SEMI 标准列表
SEMI发布8项新技术标准

冲期 , 目前 已经 开始使 用这套标 准做 节能认 证, 能效实施 中心
细则将 在 l 2月 1日发 l , 时产 品都 会 贴 能 效标 识 。 布 届
能效指数 ( E ) E 1 链效 等级
液晶电 能 指 髓 D 视 效 数( C ) 等 子 视 效 数( D 离 电髓 指 p )
绿 色 质 量 观 察
旋极公 司携 ME T N OR 产品亮相 飞思卡 尔设计
大会
21 0 0年 7月 ,北 京 旋 极 信 息 技 术 股 份 有 限 公 司 作 为 M no Ga hc 公 司 E D 产 品 在 中 大 陆 唯 ~ 代 理 商 ,将 携 et r is r p S M n ”G ahr E D 产 品 参 加 飞 思 卡 尔 全 球 市 场 解 决 方 案 系 et r i S p s 列 主 题 设 计 研 讨会 。
21 0 0年 ,深圳市人大常委会经济 j 作委员会完成 了一份 《 深圳 市中小企业发展情况 调研报告》 指 : , 中小企业发展政
策 优 势 正 减 弱 ;七 成 企 业 存 在 ” 钱 ”问题 ,曾 遇 到 资 金 短 缺
证 暨技 术 研 讨会 近 日召 开 ,东 莞 质 检 中心 已成 功 获 批 筹 建 国
式实施 。 据 国家 广 播 电视 产 品 质 量 监 督 检 验 中 心 整 机 性 能 实 验 室 主 任 吴 蔚 华 介 绍 , 板 电视 能 效 等 级 分 为 3 , 中 1 能 效 平 级 其 级
最高。 级为节能产品的 目标值 , 一 原则上应定在 当前市场 同类
产 品 的 最 高 水 平 ; 级 为节 能产 品评 价 等 级 , 标 设 定 应 高 于 二 指 产 品 市 场 平 均 水 平 ; 级 为 市 场 准 入 等 级 , 标 设 定 主 要 用 于 三 指 淘 汰 市 场 七高 耗 能 产 品 。7月 至 1 月 为能 效 标 准 实 施 前 的缓 1
SEMI标准介绍:SECS GEM

Introduction to the SEMIStandards: SECS/GEMOctober 30, 2017- NOTICE -The information contained in this document is subject to change without notice. Every effort has been made to supply complete and accurate information. However, Cimetrix Inc. makes no warranty of any kind with regard to this document, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Cimetrix shall not be liable for errors contained herein or direct, indirect, special, incidental, or consequential damages in connection with the furnishing, performance, or use of this document.- COPYRIGHT -©2017 Cimetrix Incorporated. All rights reserved. No part of this work may be copied, modified, distributed in any form or by any means, or stored in any database or retrieval system, without the prior written permission of Cimetrix Incorporated, except as permitted by law. Violation of copyright carries civil and criminal penalties.- TRADEMARKS -Cimetrix is a registered trademark. CIM300, CIMConnect, CIMFoundation, CIM40, CIM87, CIM90, CIM94, CIM58, CIM116, CIM148, CIM157, SECSConnect, ECCE Plus, TESTConnect, CIMPortal, CIMPortal Plus, EDAConnect, and CIMControlFramework (CCF) are trademarks of Cimetrix Incorporated. All other registered trademarks and trademarks are properties of their respective holders.Table of Contents1 Overview (4)2 Industrial Usage of the GEM Standard (4)2.1 Semiconductor Front End (4)2.2 Semiconductor Back End (4)2.3 Flat Panel Display (5)2.4 Surface Mount Technology (5)2.5 Photovoltaic (5)2.6 High-Brightness LEDs (5)3 GEM Host and Equipment Communication (5)4 SECS-II Message Communication (6)5 Feature Summary (7)5.1 Communication (8)5.2 Control (8)5.3 Operation Notification (8)5.4 Data Gathering (8)5.5 Process Program (Recipe) Management (9)5.6 Spooling (9)5.7 Documentation (10)6 GEM Compliance (10)7 Frequently Asked Questions (11)8 GEM Terminology (13)1OverviewGEM is a standard implementation of the SECS-II standard, SEMI standard E5. Most equipment in semiconductor (front end and back end), surface mount technology, electronics assembly, photovoltaic, LED, flat panel display, and other manufacturing industries worldwide provide a SECS/GEM interface on the manufacturing equipment so that the factory host software can communicate with the equipment for monitoring and/or controlling purposes. Because the GEM standard was written with very few semiconductor-specific features, it can be applied to virtually any manufacturing equipment in any industry.2Industrial Usage of the GEM StandardAll GEM-compliant manufacturing equipment share a consistent interface and certain consistent behavior. GEM equipment can communicate with a GEM-capable host using either TCP/IP (using the HSMS standard, SEMI E37) or RS-232-based protocol (using the SECS-I standard, SEMI E4). Often both protocols are supported. A piece of equipment can be monitored and controlled using a common set of SECS-II messages specified by GEM. When equipment has a GEM interface, it takes just minutes (or even seconds) for factory GEM host software to establish communication and begin monitoring the activity of the equipment. This means that equipment manufacturers can spend more time and money improving equipment quality by providing a common interface to all factories. It also means that factories can spend more time and money improving production and processes, rather than setting up communication to the equipment.There are many additional SEMI standards and factory specifications that reference the GEM standard features. These additional standards are either industry specific or equipment-type specific. Following are a few examples.2.1Semiconductor Front EndThe semiconductor front end (wafer fab) segment of the industry defined a series of standards known as the GEM300 standards that includes SEMI standards E40, E87, E90, E94, E116, E148, and E157, and also references the E39 standard.Each standard provides additional features to the GEM interface, yet builds upon the features in the GEM E30 standard. 300mm factories worldwide use the underlying GEM standard's data collection features in order to monitor specific equipment activity such as wafer movement and process job execution. The SECS/GEM standard and the additional GEM300 standards are required on almost all 300mm wafer manufacturing tools in order to implement manufacturing automation. This industry segment has been the strongest supporter of the GEM and related SEMI standards.2.2Semiconductor Back EndNumerous types of equipment in the semiconductor back end (assembly and test) segment of the industry implement the GEM standard. Additional standards have been implemented such as:SEMI E122: Standard for Tester Specific Equipment Model (TSEM)SEMI E123: Standard for Handler Equipment Specific Equipment Model (HSEM)2.3Flat Panel DisplayThe flat panel display (FPD) industry has largely been a long-time user of SEMI standards for connecting manufacturing equipment to its factory information and control systems, but the interfaces are typically company-specific and incorporate custom SECS messages.Although many of the equipment suppliers to the FPD industry also offer semiconductor equipment, we don’t expect the FPD industry to adopt the newer generations of advanced data collection and process control standards in the short term. This is due primarily to the fact that the FPD manufacturing process is not as complex as semiconductor production (more inline), and also because FPD manufacturing was highly automated from the outset.However, as panel sizes and feature counts continue to increase (consider the large LED-based high-definition televisions), the FPD industry will undoubtedly make use of more and more manufacturing data to maintain product quality and manufacturing efficiency – and the SEMI standards will be there to support them.2.4Surface Mount TechnologyMany types of equipment in the surface mount technology (SMT) industry support the GEM standard, including chip placement, solder paste, oven and inspection equipment. The GEM standard has been used on these equipment types for over 15 years.2.5PhotovoltaicIn 2008, the photovoltaic (PV) industry officially decided to adopt the SECS/GEM standard and submitted a proposal for a new SEMI standard, ballot document #4557. Even prior to adopting the GEM standard, several photovoltaic equipment suppliers were already capable of supporting the GEM standard. The standard is called PV2, and defines a framework that utilizes the SEMI E37 (HSMS), SEMI E5 (SECS-II), SEMI 30 (GEM), SEMI E148 and SEMI E10 (OEE – Overall Equipment Effectiveness) standards.2.6High-Brightness LEDsThe high-brightness LED (HB-LED) industry is currently working with SEMI to define needed standards through the HBLED Task Force. The adoption of GEM has been accepted and further investigation is taking place concerning the GEM300 and EDA (Equipment Data Acquisition) standards.3GEM Host and Equipment CommunicationIn a factory GEM implementation there are two parties, the host and equipment. The equipment runs GEM interface software on one of its computers that must implement and comply with the SEMI standards. The factory runs GEM host software that establishes communication with the equipment's GEM interface. A typical host is also called a station controller or line manager. Often the host software is part of the factory's Manufacturing Execution System(MES). A host system can communicate with one or multiple equipment GEM interfaces at the same time. The host communicates directly with each piece of equipment using either the SEMI E4 SECS-I standard (RS-232-based serial communication) or SEMI E37.1 HSMS-SS standard (TCP/IP based network communication). The HSMS-SS standard is more convenient and better aligned with modern factories, and is therefore used almost exclusively in modern factories.Figure 3-1: GEM Interface and SECS/GEM HostA host does not have to comply with the GEM standard since the standards only set expectations on the equipment. However, in order to make use of the GEM interface, a host must implement the host side of the communication. The GEM standards set clear equipment behavior expectations for each possible host message.4 SECS-II Message CommunicationOnce low-level communication is established, then the host and equipment can exchange SECS-II messages. A SECS-II message is identified by a stream number (0-255) and a function number (0-255). An odd-numbered function is a primary SECS-II message, the first message in a message exchange, called a transaction. The consecutive, even-numbered function is its secondary message--the reply to the corresponding primary message. Unless the reply bit is clear (0), a primary message should always be responded to with its complementary secondary message. For mostSECS-II messages, a secondary reply message is required. For example, if the host sends an S1,F1 (stream 1, function1) message to request “Are you there?”, then equipment will send a reply S1,F2 message to indicate “I am here”. Each SECS-II message exchange has a unique transaction ID number. The standards allow message interleaving where there is more than one open, concurrent transaction.The SEMI E5 SECS-II standard defines the use and format of a large set of standard SECS-II messages, including primary messages and the corresponding secondary messages. Only a subset of these messages is required by the GEM standard. Some SECS-II message transactions may be initiated by only the host, while other SECS-II message transactions may be initiated only by the equipment. A few message transactions may be initiated by either the host or equipment.In order for a SECS-II message to be valid, it must be initiated by the correct party and have the correct message format (i.e., the structure defined by SEMI E5 standard). The host and equipment can agree to support custom messages to implement custom features. The format of those messages is not defined in SEMI E5, and this practice is highly discouraged when standard messages are sufficient.Figure 4-1: SECS-II Message TransactionSECS-II messages are sent as structured binary data to maximize message content while minimizing network bandwidth requirements. For example, when using the SECS-I standard, which employs RS-232 serial communication, the messages size is limited to 7,995,148 bytes (about 8MB). On the other hand, by using the HSMS standard with TCP/IP network communication, the maximum message size is limited to 4,294,967,295 bytes (about 4.3 GB).The structure of each standard SECS-II message is defined by the SEMI E5 standard. A message can be a simple data element, such as a binary response or an ASCII string. A message can also be a complex list structure with multiple levels of lists in the hierarchy. The SECS-II standard limits a single element within a SECS-II message to 16,777,215 bytes (about 16.5 MB).5 Feature SummaryThe key features of the GEM standard are described in the following paragraphs. Minimal GEM compliance requiresonly a small set of these features to be supported, since many of them described are optional, additional capabilities.Several of the features have state models to clearly define states, sub-states and transitions between states. The state models make GEM interface implementations consistent and predictable.The GEM standard defines a number of SECS-II message scenarios, each of which is an ordered sequence of SECS-II message transactions. The SECS-II message scenarios establish an implementation guideline so that the equipment manufacturer can anticipate how the host might use the GEM standard.5.1CommunicationThe GEM standard defines how the equipment and the host initially establish communication. It also defines how communication is re-established when communication is broken. An on-line identification method verifies the equipment's hardware and software identity. Terminal service features allow the host operator and equipment operator to exchange text manually typed at a console.5.2ControlThe GEM standard outlines a control state model to define the level of cooperation between the host and equipment operator. Equipment with a GEM interface provides three basic levels of host control, which determine the host's ability to control and monitor the equipment. The equipment operator sets the level of host control.Remote control capabilities permit the host to send GEM-defined commands like "START," "STOP," "PAUSE," "RESUME," and "ABORT" to control the equipment's processing. The equipment can define additional custom commands. Each command can have one or more arguments with data to clarify the command.Equipment constant features allow the host to set and retrieve equipment constant values which govern the equipment's behavior. GEM requires a small set of equipment constants to configure the GEM state machines. The equipment can define additional equipment constants to allow the host to configure many aspects of the equipment behavior.5.3Operation NotificationCollection events and alarms allow the host to monitor equipment operations in detail. Equipment alarms can notify the host when potentially dangerous activity is detected and subsequently resolved. The host determines which collection events and alarms are set for notification, and the equipment sends SECS-II messages to the host for only the specified events and alarms in order to minimize network traffic. Certain events and alarms are required by the GEM standard, but the equipment supplier is expected to define additional events which allow the host to monitor equipment-specific activities effectively.5.4Data GatheringGEM defines six methods of gathering data. The host can gather data from the equipment, but the equipment cannot gather data from the host.1. A set of status variable values can be requested at any time.2. A set of equipment constant values can be requested at any time.3. A report containing status variable, data variable and equipment constant values can berequested at any time.4. A host can define reports and attach them to collection events so that the report data istransmitted along with the collection event in the same SECS-II message. This feature enables data to be sent to the host as the values become available, thereby reducing the host's obligation to poll for information. This event report data collection also enables the host to gather the data related to each event.5.The host can define traces so that the equipment periodically transmits the specified statusvariable values at a set time interval. This feature enables the host to poll the equipment status without having to ask for data at each interval.6.The host can configure limits monitoring so that the equipment notifies the host whenevera specified variable value transitions across a host-defined limit threshold. This featureeliminates the need for the host to poll critical values in situations where the host is only concerned when the value becomes too high or low. Multiple limit boundaries can be defined.5.5Process Program (Recipe) ManagementA process program "is the set of instructions, settings, and parameters under control of the equipment that determine the processing environment seen by the manufactured object" (SEMI E30, 4.2.6.1). Process program management features include the following:∙Host can download a process program to the equipment for storage on the equipment.∙Host can upload a process program from the equipment for storage on the host.∙Host can delete a process program on the equipment.∙Host can request a list of available process programs.∙Equipment operator can send a process program to the host.∙Equipment operator can request a process program from the host.∙Host can select a process program for execution using a PP-SELECT remote command.∙Equipment will notify the host when a process program is created, edited, deleted, or selected by the equipment operator.5.6SpoolingSpooling capabilities provide the means for the equipment to queue information intended for the host during a communication failure. When communication is restored, the host can purge or request the queued data. The host can configure which information is queued, how a full queue is handled, the queue size, and how queued information is recovered. The host can also switch spooling features on or off.5.7DocumentationThe GEM standard requires that a GEM interface manual be included with each equipment unit. The manual must include a GEM compliance statement, complete SECS-II message documentation, complete GEM state model documentation and a description of all equipment variables, alarms, collection events, equipment constants and remote commands.6GEM ComplianceAs stated in Section 5.7, equipment that is GEM compliant must include a GEM compliance statement in the documentation. The table below declares not only which features are implemented, but also indicates whether or not implemented features comply with the standards. This means that the equipment can provide a limited GEM implementation and still be considered GEM compliant. Some of the GEM features simply are not appropriate for all manufacturing equipment. If a feature is implemented, but not quite compliant, then the equipment supplier must simply document the exception. Below is a sample GEM compliance statement.The GEM standard requires relatively few features. If equipment implements a minimum GEM interface with only the required data variables, status variables, equipment constants and collection events, then the GEM interface is only marginally useful. The GEM interface's full value is realized only when the equipment supplier provides additional equipment-specific alarms, data variables, status variables, equipment constants, and collection events.GEM Compliance StatementFUNDAMENTAL GEM REQUIREMENTS IMPLEMENTEDGEM COMPLIANT(See Note 1)State Models Yes No Yes NoEquipment Processing States Yes NoHost-Initiated S1 = F13/F14 Scenario Yes NoEvent Notification Yes NoOn-Line Identification Yes NoError Messages Yes NoDocumentation Yes NoControl (Operator Initiated) Yes NoNote 1: Do not mark “Yes” unless all fundamental GEM requirements are implemented and GEM compliant.Note 2: Additional capabilities cannot be marked GEM -COMPLIANT unless the fundamental GEM requirements are GEM compliant.ADDITIONAL CAPABILITIES IMPLEMENTED GEM COMPLIANT (See Note 2)Establish Communications Yes No Yes NoDynamic Event-ReportConfiguration Yes No Yes NoVariable Data Collection Yes No Yes NoTrace Data Collection Yes No Yes NoStatus Data Collection Yes No Yes NoAlarm Management Yes No Yes NoRemote Control Yes No Yes NoEquipment Constants Yes No Yes NoProcess Program Management Yes No Yes NoMaterial Movement Yes No Yes NoEquipment Terminal Services Yes No Yes NoClock Yes No Yes NoLimits Monitoring Yes No Yes NoSpooling Yes No Yes NoControl (Host-Initiated) Yes No Yes NoNote 1: Do not mark “Yes” unless all fundamental GEM requirements are implemented and GEM compliant.Note 2: Additional capabilities cannot be marked GEM COMPLIANT unless the fundamental GEM requirements are GEM compliant.7Frequently Asked QuestionsWhere can I get a copy of the GEM standard? Official copies must be obtained through SEMI. SEMI offers excellent internet services at their website. Standard documents can be ordered or downloaded for a fee at the SEMI website: /How does a system become GEM certified? There is no official GEM certification. GEM compliance is self-proclaimed. Software programs are available for testing GEM equipment such as TESTConnect and SECSConnect. Note that GEM compliance does not require all GEM features to be implemented. For example, some equipment may not implement remote commands and process program management, yet they can still be GEM compliant if they correctly implement the GEM Fundamental Capabilities.Can more than one host establish communication with a single piece of equipment simultaneously? Yes, but not many GEM interface software products support that capability. Cimetrix CIMConnect software product has a built-in multiple client (multi-host) feature that simplifies the process of communicating with more than one SECS/GEM host at a time using HSMS-SS or SECS-I communication. When using HSMS-SS, each client uses a unique port.How long does it take to implement a SECS/GEM interface? Building the SECS/GEM interface from the beginning can take a few person-years to develop custom software that will be production worthy in a variety of factories. It is much more cost-effective to purchase a commercial software product. There are commercial GEM software products available such as the Cimetrix CIMConnect product, which many consider to be the best product on the market.How fast is a SECS/GEM interface? Current versions of the standard allow the host to setup trace data collection with the message rate specified in milliseconds. In practice, some factories request data at rates of about 10Hz, or 1 set of data every 100ms. Because the SECS-II and HSMS message format is very efficient, a lot of data can be transferred using little network bandwidth. The precise data rates depend on many factors such as the network, the GEM software in both the host and equipment systems, and the computer hardware. Older versions of the GEM standard were limited to 1 Hz trace data collection.What are the mostimportant featuresin a GEM product?There are many important features, but here are some of the key ones:Customer SupportThe GEM interface will likely be a mission-critical capability for production.There are many details in the SEMI standards that take years to master.Before selecting a product, make sure that the product is backed by a solidcompany with a responsive, experienced customer support team.PerformanceSome products use much less CPU than others for the same set of tasks. Aproduct that uses less CPU can achieve higher data collection rates. Asfactories attempt manufacturing process optimization, they rely on moreand more data collection from the equipment. Select a product that can usecomputing and networking resources most efficiently and can meet bothtoday's and tomorrow's throughput requirements.Supporting Multiple ClientsIn recent years, the importance of supporting multiple clients hasincreased. For example, PV manufacturers documented the need for an "ITinterface of the equipment that allows an arbitrary number of clients toconnect to the equipment in order to gather data from the equipment (allkinds of data collection) and to interact with the equipment (remotecontrol, etc.)". Choose a product that has multiple client access as a built-in feature such as CIMConnect.Client-Server ArchitectureA GEM interface interacts with all of the components within the equipment.Purchase a product with a client-server architecture so that all of thecomponents can interact directly with the GEM software. This foundationwill reduce the time, cost, and complexity of software development.Can changes be made to the GEM standard? The GEM standard is an active SEMI standard managed by the GEM300 task force. Periodically changes to the GEM standard are submitted for discussion and for ballot approval. Changes must be approved according to SEMI's standard processes. Anyone can join the GEM300 task force, vote on the changes to the standard, and submit recommendations. Cimetrix currently holds the co-chair position for the North American GEM300 task force. More information is available from the following websites:SEMI - Cimetrix - Where can I askquestions about theGEM standard?You are welcome to email questions to support@.How much network bandwidth does a GEM interface require? While the equipment determines how much information is available to the host, ultimately the host determines the bandwidth utilization by enabling the desired collection events and alarms and by disabling the undesired ones. The host also determines the amount and frequency of data gathering, recipe management, remote commands, and other features. If all of the events and alarms are disabled, then a GEM interface connection will be nearly silent.8GEM TerminologyTerm DescriptionAlarm "An alarm is related to any abnormal situation on the equipment that may endanger people, equipment, or material being processed" [SEMI E30, 2]. GEM allows the hostto be notified when alarm conditions are detected and cleared.Collection Event A collection event is a "detectable occurrence significant to the equipment" that "is considered to be significant to the host". [SEMI E30, 2] GEM allows the host to be notified when a collection event occurs. This allows the host to track the equipment's activity.Data Variable Data variables "…may only be valid upon the occurrence of a particular event". [SEMI E5, 6.6]. The host can gather data variable values from the GEM equipment. The data variable values provide information specifically related to the event.Equipment Constant Equipment Constants are "settable by the Host"[SEMI E5 6.6]. The host can gather equipment constant values from the GEM equipment. The host can also set equipment constant values on the GEM equipment to control the equipment's behavior.GEM Equipment An "intelligent system which communicates with a host" [SEMI E4, 2.1] and complies with the GEM standard.Host "An intelligent system which communicates with the equipment." [SEMI E4, 2.1]. The host can be viewed as a line management system. GEM does not intend to define howthe host should behave. The GEM standard defines the set of messages a host mustuse when interacting with GEM equipment. A host can communicate with multiple GEMequipment, and Cimetrix CIMConnect enables the process of equipmentcommunicating with more than one host.HSMS-SS SEMI standard High-Speed Message Service-Single Session, which defines TCP/IP network communication used by GEM for host/equipment communication. It haseffectively replaced the SECS-I standard. Only one host client can use a specific portat a time.PV2 (PVECI) GUIDE FOR PV EQUIPMENT COMMUNICATION INTERFACES, an approved SEMI standard specifically for photovoltaic equipment suppliers.ProcessProgram(see Recipe)Recipe A set of instructions for the equipment that serve some specific purpose (wafer processing, calibration, equipment test, etc.).Report "A set of variables predefined by the equipment or defined by the host…". The host uses reports to gather status variable, data variable, and equipment constant values.The host can request a report explicitly or attach a set of reports to a collection event.Status Variable "Status variables may include any parameters that can be sampled in time such as temperature or quantity of a consumable." [SEMI E5, 6.5] "Status values … always contain valid information." [SEMI E5, 6.6]. The host can gather status variable values from the GEM equipment.SECS-I SEMI Equipment Communications Standard 1 Message Transfer - defines RS-232 serial communication used by GEM for host/equipment communication. It has beenphased out due to inherent speed limitations, and replaced by the HSMS standard. SECS-II SEMI Equipment Communications Standard 2 Message Content. GEM is a specific implementation of the SECS-II standard. SECS-II defines most concepts andfunctionality used in the GEM standard. Many SECS-II capable systems are not GEMcompliant.SECS-II Message All GEM equipment and host communication is accomplished using SECS-II messages. Each unique SECS-II message is identified by its stream number (S) and function number (F). The SECS-II standard defines a large set of SECS-II messages specifying each one's purpose, content, and usage. The GEM standard defines how to use a subset of these SECS-II messages, while allowing other SECS-II messages to be used in addition to this subset.。
SEMI 标准列表

标准名称编号标准化标准技术制图 图样画法 制图GB/T 17451-1998产品标准化大纲编制指南GJB/Z 114A-2005标准化评审GJB/Z 113-98新产品工艺标准化综合要求编写指南GJB/Z 106-98企业标准体系管理标准和工作标准体系GB/T 15498-2003企业标准体系 要求GB/T 15496-2003企业标准体系 评价与改进GB/T 19273-2003军用标准文献分类法GJB/T 832-2005标准化工作导则 第一部分:标准的结构和编写规则GB/T 1.1-2000综合标准化工作导则 工业产品综合标准化一般要求GB/T 12366.2-90综合标准化工作导则原则与方法GB/T 12366.1-90标准化工作指南 第二部分:采用国际标准的规则GB/T 20000.2-2001标准编写规则 第三部分:信息分类编码GB/T 20001.3-2001标准编写规则 第四部分:化学分析方法GB/T 20001.4-2001标准体系表编写原则和要求GB/T 13016-91标准化和有关领域的通用术语 第一部分:通用术语GB/T 3935.1-1996消费品使用说明 总则GB 5296.1-1997电磁干扰和电磁兼容性术语GJB 72A-2002标准化工作指南第三部分:引用文件GB/T 20000.3-2003标准化工作指南第四部分:标准中涉及安全的内容GB/T 20000.4-2003环境检测分析方法标准制订技术导则HJ/T 168-2004军用标准文件编制工作导则 第一部分:军用标准和指导性技术文件编写规定GJB 0.1-2001军用标准文件编制工作导则 第二部分:军用规范编写规定GJB 0.2-2001军用标准文件编制工作导则 第三部分:出版印刷规定GJB 0.3-2001说明书的编制 构成 内容和表示方法GB/T 19678-2005/IEC 62079:2001气体和超净标准、环保标准中国环境保护标准汇编 水质分析方法中国环境保护标准汇编 废气废水废渣分析方法中国环境保护标准汇编 大气质量分析方法气体中微量水分的测定 电解法GB 5832.1-86气体中微量水分的测定 露点法GB 5832.2-86气体中微量氧的测定 电化学法GB 6285-86氢气GB/T 3634-1995氮GB/T 3864-1996洁净厂房设计规范GB 50073-2001纯氢、高纯氢和超纯氢GB/T 7445-1995洁净室检测规范GB/T16292-1996电子级气体中颗粒和痕量杂质测定方法SJ2798~2807-87电子工业用气体GB/T 14600~14604-93电子工业用气体 氮GB/T 16944-1997大气污染物综合排放标准GB16297-1996微电子标准微电子器件试验方法和程序GJB 548B-2005半导体分立器件总规范GJB 33A-97半导体分立器件型号命名方法GB/T249-89半导体集成电路总规范GJB 597A-96混合集成电路通用规范GJB 2438A-2002半导体集成电路CMOS电路测试方法的基本原理SJ/T 10741-2000半导体分立器件包装规范GJB 3164-98电子产品防静电放电控制手册GJB/Z 105-98防静电包装手册GJB/Z 86-97印制板总规范GB/T 16261-1996集成电路A/D和 D/A转换器测试方法的基本原理半导体集成电路JSC145152型CMOS并行输入锁相环4频率合成器详细规范SJ50597/37-95膜集成电路和混合集成电路外形尺寸GB/T 15138-94计量校准及管理标准测量不确定度的表示及评定GJB 3756-99检测和校准实验室能力的通用要求GB/T 15481-2000测量管理体系测量过程和测量设备的要求GB/T 19022-2003测量设备的质量保证要求计量确认体系GJB 2712-96测试实验室和校准实验室通用要求GJB 2725A-2001测量设备的质量保证要求第一部分测量设备的计量确认体系GB/T 19022.1-1994测量设备的质量保证第二部分:测量过程控制指南GB/T 19022.2-2000抽样标准计数抽样检验程序及表GJB 179A-96周期检验计数抽样程序及表GB/T 2829-2002计数抽样检验程序 第一部分:按接收质量限(AQL)检索的逐批检验抽样计划GB/T 2828.1-2003军用电子元件失效率抽样方案和程序GJB 2649-96产品质量监督计数抽样程序及抽样表GB/T 14162-93光电类标准半导体光电模块总规范SJ 20642-97固体激光器总规范SJ 20027-92空间用单晶硅太阳能电池总规范GJB 1431-92固体激光器总规范GB/T 15490-1995红外探测器总规范GJB 1206-91红外探测器参数测试方法GB/T13584-92红外探测器外形尺寸系列GB/T13583-92半导体激光二极管空白详细规范GB/T 15649-1995半导体激光二极管总规范GJB3519-99固体激光器通用规范GJB 5849-2006大功率半导体激光二极管阵列通用规范SJ 20957-2006固体激光器测试方法GJB 5441-2005固体激光二极管测试方法SJ 2749-87太阳电池光谱响应测试方法GB 11009-89航天用标准太阳电池GB 6492-86航天用太阳电池标定的一般规定GB 6496-86航天用太阳电池电性能测试方法GB 6494-86太阳敏感电池通用规范GJB 2932-97太阳能电池温度系数测试方法SJ/T 10459-93太阳电池组件参数测试方法GB/T 14009-92光伏器件 第1部分:光伏电流-电压特性的测量GB/T 6495.1-1996光伏器件 第2部分:标准太阳电池的要求GB/T 6495.2-1996光伏器件 第3部分:地面用光伏器件的测量原理及标准光谱辐照度数据GB/T 6495.3-1996半导体光电组件总规范SJ 20786-2000 PIN、APD光电探测器总规范SJ 20644-97PIN、APD光电探测器通用规范GJB 5022-2003军用激光器辐射传输测试方法GJB 894A-99PIN、雪崩光电二极管测试方法SJ 2354.1-83激光产品的安全第1部分:设备分类、要求和用户指南GB 7247.1-2001纤维光学试验方法GJB 915A-97纤维光学转接器 第1部分:总规范GB/T 18308.1-2001纤维光学互连器件和无源器件基本试验和测量程序第2-4部分:试验 光纤、光缆保持力GB/T 18310.4-2001纤维光学互连器件和无源器件基本试验和测量程序第3-2部分:检查和测量单模纤维光绪器件偏振依赖性GB/T 18311.2-2001纤维光学互连器件和无源器件基本试验和测量程序第3-3部分:检查和测量监测衰减和回波损耗变化(多路)GB/T 18311.3-2001纤维光学互连器件和无源器件基本试验和测量程序第3-6部分:检查和测量回波损耗GB/T 18311.6-2001纤维光学互连器件和无源器件基本试验和测量程序第2-18部分:试验 干热-高温耐久性GB/T 18310.18-2001热敏电阻总规范GJB 601A-98光纤总规范GJB 1427A-99光纤光缆连接器 第1部分:总规范GB/T 12507.1-2000光纤光缆连接器 第2部分:F-SMA型光缆连接器分规范.0地面用晶体硅光伏组件设计鉴定和定型GB/T 9535-1998激光辐射功率测试方法GB/T 13863-92激光辐射功率稳定度测试方法GB/T 13864-92红外探测器试验方法GJB 1788-93超辐射发光二极管组件测试方法SJ 20785-2000红外发射二极管总规发GJB 3930-2000半导体光电器件GR1325J型长波长发光二极管组件详细规范SJ 20642/7-2000激光辐射发散角测试方法GB/T 13740-92激光辐射光束直径测试方法GB/T 13741-92晶体硅光伏器件的I-V实测特性的温度和辐照度修正方法GB/T 6495.4-1996发光二极管固体显示器总规范GJB 2146-94固体激光器主要参数测试方法GB/T 15175-94军用激光测距仪通用规范SJ 20793-2000质量控制管理标准产品质量保证大纲要求GJB 1406A-2005产品质量标志和可追溯性要求GJB 726A-2004不合格控制指南SJ/T 10466.15-94军用电气和电子元器件的标志GJB 2118-94武器装备研制项目管理GJB 2993-97军工批次管理的质量控制要求GJB 1330-91合同中质量保证要求GJB 2102-94航天产品质量问题归零实施指南QJ 3183-2003军工产品的批次管理的质量控制要求GJB 1330-91关键件和重要件的质量控制GJB 909-2005产品质量评审GJB 907-90故障报告、分析和纠正措施系统GJB 841-90质量管理和质量保证军用标准GJB/Z 9000~9004-96电子行业质量管理和质量体系要素标准SJ/T10466.1~10466.13-93质量管理和质量体系要素第4部分:质量改进指南GB/T 19004.1-1994航天产品设计文件管理制度QJ 1714.1~1714.8A-99QJ 1714.9A-99QJ 1714.10A~1714.12A-99电子元器件选用管理要求GJB 3404-98纠正措施指南SJ/T 10466.16-94产品包装、装卸、运输、贮存的质量管理要求GJB 1443-92质量经济性管理指南GB/Z 19024-2000电子元器件设计文件编制示例SJ/T 10718-1996质量成本管理指南GJB/Z4-88质量管理术语GJB 1405-92质量管理 技术状态管理指南GB/T 19017-1997质量管理体系要求GJB 9001A-2001质量管理体系标准GB/T 19000-2000GB/T 19001-2000GB/T 19004-2000质量改进指南SJ/T 10466.19-1995系统安全性通用大纲GJB 900-90技术状态管理GJB 3206-98设计文件管理制度 第1-3部分SJ/T 207.1-3-1999设计文件管理制度 第4部分:设计文件的编号SJ/T 207.4-1999设计文件管理制度 第5部分:设计文件的更改SJ/T 207.5-1999成套技术资料质量管理要求GJB 906-90设计评审GJB 1310A-2004设计质量控制指南SJ/T 10466.14-94外购器材的质量管理GJB 939-90人员培训和资格评定指南SJ/T 10466.21-1995包装储运图示标志GB 191-2000可靠性增长试验GJB 1407-92工艺设计评审指南SJ/T 10466.17-94厂际质量保证体系工作指南GJB/Z2-88不合格品管理GJB 571-88工艺评审GJB 1269A-2000工艺管理常用图形符号SJ/T 10462-93工序质量控制要求GJB 467-88工业产品保证文件GB/T 14436-93工艺文件标准汇编SJ/T 10375~10377-1993SJ/T 10531-1994SJ/T 10631-1995军工产品定型程序和要求GJB 1362-92军工产品质量管理要求与评定导则GJB/Z16-91接地、搭接和屏蔽设计的实施GJB 1210-91国防计量通用术语GJB 2715-96工艺文件完整性与工艺文件格式JB/T 9165.1~9165.4-1998武器装备研制项目管理GJB 2116-94装备维修性通用大纲GJB 368A-94特性分类GJB 190-86理化试验质量控制规范GJB 466-88器材供应单位质量保证能力评定GJB 1404-92装备可靠性维修性参数选择和指标确定要求总则GJB 1909-96金属镀覆和化学覆盖工艺质量控制要求GJB 480A-95焊接质量控制要求GJB 481-88故障树分析指南GJB/Z 768A-98故障模式、影响及危害性分析程序GJB 1391-92可靠性模型的建立和可靠性预计GJB 912-90装备综合保障通用要求GJB 3872-99装备质量与可靠性信息管理要求GJB 1686-93维修性试验与评定GJB 2072-94电子元器件统计过程控制体系GJB 3014-97电子元器件产品出厂平均质量水平评定方法GJB 2823-97电子工业用工艺装备分类编号SJ/T 10672-1995半导体分立器件结构相似性应用指南SJ 20756-1999电子元器件质量保证大纲GJB 546A-96中国国防科学技术报告编写规则GJB 567A-97大型试验质量管理要求GJB 1452A-2004维修性分配与预计手册GJB/Z 57-94电路容差分析指南GJB/Z 89-97熔模铸造工艺质量控制GJB 905-90技术文件使用与归档管理规定QJ 1089A~1092A-98产品质量信息管理指南SJ/T 10466.18-1995工艺文件格式的填写SJ/T 10375-93电子文件归档与管理规范GB/T 18894-2002质量手册编制指南GB/T 19023-1996多余物控制要求GJB 5296-2004军工产品售后技术服务GJB/Z 3-88装备可靠性工作通用要求GJB 450A-2004装备保障性分析GJB 1371-92电子设备可靠性预计手册GJB/Z 299B-98装备测试性大纲GJB 2547-95试验方法标准微电子器件试验方法标准-美国国防部标准(上、下)电子及电气元件试验方法GJB 360A-96半导体分立器件试验方法GJB 128A-97电子产品环境应力筛选方法GJB 1032-90无损检测质量控制规范 磁粉检验GJB 593.3-88元器件破坏性物理分析管理要求QJ 3179-2003电子产品制造与应用系统防静电检测通用规范SJ/T 10694-2006防静电工作区技术要求GJB 3007-97电子元器件制造防静电技术要求SJ/T 10630-1995半导体器件辐射加固试验方法中子辐照试验GJB 762.1-89半导体器件辐射加固试验方法γ总剂量辐照试验GJB 762.2-89半导体器件辐射加固试验方法γ瞬时辐照辐照试验GJB 762.3-89军用电子元器件破坏性物理分析方法GJB 4027-2000军用设备环境试验方法GJB 150.3-86半导体材料标准目录基础标准一、我国半导体材料标准1.基础标准锗晶体缺陷图谱GB/T 8756-1988掺硼掺磷硅单晶电阻率与掺杂剂浓度换算规程GB/T 13389-1992半导体材料术语GB/T 14264-1993半导体材料牌号表示方法GB/T 14844-1993晶片通用网络规范GB/T 16595-1996确定晶片坐标系规范GB/T 16596-1996硅材料原生缺陷图谱(原GBn 266-87)YS/T 209-1994 2.产品标准工业硅技术条件GB/T 2881-1991锗单晶GB/T 5238-1995高纯镓GB/T 101 18-1988高纯二氧化锗GB/T 1 1069-1989还原锗锭GB/T 1 1070-1989区熔锗锭GB/T 1 1071-1989锑化铟多晶、单晶及切割片GB/T 1 1072-1989液封直拉法砷化镓单晶及切割片GB/T 1 1093-1989水平法砷化镓单晶及切割片GB/T 1 1094-1989硅单晶GB/T 12962-1996硅多晶GB/T 12963-1996硅单晶抛光片GB/T 12964-2003硅单晶切割片和研磨片GB/T 12965-1996硅外延片GB/T 14139-1993锗单晶片GB/T 15713-1995高纯四氯化锗YS/T 13-1991硅片包装YS/T 28-1992高纯砷YS/T 43-1992高纯铟(原GB 8003-87)YS/T 264-1994霍尔器件和甘氏器件用砷化镓液相外延片(原GB1 1095-89)Ys/T 290-1994锗富集物(原zB H 31003-87)YS/T 300-1994 3.方法标准非本征半导体材料导电类型测试方法GB/T 1550-1997硅、锗单晶电阻率测定 直流两探针法GB/T 1551-1995硅、锗单晶电阻率测定 直排四探针法GB/T 1552-1995硅和锗体内少数载流子寿命测定光电导衰减法GB/T 1553-1997硅晶体完整性化学择优腐蚀检验方法GB/T 1554-1995半导体单晶晶向测定方法GB/T 1555-1997硅晶体中间隙氧含量的红外吸收测量方法GB/T 1557-1989硅中代位碳原子含量红外吸收测量方法GB/T 1558-1997硅抛光片氧化诱生缺陷的检验方法GB/T 4058-1995硅多晶气氛区熔磷检验方法GB/T 4059-1983硅多晶真空区熔基硼检验方法GB/T 4060-1983硅多晶断面夹层化学腐蚀检验方法GB/T 4061-1983半导体硅材料中杂质元素的活化分析方法GB/T 4298-1984非本征半导体单晶霍尔迁移率和霍尔系数测量方法GB/T 4326-1984锗单晶位错腐蚀坑密度测量方法GB/T 5252-1985半导体硅片电阻率及硅薄膜薄层电阻测定非接触涡流法GB/T 6616-1995硅片电阻率测定扩展电阻探针法GB/T 6617-1995硅片厚度和总厚度变化测试方法GB/T 6618-1995硅片弯曲度测试方法GB/T 6619-1995硅片翘曲度非接触式测试方法GB/T 6620-1995硅抛光片表面平整度测试方法GB/T 6621-1995硅抛光片表面质量目测检验方法GB/T 6624-1995砷化镓中载流子浓度等离子共振测量方法GB/T 8757-1988砷化镓外延层厚度红外干涉测量方法GB/T 8758-1988砷化镓单晶位错密度的测量方法GB/T 8760-1988砷化镓外延层载流子浓度电容一电压测量方法GB/T 11068-1989硅片径向电阻率变化的测量方法GB/T 11073-1989电子材料晶片参考面长度测量方法GB/T 13387-1992硅片参考面结晶学取向x射线测量方法GB/T 13388-1992硅片直径测量方法 光学投影法GB/T 14140.1-1993硅片直径测量方法 千分尺法GB/T 14140.2-1993 硅外延层、扩散层和离子注入层薄层电阻的测定直排四探针法GB/T 1414l-1993硅外延层晶体完整性检验方法腐蚀法GB/T 14142-1993 300-900&m硅片间隙氧含量红外吸收测量方法GB/T 14143-1993硅晶体中间隙氧含量径向变化测量方法GB/T 14144-1993硅外延层堆垛层错密度测定干涉相衬显微镜法GB/T 14145-1993硅外延层载流子浓度测定汞探针电容一电压法GB/T 14146-1993重掺杂衬底上轻掺杂硅外延层厚度的红外反射测量方法GB/T 14847-1993工业硅化学分析方法 1,10一二氮杂菲分光光度法测定铁量GB/T 14849.1-1993工业硅化学分析方法 铬天青-S分光光度法测定铝量GB/T 14849.2-1993工业硅化学分析方法 钙量的测定GB/T 14849.3-1993硅片抗弯强度测试方法GB/T 15615-1995硅抛光片和外延片表面质量光反射测试方法GB/T 17169-1997非掺杂半绝缘砷化镓单晶深能级EL2浓度红外吸收测试方法GB/T 17170-1997砷化镓单晶AB微缺陷检验方法GB/T 18032-2000半绝缘砷化镓单晶中碳浓度的红外吸收测试方法GB/T 19199-2003异质外延层和硅多晶层厚度的测量方法YS/T 14-1991硅外延层和扩散层厚度的测定 磨角染色法YS/T 15-1991硅外延层厚度测定 堆垛层错尺寸法YS/T 23-1992外延钉缺陷的检验方法YS/T 24-1992硅抛光表面清洗方法YS/T 25-1992硅片边缘轮廓检验方法YS/T 26-1992晶片表面上微粒沾污测量和计数的方法YS/T 27-1992高纯砷化学分析方法 孔雀绿分光光度法测定锑量YS/T 34.1-1992高纯砷化学分析方法 化学光谱法测定钴、锌、银、铜、钙、铝、镍、铬、铅、镁、铁量YS/T 34.2-1992高纯砷化学分析方法 极谱法测定硒量YS/T 34.3-1992高纯砷化学分析方法 极谱法测定硫量YS/T 34.4-1992高纯二氧化锗化学分析方法 硫氰酸汞分光光度法测定氯量YS/T 37.1-1992高纯二氧化锗化学分析方法 钼蓝分光光度法测定硅量YS/T 37.2-1992高纯二氧化锗化学分析方法 石墨炉原子吸收光谱法测定砷量YS/T 37.3-1992高纯二氧化锗化学分析方法化学光谱法测定铁、镁、铅、镍、铝、钙、铜、铟和锌量YS/T 37.4-1992高纯镓化学分析方法 钼蓝分光光度法测定硅量YS/T 38.1-1992高纯镓化学分析方法 化学光谱法测定锰、镁、铬和锌量YS/T 38.2-1992高纯镓化学分析方法 化学光谱法测定铅、镍、锡和铜量YS/T 38.3-1992高纯铟中铝、镉、铜、镁、铅、锌量的测定(化学光谱法)(原GB 2594.1-81)YS/T 230.1-1994高纯铟中铁量的测定 (化学光谱法)(原GB2594.2-81)YS/T 230.2-1994高纯铟中砷量的测定 (二乙氨基二硫代甲酸银(Ag-DDC)法)(原GB 2594.3-81)YS/T 230.3-1994高纯铟中硅量的测定 (硅钼蓝吸光光度法)(原GB 2594.4-81)YS/T 230.4-1994高纯铟中硫量的测定 (氢碘酸、次磷酸钠谱法)(原GB 2594.5-81)YS/T 230.5-1994高纯铟中鉈量的测定 (罗丹明B吸光光度法)(原GB 2594.6-81)YS/T 230.6-1994高纯铟中锡量的测定 (苯芴铜-溴代十六烷基三甲氨吸光光度法)(原GB 2594.7-81)YS/T 230.7-1994 SEMI 标 准硅单晶抛光片规范SEMI M1-0302直径2inch硅单晶抛光片规格SEMI M1.1-89(重订本0299)直径3inch硅单晶抛光片规格SEMI M1.2-89(重订本0299)直径100mm硅单晶抛光片规格(厚度525μm)SEMI M1.5-89(重订本0699)直径100mm硅单晶抛光片规格(厚度625μm)SEMI M1.6-89(重订本0699)直径125mm硅单晶抛光片规格SEMI M1.7-89(重订本0699)直径150mm硅单晶抛光片规格SEMI M1.8-0669直径200mm硅单晶抛光片规格(切口)SEMI M1.9-0669直径200mm硅单晶抛光片规格(参考面)SEMI M1.10-0669直径100mm无副参考面硅单晶抛光片规格(厚度525μm)SEMI M1.11-90(重订本0299)直径100mm无副参考面硅单晶抛光片规格 SEMI M1.12-90(重订本0299)直径150mm无副参考面硅单晶抛光片规格(厚度625μm)SEMI M1.13-0699直径350mm和400mm硅单晶抛光片指南SEMI M1.14-96直径300mm硅单晶抛光片规格(切口)SEMI M1.15-0302分立器件用硅外延片规范SEMI M2.0997蓝宝石单晶抛光衬底规范SEMI M3.12962inch蓝宝石衬底标准SEMI M3.2-91 3inch蓝宝石衬底标准SEMI M3.4-91 100mm蓝宝石衬底标准SEMI M3.5-92 3inch回收蓝宝石衬底标准SEMI M3.6-88 125mm蓝宝石衬底标准SEMI M3.6-88 150mm蓝宝石衬底标准SEMI M3.8-91蓝宝石衬底上硅单晶(SOS)外延片规范SEMI M4-1296太阳能光电池用硅片规范SEMI M6-1000硅单晶抛光试验片规范SEMI M8-0301砷化镓单晶抛光片规范SEMI M9-0999电子器件用直径50.8mm砷化镓单晶圆形抛光片标准SEMI M9.1-96电子器件用直径76.2mm砷化镓单晶圆形抛光片标准SEMI M9.2-96光电子用直径2inch砷化镓单晶圆形抛光片标准SEMI M9.3-89光电子用直径3inch砷化镓单晶圆形抛光片标准SEMI M9.4-89电子器件用直径100mm砷化镓单晶圆形抛光片标准SEMI M9.5-96直径125mm砷化镓单晶圆形抛光片标准SEMI M9.6-95直径150mm砷化镓单晶圆形抛光片(切口)规范SEMI M9.7-0200鉴别砷化镓晶片上观察到的结构和特征的标准术语SEMI M10-1296集成电路用硅外延片规范SEMI M11-0301晶片正面系列字母数字标志规范SEMI M12-0998硅片字母数字标志规范SEMI M13-0998半绝缘砷化镓单晶离子注入与激活工艺规范SEMI M14-89半绝缘砷化镓抛光片缺陷限度表SEMI M15-0298多晶硅规范SEMI M16-1296块状多晶硅标准SEMI M16.1-89晶片通用网格规范SEMI M17-0998硅片订货单格式SEMI M18-0302体砷化镓单晶衬底电学特性规范SEMI M19-91建立晶片坐标系的规范SEMI M20-0998地址分配到笛卡尔坐标系的矩形单元规范SEMI M21-0998介电绝缘(DI)晶片规范SEMI M22-1296磷化铟单晶抛光片规范SEMI M23-0302直径50mm磷化铟单晶圆形抛光片标准SEMI M23.1-0600 3inch(76.2mm)磷化铟单晶圆形抛光片标准SEMI M23.2-1000矩形磷化铟单晶抛光片标准SEMI M23.3-0600电子和光电子器件用100mm圆形磷化铟单晶抛光片规范(燕尾槽)SEMI M23.4-0999电子和光电子器件用100mm圆形磷化铟单晶抛光片规范(V尾槽)SEMI M23.5-1000优质单晶抛光片规范SEMI M24-1101根据聚苯乙烯乳胶球直径校准光点缺陷硅片检验系统用硅片规范SEMI M25-95运输晶片用的片盒和花篮再使用指南SEMI M26-96确定测试仪器的精度与公差比(P/T)的规程SEMI M27-96开发中的直径300mm硅单晶抛光片规范SEMI M28-0997(1000撤回)直径300mm晶片传递盒规范SEMI M29-1296用傅立叶变换红外吸收光谱测量砷化镓中代位碳原子浓度的标准方法SEMI M30-0997用于300mm晶片传送和发货的正面打开的发货片盒暂定机械规范SEMI M31-0999统计规范指南SEMI M32-0998用全反射X射线荧光光谱(TXRF)测定硅片表面残留玷污的测试方法SEMI M33-0998制定SIMOX硅片技术规范指南SEMI M34-0299开发自动检查方法测量硅片表面特征规范的指南SEMI M35-0299低位错密度砷化镓晶片腐蚀坑密度(EPD)的测试方法SEMI M36-0699低位错密度磷化铟晶片中腐蚀坑密度(EPD)的测试方法SEMI M37-0699硅抛光回收片规范SEMI M38-1101半绝缘砷化镓单晶材料的电阻率、霍尔系数盒霍尔迁移率测试方法SEMI M39-0999关于硅片平坦表面的表面粗糙度的测量指南SEMI M40-0200功率器件、集成电路用绝缘体上硅(SOI)晶片的规范SEMI M41-1101化合物半导体外延片规范SEMI M42-1000关于编制硅片纳米形貌报告的指南SEMI M43-0301硅中间隙氧的转换因子指南SEMI M44-0301 300mm晶片发货系统临时标准SEMI M45-0301用EVC剖面分布测量外延层结构中载流子浓度的测试方法SEMI M46-1101 CMOS LSI电路用绝缘体上硅(SOI)晶片规范SEMI M47-0302评价无图形硅衬底上薄膜的化学机械抛光工艺的指南SEMI M48-1101用于130nm级工艺硅片几何尺寸测量设备的指南SEMI M49-1101采用覆盖法确定表面扫描检查系统的捕获率和虚假计数率的测试方法SEMI M50-1101化合物半导体外延片规范SEMI M42-1000硅片背面条型代码标志规范SEMI T1-95带有二维矩阵代码符号的晶片标志规范SEMI T2-0298晶片盒标签规范SEMI T3-0302 150mm和200mm晶片箱标志尺寸规范SEMI T4-0301砷化镓圆形晶片字母数字刻码规范SEMI T5-96带二维矩阵代码符号的双面抛光晶片背面标志规范SEMI T7-0302。
semi标准目录[方案]
![semi标准目录[方案]](https://img.taocdn.com/s3/m/dd4d2ecfac51f01dc281e53a580216fc700a5310.png)
Safety Guidelines 安全标准.SEMI AUX005-1101Comparison Matrix Between SEMI S2-93A and S2-0200 SEMI S2-93A and S2-0200判断矩阵.SEMI S1-0708E Safety Guideline for Equipment Safety Labels 设备安全标签安全标准.SEMI S2-0712d Environmental, Health, and Safety Guideline for Semiconductor Manufacturing Equipment 半导体制造设备环境、健康和安全标准.SEMI S3-1211Safety Guideline for Process Liquid Heating Systems 液体加热系统安全标准.SEMI S4-0304Safety Guideline for the Separation of Chemical Cylinders Contained in Dispensing Cabinets 化学品柜内化学品分离气缸的安全标准.SEMI S5-0310Safety Guideline for Sizing and Identifying Flow Limiting Devices for Gas Cylinder Valves 气缸阀门尺寸及流量限定装置的安全标准.SEMI S6-0707E EHS Guideline for Exhaust Ventilation of Semiconductor Manufacturing Equipment 半导体设备排风环境、健康和安全标准.SEMI S7-0310Safety Guideline for Evaluating Personnel and Evaluating Company Qualifications 评估人员及公司的资格安全标准.SEMI S8-0712a Safety Guidelines for Ergonomics Engineering of Semiconductor Manufacturing Equipment 半导体设备人体工学安全标准.SEMI S10-0215Safety Guideline for Risk Assessment and Risk Evaluation Process 风险评估安全标准.SEMI S12-0211Environmental, Health and Safety Guideline for Manufacturing Equipment Decontamination 设备去污环境、健康和安全标准.SEMI S13-0113Environmental, Health and Safety Guideline for Documents Provided to the Equipment User for Use With Manufacturing Equipment 提供给设备使用方的文件环境、健康和安全标准.SEMI S14-0309Safety Guidelines for Fire Risk Assessment and Mitigation for Semiconductor Manufacturing Equipment 半导体设备制造火灾风险评估及降低的安全标准.SEMI S16-0307 (Reapproved 0812)Guide for Semiconductor Manufacturing Equipment Design for Reduction of Environmental Impact at End of Life 半导体设备设计时降低设备生命周期到期对环境影响的标准.SEMI S17-0113Safety Guideline for Unmanned Transport Vehicle (UTV) Systems无人驾驶传送系统(UTV)的安全标准.SEMI S18-0312Environmental, Health, and Safety Guideline for Silane Flammable Silicon Compounds 硅烷易燃硅化合物的环境、健康和安全标准.SEMI S19-0311Safety Guideline for Training of Manufacturing Equipment Installation, Maintenance and Service Personnel 设备安装、维护和服务人员培训的安全标准.SEMI S21-1106E (Reapproved 0612)Safety Guideline for Worker Protection 工人保护安全标准.SEMI S22-0712a Safety Guideline for the Electrical Design of Semiconductor Manufacturing Equipment 半导体设备电气设计安全标准.SEMI S23-0813Guide for Conservation of Energy, Utilities and Materials Used by Semiconductor Manufacturing Equipment 半导体设备使用的能源、厂务和材料保护标准.SEMI S24-0306 (Reapproved 0811)Safety Guideline for Multi-Employer Work Areas 多雇主工作区域的安全标准.SEMI S25-0213Safety Guideline for Hydrogen Peroxide Storage & Handling Systems 过氧化氢的储存及处理系统的安全标准.SEMI S26-0811Environmental, Health, and Safety Guideline for FPD Manufacturing System FPD制造系统的环境、健康和安全标准.SEMI S27-0310Safety Guideline for the Contents of Environmental, Safety, and Health (ESH) Evaluation Reports 环境、健康和安全报告内容安全标准.SEMI S28-1011Safety Guideline for Robots and Load Ports Intended for Use in Semiconductor Manufacturing Equipment 半导体设备内机器人和负载端口的安全标准.SEMI S29-0712Guide for Fluorinated Greenhouse Gas (F-GHG) Emission Characterization and Reduction 氟化温室气体(F-GHG)降低和排放标准。
测试颗粒度semi标准

测试颗粒度semi标准测试颗粒度(Semi)标准是一种评估软件测试用例执行结果的方法,它是通过比较测试用例的实际结果与预期结果之间的差异来确定的。
这种方法可以帮助识别和纠正软件中的错误和缺陷,并提高软件的质量和可靠性。
在测试颗粒度标准中,一共分为六个等级,从零到五,其中零表示完全匹配预期结果,五表示与预期结果完全不匹配。
在测试用例执行过程中,如果测试结果与预期结果完全一致,那么该测试用例的测试颗粒度为零;如果测试结果与预期结果完全不一致,那么该测试用例的测试颗粒度为五。
在实际操作中,测试颗粒度的评估是通过以下步骤来完成的:执行测试用例:首先,需要按照测试计划和测试用例描述执行测试用例。
比较预期结果和实际结果:将测试用例的预期结果与实际执行结果进行比较。
确定测试颗粒度:根据比较结果,确定测试用例的测试颗粒度等级。
在评估测试颗粒度时,需要考虑以下因素:错误数量:如果测试用例执行结果与预期结果存在多个错误,那么测试颗粒度等级会相应提高。
错误严重性:如果测试用例中的错误对软件的功能和性能造成严重影响,那么测试颗粒度等级也会相应提高。
可重复性:如果同一个测试用例在不同条件下都产生相同的错误,那么其测试颗粒度等级会相应提高。
在评估测试颗粒度时,还需要注意以下几点:评估应该是客观和公正的,不受任何主观因素的影响。
评估应该是全面的,应该考虑到所有可能影响测试颗粒度的因素。
评估应该是持续的,应该在测试执行的每个阶段都进行评估,以便及时发现和解决问题。
测试颗粒度标准是一种有效的软件测试评估方法,可以帮助识别和纠正软件中的错误和缺陷,并提高软件的质量和可靠性。
在实践中,需要结合实际情况和需求,制定相应的测试颗粒度标准,以便更好地完成软件测试任务。
semi晶圆参数标准

semi晶圆参数标准
关于半导体晶圆的参数标准,一般来说包括以下几个方面:
1. 直径,晶圆直径通常以英寸为单位,如4英寸、6英寸、8英寸等。
不同直径的晶圆在半导体制造中有不同的应用和成本。
2. 材料,晶圆的材料通常是硅(Silicon),但也有其他材料如氮化镓(GaN)、碳化硅(SiC)等。
不同材料的晶圆适用于不同类型的半导体器件制造。
3. 衬底类型,晶圆的衬底类型包括P型(P-type)、N型(N-type)和其他特殊类型,这决定了晶体管的电性能。
4. 衬底取向,晶圆的衬底取向通常表示为晶向,如<100>、
<111>等,这对晶体管的性能和制造工艺有影响。
5. 衬底厚度,晶圆的衬底厚度对于晶体管的性能和制造工艺也有重要影响。
以上是关于半导体晶圆参数标准的一些基本内容,不同的应用
和制造工艺可能会有更多的参数和标准。
希望这些信息能够满足您的需求。
semi f21-1102标准

Semi F21-1102标准是一项针对某种特定产品或行业的技术规范,它包含了一系列的参数和要求,旨在确保产品的质量和性能达到国际标准。
本文将对Semi F21-1102标准进行详细的介绍,包括其背景、适用范围、主要内容等,以帮助读者更好地了解这一标准。
一、背景Semi F21-1102标准是由半导体设备和材料国际协会(SEMI)制定的,该协会是一个专注于半导体生产设备和材料领域的专业组织。
该标准的制定旨在为半导体设备制造商和相关行业提供一个统一的质量标准,以便他们在生产过程中能够达到同样的产品质量和性能要求。
二、适用范围Semi F21-1102标准适用于半导体生产设备和材料的制造和测试过程。
它涵盖了多个方面,包括设备的设计、材料的选择、生产的过程控制等。
该标准的广泛适用范围能够确保在半导体生产过程中的各个环节都能够达到相同的质量标准。
三、主要内容Semi F21-1102标准的主要内容包括以下几个方面:1. 设备设计:该标准要求半导体生产设备的设计必须符合一定的工程规范,以确保设备的性能和稳定性达到要求。
2. 材料选择:标准规定了半导体生产中所使用的各种材料的质量和性能要求,以确保产品的稳定和可靠。
3. 测试要求:该标准列出了半导体生产设备和材料的测试方法和要求,以确保产品的质量和性能达到要求。
4. 过程控制:标准要求生产过程中必须建立一套严格的质量控制体系,以确保产品质量的稳定和可靠。
四、意义与作用Semi F21-1102标准的制定对于半导体生产行业具有重要的意义和作用:1. 统一标准:该标准的制定为整个行业提供了一个统一的质量标准,使得不同企业的产品在质量和性能上能够达到一致的要求。
2. 提高竞争力:遵循该标准能够提高企业的产品质量和性能,从而提升企业的竞争力和市场地位。
3. 降低成本:严格执行该标准可以提高生产过程的稳定性和可靠性,从而降低产品的制造成本。
4. 保障安全:该标准的执行能够确保产品的质量和性能达到安全和可靠的要求,保障生产和使用的安全。
semi国际标准等级

semi国际标准等级摘要:一、Semi 国际标准等级简介1.Semi 国际标准等级的背景2.Semi 国际标准等级的重要性3.Semi 国际标准等级的分类二、Semi 国际标准等级的等级划分1.Semi 等级的A 级2.Semi 等级的B 级3.Semi 等级的C 级三、Semi 国际标准等级的应用领域1.半导体行业2.电子制造业3.光伏产业四、Semi 国际标准等级对我国产业的影响1.提升产业技术水平2.促进产业转型升级3.增强国际竞争力正文:Semi 国际标准等级,作为衡量半导体、电子制造和光伏等产业技术水平的重要标准,受到了广泛关注。
本文将对Semi 国际标准等级进行简要介绍,以帮助大家更好地了解这一标准。
一、Semi 国际标准等级简介Semi 国际标准等级,全称国际半导体设备和材料协会(Semiconductor Equipment and Materials International,简称SEMI),是一个全球性的半导体产业标准化组织。
Semi 国际标准等级涵盖了半导体制造的各个环节,从原材料到生产设备,再到最终产品,为全球半导体产业提供了一套统一的评判标准。
二、Semi 国际标准等级的等级划分Semi 国际标准等级根据产品的技术要求和性能指标,将其划分为A 级、B 级和C 级三个等级。
其中,A 级产品代表着最高的技术水平,性能最优,但价格也相对较高;B 级产品技术水平适中,性能良好,价格相对合理;C 级产品技术要求较低,性能一般,价格较低。
三、Semi 国际标准等级的应用领域Semi 国际标准等级广泛应用于半导体、电子制造和光伏等产业。
在半导体行业,通过采用Semi 国际标准等级的产品,可以保证生产过程的稳定性和产品的性能;在电子制造业,Semi 国际标准等级为各类电子元器件提供了一个统一的评判标准;在光伏产业,Semi 国际标准等级对光伏产品的性能和可靠性提出了明确要求,有助于推动光伏产业的健康发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
标准名称编号标准化标准技术制图 图样画法 制图GB/T 17451-1998产品标准化大纲编制指南GJB/Z 114A-2005标准化评审GJB/Z 113-98新产品工艺标准化综合要求编写指南GJB/Z 106-98企业标准体系管理标准和工作标准体系GB/T 15498-2003企业标准体系 要求GB/T 15496-2003企业标准体系 评价与改进GB/T 19273-2003军用标准文献分类法GJB/T 832-2005标准化工作导则 第一部分:标准的结构和编写规则GB/T 1.1-2000综合标准化工作导则 工业产品综合标准化一般要求GB/T 12366.2-90综合标准化工作导则原则与方法GB/T 12366.1-90标准化工作指南 第二部分:采用国际标准的规则GB/T 20000.2-2001标准编写规则 第三部分:信息分类编码GB/T 20001.3-2001标准编写规则 第四部分:化学分析方法GB/T 20001.4-2001标准体系表编写原则和要求GB/T 13016-91标准化和有关领域的通用术语 第一部分:通用术语GB/T 3935.1-1996消费品使用说明 总则GB 5296.1-1997电磁干扰和电磁兼容性术语GJB 72A-2002标准化工作指南第三部分:引用文件GB/T 20000.3-2003标准化工作指南第四部分:标准中涉及安全的内容GB/T 20000.4-2003环境检测分析方法标准制订技术导则HJ/T 168-2004军用标准文件编制工作导则 第一部分:军用标准和指导性技术文件编写规定GJB 0.1-2001军用标准文件编制工作导则 第二部分:军用规范编写规定GJB 0.2-2001军用标准文件编制工作导则 第三部分:出版印刷规定GJB 0.3-2001说明书的编制 构成 内容和表示方法GB/T 19678-2005/IEC 62079:2001气体和超净标准、环保标准中国环境保护标准汇编 水质分析方法中国环境保护标准汇编 废气废水废渣分析方法中国环境保护标准汇编 大气质量分析方法气体中微量水分的测定 电解法GB 5832.1-86气体中微量水分的测定 露点法GB 5832.2-86气体中微量氧的测定 电化学法GB 6285-86氢气GB/T 3634-1995氮GB/T 3864-1996洁净厂房设计规范GB 50073-2001纯氢、高纯氢和超纯氢GB/T 7445-1995洁净室检测规范GB/T16292-1996电子级气体中颗粒和痕量杂质测定方法SJ2798~2807-87电子工业用气体GB/T 14600~14604-93电子工业用气体 氮GB/T 16944-1997大气污染物综合排放标准GB16297-1996微电子标准微电子器件试验方法和程序GJB 548B-2005半导体分立器件总规范GJB 33A-97半导体分立器件型号命名方法GB/T249-89半导体集成电路总规范GJB 597A-96混合集成电路通用规范GJB 2438A-2002半导体集成电路CMOS电路测试方法的基本原理SJ/T 10741-2000半导体分立器件包装规范GJB 3164-98电子产品防静电放电控制手册GJB/Z 105-98防静电包装手册GJB/Z 86-97印制板总规范GB/T 16261-1996集成电路A/D和 D/A转换器测试方法的基本原理半导体集成电路JSC145152型CMOS并行输入锁相环4频率合成器详细规范SJ50597/37-95膜集成电路和混合集成电路外形尺寸GB/T 15138-94计量校准及管理标准测量不确定度的表示及评定GJB 3756-99检测和校准实验室能力的通用要求GB/T 15481-2000测量管理体系测量过程和测量设备的要求GB/T 19022-2003测量设备的质量保证要求计量确认体系GJB 2712-96测试实验室和校准实验室通用要求GJB 2725A-2001测量设备的质量保证要求第一部分测量设备的计量确认体系GB/T 19022.1-1994测量设备的质量保证第二部分:测量过程控制指南GB/T 19022.2-2000抽样标准计数抽样检验程序及表GJB 179A-96周期检验计数抽样程序及表GB/T 2829-2002计数抽样检验程序 第一部分:按接收质量限(AQL)检索的逐批检验抽样计划GB/T 2828.1-2003军用电子元件失效率抽样方案和程序GJB 2649-96产品质量监督计数抽样程序及抽样表GB/T 14162-93光电类标准半导体光电模块总规范SJ 20642-97固体激光器总规范SJ 20027-92空间用单晶硅太阳能电池总规范GJB 1431-92固体激光器总规范GB/T 15490-1995红外探测器总规范GJB 1206-91红外探测器参数测试方法GB/T13584-92红外探测器外形尺寸系列GB/T13583-92半导体激光二极管空白详细规范GB/T 15649-1995半导体激光二极管总规范GJB3519-99固体激光器通用规范GJB 5849-2006大功率半导体激光二极管阵列通用规范SJ 20957-2006固体激光器测试方法GJB 5441-2005固体激光二极管测试方法SJ 2749-87太阳电池光谱响应测试方法GB 11009-89航天用标准太阳电池GB 6492-86航天用太阳电池标定的一般规定GB 6496-86航天用太阳电池电性能测试方法GB 6494-86太阳敏感电池通用规范GJB 2932-97太阳能电池温度系数测试方法SJ/T 10459-93太阳电池组件参数测试方法GB/T 14009-92光伏器件 第1部分:光伏电流-电压特性的测量GB/T 6495.1-1996光伏器件 第2部分:标准太阳电池的要求GB/T 6495.2-1996光伏器件 第3部分:地面用光伏器件的测量原理及标准光谱辐照度数据GB/T 6495.3-1996半导体光电组件总规范SJ 20786-2000 PIN、APD光电探测器总规范SJ 20644-97PIN、APD光电探测器通用规范GJB 5022-2003军用激光器辐射传输测试方法GJB 894A-99PIN、雪崩光电二极管测试方法SJ 2354.1-83激光产品的安全第1部分:设备分类、要求和用户指南GB 7247.1-2001纤维光学试验方法GJB 915A-97纤维光学转接器 第1部分:总规范GB/T 18308.1-2001纤维光学互连器件和无源器件基本试验和测量程序第2-4部分:试验 光纤、光缆保持力GB/T 18310.4-2001纤维光学互连器件和无源器件基本试验和测量程序第3-2部分:检查和测量单模纤维光绪器件偏振依赖性GB/T 18311.2-2001纤维光学互连器件和无源器件基本试验和测量程序第3-3部分:检查和测量监测衰减和回波损耗变化(多路)GB/T 18311.3-2001纤维光学互连器件和无源器件基本试验和测量程序第3-6部分:检查和测量回波损耗GB/T 18311.6-2001纤维光学互连器件和无源器件基本试验和测量程序第2-18部分:试验 干热-高温耐久性GB/T 18310.18-2001热敏电阻总规范GJB 601A-98光纤总规范GJB 1427A-99光纤光缆连接器 第1部分:总规范GB/T 12507.1-2000光纤光缆连接器 第2部分:F-SMA型光缆连接器分规范.0地面用晶体硅光伏组件设计鉴定和定型GB/T 9535-1998激光辐射功率测试方法GB/T 13863-92激光辐射功率稳定度测试方法GB/T 13864-92红外探测器试验方法GJB 1788-93超辐射发光二极管组件测试方法SJ 20785-2000红外发射二极管总规发GJB 3930-2000半导体光电器件GR1325J型长波长发光二极管组件详细规范SJ 20642/7-2000激光辐射发散角测试方法GB/T 13740-92激光辐射光束直径测试方法GB/T 13741-92晶体硅光伏器件的I-V实测特性的温度和辐照度修正方法GB/T 6495.4-1996发光二极管固体显示器总规范GJB 2146-94固体激光器主要参数测试方法GB/T 15175-94军用激光测距仪通用规范SJ 20793-2000质量控制管理标准产品质量保证大纲要求GJB 1406A-2005产品质量标志和可追溯性要求GJB 726A-2004不合格控制指南SJ/T 10466.15-94军用电气和电子元器件的标志GJB 2118-94武器装备研制项目管理GJB 2993-97军工批次管理的质量控制要求GJB 1330-91合同中质量保证要求GJB 2102-94航天产品质量问题归零实施指南QJ 3183-2003军工产品的批次管理的质量控制要求GJB 1330-91关键件和重要件的质量控制GJB 909-2005产品质量评审GJB 907-90故障报告、分析和纠正措施系统GJB 841-90质量管理和质量保证军用标准GJB/Z 9000~9004-96电子行业质量管理和质量体系要素标准SJ/T10466.1~10466.13-93质量管理和质量体系要素第4部分:质量改进指南GB/T 19004.1-1994航天产品设计文件管理制度QJ 1714.1~1714.8A-99QJ 1714.9A-99QJ 1714.10A~1714.12A-99电子元器件选用管理要求GJB 3404-98纠正措施指南SJ/T 10466.16-94产品包装、装卸、运输、贮存的质量管理要求GJB 1443-92质量经济性管理指南GB/Z 19024-2000电子元器件设计文件编制示例SJ/T 10718-1996质量成本管理指南GJB/Z4-88质量管理术语GJB 1405-92质量管理 技术状态管理指南GB/T 19017-1997质量管理体系要求GJB 9001A-2001质量管理体系标准GB/T 19000-2000GB/T 19001-2000GB/T 19004-2000质量改进指南SJ/T 10466.19-1995系统安全性通用大纲GJB 900-90技术状态管理GJB 3206-98设计文件管理制度 第1-3部分SJ/T 207.1-3-1999设计文件管理制度 第4部分:设计文件的编号SJ/T 207.4-1999设计文件管理制度 第5部分:设计文件的更改SJ/T 207.5-1999成套技术资料质量管理要求GJB 906-90设计评审GJB 1310A-2004设计质量控制指南SJ/T 10466.14-94外购器材的质量管理GJB 939-90人员培训和资格评定指南SJ/T 10466.21-1995包装储运图示标志GB 191-2000可靠性增长试验GJB 1407-92工艺设计评审指南SJ/T 10466.17-94厂际质量保证体系工作指南GJB/Z2-88不合格品管理GJB 571-88工艺评审GJB 1269A-2000工艺管理常用图形符号SJ/T 10462-93工序质量控制要求GJB 467-88工业产品保证文件GB/T 14436-93工艺文件标准汇编SJ/T 10375~10377-1993SJ/T 10531-1994SJ/T 10631-1995军工产品定型程序和要求GJB 1362-92军工产品质量管理要求与评定导则GJB/Z16-91接地、搭接和屏蔽设计的实施GJB 1210-91国防计量通用术语GJB 2715-96工艺文件完整性与工艺文件格式JB/T 9165.1~9165.4-1998武器装备研制项目管理GJB 2116-94装备维修性通用大纲GJB 368A-94特性分类GJB 190-86理化试验质量控制规范GJB 466-88器材供应单位质量保证能力评定GJB 1404-92装备可靠性维修性参数选择和指标确定要求总则GJB 1909-96金属镀覆和化学覆盖工艺质量控制要求GJB 480A-95焊接质量控制要求GJB 481-88故障树分析指南GJB/Z 768A-98故障模式、影响及危害性分析程序GJB 1391-92可靠性模型的建立和可靠性预计GJB 912-90装备综合保障通用要求GJB 3872-99装备质量与可靠性信息管理要求GJB 1686-93维修性试验与评定GJB 2072-94电子元器件统计过程控制体系GJB 3014-97电子元器件产品出厂平均质量水平评定方法GJB 2823-97电子工业用工艺装备分类编号SJ/T 10672-1995半导体分立器件结构相似性应用指南SJ 20756-1999电子元器件质量保证大纲GJB 546A-96中国国防科学技术报告编写规则GJB 567A-97大型试验质量管理要求GJB 1452A-2004维修性分配与预计手册GJB/Z 57-94电路容差分析指南GJB/Z 89-97熔模铸造工艺质量控制GJB 905-90技术文件使用与归档管理规定QJ 1089A~1092A-98产品质量信息管理指南SJ/T 10466.18-1995工艺文件格式的填写SJ/T 10375-93电子文件归档与管理规范GB/T 18894-2002质量手册编制指南GB/T 19023-1996多余物控制要求GJB 5296-2004军工产品售后技术服务GJB/Z 3-88装备可靠性工作通用要求GJB 450A-2004装备保障性分析GJB 1371-92电子设备可靠性预计手册GJB/Z 299B-98装备测试性大纲GJB 2547-95试验方法标准微电子器件试验方法标准-美国国防部标准(上、下)电子及电气元件试验方法GJB 360A-96半导体分立器件试验方法GJB 128A-97电子产品环境应力筛选方法GJB 1032-90无损检测质量控制规范 磁粉检验GJB 593.3-88元器件破坏性物理分析管理要求QJ 3179-2003电子产品制造与应用系统防静电检测通用规范SJ/T 10694-2006防静电工作区技术要求GJB 3007-97电子元器件制造防静电技术要求SJ/T 10630-1995半导体器件辐射加固试验方法中子辐照试验GJB 762.1-89半导体器件辐射加固试验方法γ总剂量辐照试验GJB 762.2-89半导体器件辐射加固试验方法γ瞬时辐照辐照试验GJB 762.3-89军用电子元器件破坏性物理分析方法GJB 4027-2000军用设备环境试验方法GJB 150.3-86半导体材料标准目录基础标准一、我国半导体材料标准1.基础标准锗晶体缺陷图谱GB/T 8756-1988掺硼掺磷硅单晶电阻率与掺杂剂浓度换算规程GB/T 13389-1992半导体材料术语GB/T 14264-1993半导体材料牌号表示方法GB/T 14844-1993晶片通用网络规范GB/T 16595-1996确定晶片坐标系规范GB/T 16596-1996硅材料原生缺陷图谱(原GBn 266-87)YS/T 209-1994 2.产品标准工业硅技术条件GB/T 2881-1991锗单晶GB/T 5238-1995高纯镓GB/T 101 18-1988高纯二氧化锗GB/T 1 1069-1989还原锗锭GB/T 1 1070-1989区熔锗锭GB/T 1 1071-1989锑化铟多晶、单晶及切割片GB/T 1 1072-1989液封直拉法砷化镓单晶及切割片GB/T 1 1093-1989水平法砷化镓单晶及切割片GB/T 1 1094-1989硅单晶GB/T 12962-1996硅多晶GB/T 12963-1996硅单晶抛光片GB/T 12964-2003硅单晶切割片和研磨片GB/T 12965-1996硅外延片GB/T 14139-1993锗单晶片GB/T 15713-1995高纯四氯化锗YS/T 13-1991硅片包装YS/T 28-1992高纯砷YS/T 43-1992高纯铟(原GB 8003-87)YS/T 264-1994霍尔器件和甘氏器件用砷化镓液相外延片(原GB1 1095-89)Ys/T 290-1994锗富集物(原zB H 31003-87)YS/T 300-1994 3.方法标准非本征半导体材料导电类型测试方法GB/T 1550-1997硅、锗单晶电阻率测定 直流两探针法GB/T 1551-1995硅、锗单晶电阻率测定 直排四探针法GB/T 1552-1995硅和锗体内少数载流子寿命测定光电导衰减法GB/T 1553-1997硅晶体完整性化学择优腐蚀检验方法GB/T 1554-1995半导体单晶晶向测定方法GB/T 1555-1997硅晶体中间隙氧含量的红外吸收测量方法GB/T 1557-1989硅中代位碳原子含量红外吸收测量方法GB/T 1558-1997硅抛光片氧化诱生缺陷的检验方法GB/T 4058-1995硅多晶气氛区熔磷检验方法GB/T 4059-1983硅多晶真空区熔基硼检验方法GB/T 4060-1983硅多晶断面夹层化学腐蚀检验方法GB/T 4061-1983半导体硅材料中杂质元素的活化分析方法GB/T 4298-1984非本征半导体单晶霍尔迁移率和霍尔系数测量方法GB/T 4326-1984锗单晶位错腐蚀坑密度测量方法GB/T 5252-1985半导体硅片电阻率及硅薄膜薄层电阻测定非接触涡流法GB/T 6616-1995硅片电阻率测定扩展电阻探针法GB/T 6617-1995硅片厚度和总厚度变化测试方法GB/T 6618-1995硅片弯曲度测试方法GB/T 6619-1995硅片翘曲度非接触式测试方法GB/T 6620-1995硅抛光片表面平整度测试方法GB/T 6621-1995硅抛光片表面质量目测检验方法GB/T 6624-1995砷化镓中载流子浓度等离子共振测量方法GB/T 8757-1988砷化镓外延层厚度红外干涉测量方法GB/T 8758-1988砷化镓单晶位错密度的测量方法GB/T 8760-1988砷化镓外延层载流子浓度电容一电压测量方法GB/T 11068-1989硅片径向电阻率变化的测量方法GB/T 11073-1989电子材料晶片参考面长度测量方法GB/T 13387-1992硅片参考面结晶学取向x射线测量方法GB/T 13388-1992硅片直径测量方法 光学投影法GB/T 14140.1-1993硅片直径测量方法 千分尺法GB/T 14140.2-1993 硅外延层、扩散层和离子注入层薄层电阻的测定直排四探针法GB/T 1414l-1993硅外延层晶体完整性检验方法腐蚀法GB/T 14142-1993 300-900&m硅片间隙氧含量红外吸收测量方法GB/T 14143-1993硅晶体中间隙氧含量径向变化测量方法GB/T 14144-1993硅外延层堆垛层错密度测定干涉相衬显微镜法GB/T 14145-1993硅外延层载流子浓度测定汞探针电容一电压法GB/T 14146-1993重掺杂衬底上轻掺杂硅外延层厚度的红外反射测量方法GB/T 14847-1993工业硅化学分析方法 1,10一二氮杂菲分光光度法测定铁量GB/T 14849.1-1993工业硅化学分析方法 铬天青-S分光光度法测定铝量GB/T 14849.2-1993工业硅化学分析方法 钙量的测定GB/T 14849.3-1993硅片抗弯强度测试方法GB/T 15615-1995硅抛光片和外延片表面质量光反射测试方法GB/T 17169-1997非掺杂半绝缘砷化镓单晶深能级EL2浓度红外吸收测试方法GB/T 17170-1997砷化镓单晶AB微缺陷检验方法GB/T 18032-2000半绝缘砷化镓单晶中碳浓度的红外吸收测试方法GB/T 19199-2003异质外延层和硅多晶层厚度的测量方法YS/T 14-1991硅外延层和扩散层厚度的测定 磨角染色法YS/T 15-1991硅外延层厚度测定 堆垛层错尺寸法YS/T 23-1992外延钉缺陷的检验方法YS/T 24-1992硅抛光表面清洗方法YS/T 25-1992硅片边缘轮廓检验方法YS/T 26-1992晶片表面上微粒沾污测量和计数的方法YS/T 27-1992高纯砷化学分析方法 孔雀绿分光光度法测定锑量YS/T 34.1-1992高纯砷化学分析方法 化学光谱法测定钴、锌、银、铜、钙、铝、镍、铬、铅、镁、铁量YS/T 34.2-1992高纯砷化学分析方法 极谱法测定硒量YS/T 34.3-1992高纯砷化学分析方法 极谱法测定硫量YS/T 34.4-1992高纯二氧化锗化学分析方法 硫氰酸汞分光光度法测定氯量YS/T 37.1-1992高纯二氧化锗化学分析方法 钼蓝分光光度法测定硅量YS/T 37.2-1992高纯二氧化锗化学分析方法 石墨炉原子吸收光谱法测定砷量YS/T 37.3-1992高纯二氧化锗化学分析方法化学光谱法测定铁、镁、铅、镍、铝、钙、铜、铟和锌量YS/T 37.4-1992高纯镓化学分析方法 钼蓝分光光度法测定硅量YS/T 38.1-1992高纯镓化学分析方法 化学光谱法测定锰、镁、铬和锌量YS/T 38.2-1992高纯镓化学分析方法 化学光谱法测定铅、镍、锡和铜量YS/T 38.3-1992高纯铟中铝、镉、铜、镁、铅、锌量的测定(化学光谱法)(原GB 2594.1-81)YS/T 230.1-1994高纯铟中铁量的测定 (化学光谱法)(原GB2594.2-81)YS/T 230.2-1994高纯铟中砷量的测定 (二乙氨基二硫代甲酸银(Ag-DDC)法)(原GB 2594.3-81)YS/T 230.3-1994高纯铟中硅量的测定 (硅钼蓝吸光光度法)(原GB 2594.4-81)YS/T 230.4-1994高纯铟中硫量的测定 (氢碘酸、次磷酸钠谱法)(原GB 2594.5-81)YS/T 230.5-1994高纯铟中鉈量的测定 (罗丹明B吸光光度法)(原GB 2594.6-81)YS/T 230.6-1994高纯铟中锡量的测定 (苯芴铜-溴代十六烷基三甲氨吸光光度法)(原GB 2594.7-81)YS/T 230.7-1994 SEMI 标 准硅单晶抛光片规范SEMI M1-0302直径2inch硅单晶抛光片规格SEMI M1.1-89(重订本0299)直径3inch硅单晶抛光片规格SEMI M1.2-89(重订本0299)直径100mm硅单晶抛光片规格(厚度525μm)SEMI M1.5-89(重订本0699)直径100mm硅单晶抛光片规格(厚度625μm)SEMI M1.6-89(重订本0699)直径125mm硅单晶抛光片规格SEMI M1.7-89(重订本0699)直径150mm硅单晶抛光片规格SEMI M1.8-0669直径200mm硅单晶抛光片规格(切口)SEMI M1.9-0669直径200mm硅单晶抛光片规格(参考面)SEMI M1.10-0669直径100mm无副参考面硅单晶抛光片规格(厚度525μm)SEMI M1.11-90(重订本0299)直径100mm无副参考面硅单晶抛光片规格 SEMI M1.12-90(重订本0299)直径150mm无副参考面硅单晶抛光片规格(厚度625μm)SEMI M1.13-0699直径350mm和400mm硅单晶抛光片指南SEMI M1.14-96直径300mm硅单晶抛光片规格(切口)SEMI M1.15-0302分立器件用硅外延片规范SEMI M2.0997蓝宝石单晶抛光衬底规范SEMI M3.12962inch蓝宝石衬底标准SEMI M3.2-91 3inch蓝宝石衬底标准SEMI M3.4-91 100mm蓝宝石衬底标准SEMI M3.5-92 3inch回收蓝宝石衬底标准SEMI M3.6-88 125mm蓝宝石衬底标准SEMI M3.6-88 150mm蓝宝石衬底标准SEMI M3.8-91蓝宝石衬底上硅单晶(SOS)外延片规范SEMI M4-1296太阳能光电池用硅片规范SEMI M6-1000硅单晶抛光试验片规范SEMI M8-0301砷化镓单晶抛光片规范SEMI M9-0999电子器件用直径50.8mm砷化镓单晶圆形抛光片标准SEMI M9.1-96电子器件用直径76.2mm砷化镓单晶圆形抛光片标准SEMI M9.2-96光电子用直径2inch砷化镓单晶圆形抛光片标准SEMI M9.3-89光电子用直径3inch砷化镓单晶圆形抛光片标准SEMI M9.4-89电子器件用直径100mm砷化镓单晶圆形抛光片标准SEMI M9.5-96直径125mm砷化镓单晶圆形抛光片标准SEMI M9.6-95直径150mm砷化镓单晶圆形抛光片(切口)规范SEMI M9.7-0200鉴别砷化镓晶片上观察到的结构和特征的标准术语SEMI M10-1296集成电路用硅外延片规范SEMI M11-0301晶片正面系列字母数字标志规范SEMI M12-0998硅片字母数字标志规范SEMI M13-0998半绝缘砷化镓单晶离子注入与激活工艺规范SEMI M14-89半绝缘砷化镓抛光片缺陷限度表SEMI M15-0298多晶硅规范SEMI M16-1296块状多晶硅标准SEMI M16.1-89晶片通用网格规范SEMI M17-0998硅片订货单格式SEMI M18-0302体砷化镓单晶衬底电学特性规范SEMI M19-91建立晶片坐标系的规范SEMI M20-0998地址分配到笛卡尔坐标系的矩形单元规范SEMI M21-0998介电绝缘(DI)晶片规范SEMI M22-1296磷化铟单晶抛光片规范SEMI M23-0302直径50mm磷化铟单晶圆形抛光片标准SEMI M23.1-0600 3inch(76.2mm)磷化铟单晶圆形抛光片标准SEMI M23.2-1000矩形磷化铟单晶抛光片标准SEMI M23.3-0600电子和光电子器件用100mm圆形磷化铟单晶抛光片规范(燕尾槽)SEMI M23.4-0999电子和光电子器件用100mm圆形磷化铟单晶抛光片规范(V尾槽)SEMI M23.5-1000优质单晶抛光片规范SEMI M24-1101根据聚苯乙烯乳胶球直径校准光点缺陷硅片检验系统用硅片规范SEMI M25-95运输晶片用的片盒和花篮再使用指南SEMI M26-96确定测试仪器的精度与公差比(P/T)的规程SEMI M27-96开发中的直径300mm硅单晶抛光片规范SEMI M28-0997(1000撤回)直径300mm晶片传递盒规范SEMI M29-1296用傅立叶变换红外吸收光谱测量砷化镓中代位碳原子浓度的标准方法SEMI M30-0997用于300mm晶片传送和发货的正面打开的发货片盒暂定机械规范SEMI M31-0999统计规范指南SEMI M32-0998用全反射X射线荧光光谱(TXRF)测定硅片表面残留玷污的测试方法SEMI M33-0998制定SIMOX硅片技术规范指南SEMI M34-0299开发自动检查方法测量硅片表面特征规范的指南SEMI M35-0299低位错密度砷化镓晶片腐蚀坑密度(EPD)的测试方法SEMI M36-0699低位错密度磷化铟晶片中腐蚀坑密度(EPD)的测试方法SEMI M37-0699硅抛光回收片规范SEMI M38-1101半绝缘砷化镓单晶材料的电阻率、霍尔系数盒霍尔迁移率测试方法SEMI M39-0999关于硅片平坦表面的表面粗糙度的测量指南SEMI M40-0200功率器件、集成电路用绝缘体上硅(SOI)晶片的规范SEMI M41-1101化合物半导体外延片规范SEMI M42-1000关于编制硅片纳米形貌报告的指南SEMI M43-0301硅中间隙氧的转换因子指南SEMI M44-0301 300mm晶片发货系统临时标准SEMI M45-0301用EVC剖面分布测量外延层结构中载流子浓度的测试方法SEMI M46-1101 CMOS LSI电路用绝缘体上硅(SOI)晶片规范SEMI M47-0302评价无图形硅衬底上薄膜的化学机械抛光工艺的指南SEMI M48-1101用于130nm级工艺硅片几何尺寸测量设备的指南SEMI M49-1101采用覆盖法确定表面扫描检查系统的捕获率和虚假计数率的测试方法SEMI M50-1101化合物半导体外延片规范SEMI M42-1000硅片背面条型代码标志规范SEMI T1-95带有二维矩阵代码符号的晶片标志规范SEMI T2-0298晶片盒标签规范SEMI T3-0302 150mm和200mm晶片箱标志尺寸规范SEMI T4-0301砷化镓圆形晶片字母数字刻码规范SEMI T5-96带二维矩阵代码符号的双面抛光晶片背面标志规范SEMI T7-0302。