有多通道特性,以便能够同时对多个信号进行放大和测量。
多通道放大器能够同时接收和放大多个输入信号,提高信号采集的效率和准确性。
8.兼容性:生物医学放大器需要与各种不同的生物医学仪器和系统兼容使用,因此需要具有良好的兼容性。
生物医学工程学中的电生理信号处理技术

生物医学工程学中的电生理信号处理技术电生理学是利用电生物学原理和技术对生物体内的电活动进行测量、记录、分析和处理的学科,广泛应用于医学、生理学、神经科学等领域。
电生理信号处理技术是其中的重要分支,对于研究人类生理、病理机制、开发医疗设备以及实现生命科学与工程学的互动都具有重要的意义。
一、电生理信号的类型生物体内的电生理信号主要包括以下几类:心电图、脑电图、肌电图、神经元电位、心脏电生理信号等。
这些信号在幅值、频率、时域、空域等方面都有不同的特点,需要用不同的技术进行处理和分析。
二、电生理信号处理技术1. 信号采集电生理信号采集是最基本的步骤,其质量直接影响后续的信号处理和分析结果。
常用的电生理信号采集设备有放大器、滤波器、模数转换器等。
根据信号类型的不同,可以选择不同的采集设备和采集参数。
2. 信号增益信号增益是指将信号幅度放大到便于观测和分析的程度。
不同的信号需要不同的增益,过大或过小的增益都会影响信号的质量和可读性。
增益的选择需要根据信号幅度、采集设备和后续分析的需要等多种因素综合考虑。
3. 信号滤波信号滤波是指去除信号中的高频或低频成分,以保留感兴趣的频率范围内信号。
常用的滤波器有低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
滤波器的选择需要考虑信号的特性、信噪比、易失真程度等因素。
4. 信号分析信号分析是基于采集的信号进行数字化处理、变换和解释。
常用的信号分析技术有功率谱分析、小波分析、时频分析、相关分析、频域分析等。
这些技术可以从信号的不同方面进行分析和解释,例如信号的频率特征、时域特征、空间分布等。
三、应用案例电生理信号处理技术广泛用于医学、神经科学、生理学等领域。
以下是一些典型的应用案例:1. 心电图的分析和诊断:通过对心电图的采集、滤波和分析,可以判断心脏的节律性、心肌缺血等病理情况,为医生诊断和治疗提供依据。
2. 脑电图的研究:脑电图可以记录大脑活动状态,是研究大脑认知、情感、疾病等方面的重要手段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物电信号的信噪比较低,这是由于生 物体内各种无规律的电活动在生物电信号中 形成噪声,有些生物电信号被其他更强的电 活动所淹没,如希氏束电图H波,只有1~ 10μV,比心电信号弱得多,再有胎儿心电 信号的幅度约为5μV,比母体心电信号弱很 多,使噪声电压超出生物电信号电压。当无 用信号掩盖了有用信号时,提取这些电信号 就需要借助于微弱信号检测技术。
5
另外生物电信号的整个频带中要求 放大器的放大倍数稳定、均匀,在信号 幅度范围内具有良好的线性。对于生物 电放大器来讲,电压放大倍数一般都较 高。放大倍数越高,保持稳定就越困难。 为了使输出波形不失真,必须采取一定 的电路技术,如负反馈放大技术。
6
生物体的阻抗很高,这意味着生物 信号源不仅输出电压幅度低,而且提供 电流的能力也很差,因此要求生物电放 大器的前级必须具有很高的输入阻抗, 以防止生物电信号的衰减,但高输入阻 抗易引入外界干扰,特别是市电50Hz的 干扰,为了提高放大器输入信噪比,常 常加入50Hz陷波器。
可见,高频脉冲的 频谱形状是由脉冲频谱 决定的,高频脉冲的频 谱位置是高频振荡频率 来决定。
18
在对生物体的一切生物医学信号进行分 析时,如心电分析、脑电分析和脉波分析, 常利用频谱分析手段,从中提取有用的生物 信号作为临床诊断的依据。
19
第二节 常用滤波电路
根据生物医学信号特点的分析, 以及生物电信号进入放大器前还要混 入干扰的具体情况,一般在放大器等 处理装置前加有滤波器。
11
以频率为横轴,振幅为纵轴,在横轴 上找到所有振幅不为零的正弦波的频率并 引出垂线,其长度表示相应的振幅an,这 种图称为振幅频谱,也常简称为频谱 (spectrum)。而an2组成功率频谱,简称为 功率谱。各种频率成分的初位相声。组成 的位相谱,称为位相频谱。
12
基波和二次谐波的振幅 相同,初位相为零。
0
式中Af和Φf分别为振幅和位相频谱。
14
矩形脉冲的宽度为τ ,高度为1/τ,面积为1。波形的中 点在时间坐标t的零点。
频谱的横坐标按照fτ划分,频率以1/τ为单位,其振幅频谱 有正负振幅不断摆动,且延伸很远,范围与1/τ 成正比。
15
钟罩形波, τ为波形下降到最大值的0.6065所需时间, 1/(2 π f)为脉冲的高度,面积为1。它的频谱很平滑。
8
总之,为适应生物医学信号频率 较低且频带较宽、阻抗较高且幅度较 低和信噪比较小的特点,必须选用低 截止频率、高输入阻抗和放大倍数稳 定的放大器。
9
二. 生物医学信号的频谱
实际的信号波形是很复杂的,大多不是 正弦波,但借助频谱分析的方法,这种非正 弦式周期波形可以被分解为数目足够多的, 幅度不同、频率不同、初位相不同的正弦波。
基波和二次谐波的振幅 相同,但二次谐波的初 位相为π/2。从下面的 位相频谱图中可以看到。
13
2. 脉冲波形的频谱 在电子学中把在时间上短促的波形称为脉冲
(impulse)。单个孤立的波形可以用一系列正弦波 的叠加来组成,频率可取连续值,且具有连续频谱。 连续频谱的波形叠加用积分式表达为:
U(t)2Af co弦式周期波形包含多种频率的正弦波成分。 用数学表达为:
U t a nsi2 n fn t ( n ) n 0 ,1 ,2 ,3 ...
式中当n=1时,fn为f1,是非正弦式周期 波的重复频率,称为基频。此频率的正弦波称 为基波,其它正弦波的频率fn都是基频的整数 倍,称为n倍频,相应的正弦波为n次谐波。
3
4
一. 生物电信号的特点及其放大器
生物电信号的频带主要在低频和超低 频范围内,各种生物电中包含了频率很低的成
分。在第二章中介绍的阻容耦合多级放大器很难 通过这种频率的信号,所以本章将介绍适应这种 频率特点的直流放大器。
通常生物电信号的幅度较低,只有毫伏 级甚至微伏级,而普通的电子元件的噪声相 当于数微伏无规则电压,为了使生物电信号 不被噪声淹没,放大器的前级必须选用高质 量的电阻和电容,低噪声的场效应管,电源 也要采取特殊稳定的措施。
第三章 生物医学常用放大器
从人体获得的生物医学信号,再经过滤 波、放大、显示等一系列处理过程,才能为 医学研究和临床诊断提供可靠的客观依据。
本章在前面放大电路基本原理的基础上, 首先介绍生物电信号特点、频谱及常用的几 种滤波电路,然后重点讨论负反馈放大器、 直流放大器的工作原理及特点,最后简述功 率放大器。
1
主要内容
• 第一节 生物医学信号的特点及频谱 • 第二节 常用滤波电路 • 第三节 负反馈放大器 • 第四节 直流放大器 • 第五节 功率放大器
2
第一节 生物医学信号的特点及频谱
携带生物信息的信号称为生物信号。其中生物电信号是 由于人体内各种神经细胞自发地或在各种刺激下产生和 传递的电脉冲,肌肉在进行机械活动时也伴有电活动所 产生的信号,如心电、脑电、肌电等。非生物电信号是 由于人体各种非电活动产生的信号,如心音、血压波、 呼吸、体温等。医学中还常通过在人体上施加一些物理 因素的方法来获得生物信号,如各种阻抗图,它以数十 千赫交流电通过人体的一定部位,获得阻抗或导纳变化 的波形图;又如超声波诊断仪器,它向人体发射脉冲式 的超声波,通过回波方式获得的生物信号。另外还有通 过在体外检测人体样品的仪器、生理参数遥测仪器和放 射性探测仪器等获取的生物信号。上述诸多的生物信号 被统称为生物医学信号。
16
由这两个脉冲的频谱图可见:脉冲愈 宽,愈平滑,则频谱范围愈窄;相反,波 形愈陡峭所含谐波愈多,频谱范围愈宽, 特别是突然变化的脉冲波形更是如此。
如人体动脉压力波形比较平滑,根据 频谱分析大约含有10个谐波,而心电波形, 因它含有比较陡的R波,故大约含有30~60 个谐波。
17
高频脉冲:即振幅 随一个脉冲波形变化的 高频振荡。图(a)表示振 幅随一脉冲波形变化的 高频振荡,图(b)是它的 频谱,可以从原先脉冲 的频谱得到。把原先脉 冲的频谱对称地向负频 率侧延伸,然后向右移 动f0的距离,就得到。