计算机语法制导翻译生成中间代码
编译原理课件05语法制导翻译技术和中间代码生成

5.4 中间代码
四元式的特点: 1. 四元式出现的顺序和语法成份的计值 顺序相一致. 2. 四元式之间的联系是通过临时变量实 现的,这样易于调整和变动四元式. 3. 便于优化处理.
5.4 中间代码
编译系统中,有时将四元式表示成另一 种更直观,更易理解的形式——三地址代 码或三地址语句. 三地址代码形式定义为: result := arg1 OP arg2 三地址语句:语句中是三个量的赋值语句, 三地址语句 每个量占一个地址.
5.5 自下而上的语法制导翻译
例3 简单算术表达式翻译到四元式的 语义描述 例如,设有简单算术表达式的文法: E→E+E | E*E | (E) | i
T R / S T
c S a c
c R S
输入是bR / bTc / bSc /ac 输出为: 1 4 5 314 24 31 给出相应语义动作(翻 译方案) S→bTc { print "1"} { print "2"} S→a R T→R { print "3"} R→R/S { print "4"} R→S { print "5"}
5.1 概述
例如: 表达式 A+B*C 对运算对象进行类型检查, 对变 量进行先定义后使用检查 执行真正的翻译 如果静态语义正确, 语义处理则要执 行真正的翻译, 即生成程序的某种中间 代码的形式或直接生成目标代码.
5.1 概述
目前多数编译程序进行语义分析的方 法是采用语法制导翻译法 .它不是一种 采用语法制导翻译法 形式系统, 但它比较接近形式化. 语法制导翻译法使用属性文法为工具 来描述程序设计语言的语义.
5.4 中间代码
第八章 语法制导翻译和中间代码生成

目标代码
5
语义分析
语义分析的任务:在词法分析和语法分析的基础上,
盛 威 网 : 专 业 的 计 算 机 学 习 网 站
分析所写源程序的含义,在理解含义的基础上为生成 相应的目标代码作好准备或直接生成目标代码。 1)静态语义检查 例:类型检查、运算、维数、越界 2)语义翻译(具体的动作) 例:语句的翻译(中间代码或目标代码生成)
16
简化定义
对每个产生式,设属性定义性出现的集合为
盛 威 网 : 专 业 的 计 算 机 学 习 网 站
若Xi是产生式左部非终结符(即i=0),则称属性 Xi.a是综合属性(Synthesized Attributes) 若Xi出现在产生式的右部(即i≠0 ),则称Xi.a是 继承属性(Inherited Attributes)
2
教学内容
第一节
盛 威 网 : 专 业 的 计 算 机 学 习 网 站
属性文法 语法制导翻译概论 中间代码的形式 简单赋值语句的翻译 布尔表达式的翻译 控制语句的翻译 说明语句的翻译 数组和结构的翻译
3
第二节 第三节 第四节 第五节 第六节 第七节 第八节
盛 威 网 : 专 业 的 计 算 机 学 习 网 站
2.组成
语法树上的每个节点的所有属性在依赖图上各有 一个节点,如果属性y依赖于属性x,那么从x的节点 到y的节点有一条有向边。 【注】如果语法树一节点的属性y依赖某个节点的属 性x,那么属性y的语义产生式的计算必须在属性x的 语义产生式的计算之后进行。 24
盛 威 网 : 专 业 的 计 算 机 学 习 网 站
13
盛 威 网 : 专 业 的 计 算 机 学 习 网 站
3、文法规则number→number digit ,表明文法的个 数不止一个。我们必须表示出这个文法规则左边符 号的值和右边符号的值之间的关系。通过使用下标 进行区分,将文法写成如下形式: number1→number2 digit
编译方法实验报告(中间代码生成器)

编译方法实验报告2011年10月一、实验目的熟悉算术表达式的语法分析与中间代码生成原理。
二、实验内容(1)设计语法制导翻译生成表达式的四元式的算法;(2)编写代码并上机调试运行通过。
输入——算术表达式;输出——语法分析结果;相应的四元式序列。
(3)设计LL(1)分析法或LR(0)分析法的属性翻译文法, 并根据这些属性翻译文法, 使用扩展的语法分析器实现语法制导翻译。
三、实验原理及基本步骤●算术表达式文法:G(E): E ( E ω0 T | TT →T ω1 F | FF → i | (E)●文法变换:G’(E) E →T {ω0 T}T →F {ω1 F}F → i | (E)●属性翻译文法:E →T {ω0“push(SYN, w)” T “QUAT”}T →F {ω1“push(SYN, w)” F “QUAT”}F →i “push(SEM, entry(w))” | (E)其中:push(SYN, w) —当前单词w入算符栈SYN;push(SEM, entry(w)) —当前w在符号表中的入口值压入语义栈SEM;QUAT —生成四元式函数i. T = newtemp;ii. QT[j] =( SYN[k], SEM[s-1], SEM[s], T);j++;iii. pop( SYN, _ ); pop( SEM, _ ); pop( SEM, _ );push( SEM, T );●递归下降子程序:数据结构: SYN —算符栈;SEM —语义栈;四、数据结构设计使用递归的结构进行四元式的设计, 同时, 运用堆栈结构将四元式的输出序列打印出来while ( exp[i]=='+' || exp[i]=='-'){syn[++i_syn]=exp[i]; //push(SYN,w)i++; //read(w)T();quat();}while ( exp[i]=='*' || exp[i]=='/'){syn[++i_syn]=exp[i]; //push(SYN,w)i++; //read(w)F();quat();}void quat(){strcpy(qt[j],"(, , , )"); //QT[j]:=(SYN[k],SEM[s-1],SEM[s],temp);qt[j][1]=syn[i_syn];qt[j][3]=sem[i_sem-1];qt[j][5]=sem[i_sem];qt[j][7]=temp;j++;i_syn--; //pop(SYN);i_sem--; //pop(SEM);i_sem--; //pop(SEM);sem[++i_sem]=temp; //push(SEM,temp);temp++;}五、关键代码分析(带注释)及运行结果#include <iostream>#include "string.h"#include "stdio.h"using namespace std;char syn[10]; //文法符号栈int i_syn;char sem[10]; //运算对象栈int i_sem;char exp[50]; //算术表达式区int i;char qt[30][15]; //四元式区int j=0;char temp='q'; //临时变量, 取值为r--zint E();int T();int F();void quat(); //生成四元式函数int main(int argc, char* argv[]){printf("please input your expression:");scanf("%s",exp); //输入四元式i=0; //read(w)E();if (exp[i]=='\0')for (i=0;i<j;i++) //输出四元式序列printf("%s\n",qt[i]);elseprintf("err");return 0;}int E(){T();while ( exp[i]=='+' || exp[i]=='-'){syn[++i_syn]=exp[i]; //push(SYN,w)i++; //read(w)T();quat();}return 1;}int T(){F();while ( exp[i]=='*' || exp[i]=='/'){syn[++i_syn]=exp[i]; //push(SYN,w)i++; //read(w)F();quat();}return 1;}int F(){if ( exp[i]=='('){i++; //read(w)E();if ( exp[i]!=')'){printf("err");return 0;}}else if ((exp[i]>='a' && exp[i]<='p')||(exp[i]>='0' && exp[i]<='9')){ sem[++i_sem]=exp[i]; } //push(SEM,w) else{printf("err");return 0;}i++; //read(w)return 1;}void quat(){strcpy(qt[j],"( , , , )"); //QT[j]:=(SYN[k],SEM[s-1],SEM[s],temp);qt[j][1]=syn[i_syn];qt[j][3]=sem[i_sem-1];qt[j][5]=sem[i_sem];qt[j][7]=temp;j++;i_syn--; //pop(SYN);i_sem--; //pop(SEM);i_sem--; //pop(SEM);sem[++i_sem]=temp; //push(SEM,temp);temp++;}六、总结与分析我们知道, 定义一种语言除了要求定义语法外, 还要求定义语义, 即对语言的各种语法单位赋予具体的意义。
语法制导翻译和中间代码生成

条件真 转 无条件 转
语句 if a<b or c<d and e<f then S1 else S2 的四元式 (1) if a<b goto (7) (E.true ) (1)和(5) (2) goto (3) 拉链(真) (3) if c<d goto (5) (4) goto (p+1) (E.false) (4) 和(6) (5) if e<f goto (7) 拉链(假) (6) goto (p+1) (7)( S1 的四元式 …… (p-1) ……) (p) goto (q) (p+1) (S2 的四元式 …… (q-1) ……) (q)
语义描述使用的量:
过程: emit( ) merge(p1,p2) 例:
E.true “真”链, E.false “假”链 E.codebegin E 的第一个四元式 nextstat 下一四元式地址 输出一条四元式,而后 nextstat+1
merge(p1,p2) (p100) 0 …… (p10) p100 ……` (p1) p10 (p200) 0 p1 …… (p20) p200 …… (p2) p20 把 p 所链接的每个四元式的第四区 段都填为 t。
第五章 语法制导翻译和 中间代码生成
Part II
5.5 常见语法成分的翻译
• • • • • • • 简单赋值语句 布尔表达式 条件语句 循环语句 过程调用语句 说明语句 数组
一、简单赋值语句(的四元式)翻译
• 四元式形式
(op, arg1,arg2,t) • ~ t:=arg1 op arg2
1 2 if E then S else S S 控制语句 E 的代码 E.true E.false E.true: S1 的代码
第5章 语法制导翻译和中间代码生成

剩余串 3+ 45# +45# +45# +45# +45# 5# 5# 5# 5# 5# #
主要动作
r6 r4 r2
r6 r4
r6 # # r3 r1 acc
表达式3 + 4 5的语法语义分析和计值过程
§5.3
中间语言
所谓中间语言,也称中间代码,是复杂性介 于源程序语言和机器语言的一种记号系统。一般 来说,快速编译程序直接生成目标代码,没有将 中间代码翻译成目标代码的额外开销。但是为了 使编译程序结构在逻辑上更为简单明确,使生成 的的目标代码更为高效,通常采用中间语言。 编译程序所使用的中间语言形式较多。常见 的逆波兰式、三元式、四元式和树形表示等。来自bcd
3. 间接三元式 为了尽量不改变三元式表,可以另设一张间 接码表来表示有关三元式在三元式表的 计值顺序。用这种方法获得的中间代码 称为间接三元式。
例如,表达式a := x+y z b := t-y z 的间接三元式表示如图所示。
三元式列表 (1)( ,y,z) (2)(+,x,(1)) (3)(:=,a,(2)) (4)(-,t,(1)) (5)(:=,—,(4))
§5.4 自底向上语法制导翻译
语法制导翻译分为自底向上和自底向下两种。 自底向上语法制导翻译方法就是在自底向上语法 分析过程中逐步执行语义规则。也就是在每次归 约的同时执行相应的语义动作。
5.4.1 简单算术表达式和赋值语句的翻译
简单算术表达式和赋值语句是指不含数组 元素、记录等复杂数据结构的算术表达式和赋值 语句。
简单算术表达式求值的属性文法。 例5.1 :
规则 1.S→E 2.E→E1+T 3.E→T 4.T→T1 F 5.T→T1 6.F→(E) 7.F→digit 语义规则 print(E.val) E.val := E1.val+T.val E.va1 := T.valv T.val := T1.val F.val T.val := T1.val F.val := E.val F.val := digit.lexval
第08章语法制导翻译和中间代码生成

常用的中间语言
• 三地址代码(四元式) 三地址代码(四元式) • 语法结构树(三元式) 语法结构树(三元式) • 后缀式
特点
• 形式简单、语义明确、便于翻译 形式简单、语义明确、 • 独立于目标语言
29
三元式和树形表示
• 每个三元式由三个部分组成,分别是:算符op, 每个三元式由三个部分组成,分别是:算符op, op 第一运算对象ARG1和第二运算对象ARG2 ARG1和第二运算对象ARG2。 第一运算对象ARG1和第二运算对象ARG2。运算 对象可能是源程序中的变量, 对象可能是源程序中的变量,也可能是某个三 元式的结果,用三元式的编号表示。 元式的结果,用三元式的编号表示。 • 表达式的树形表示很容易实现:简单变量或常 表达式的树形表示很容易实现: 数的树就是该变量或常数自身,如果表达式e1 数的树就是该变量或常数自身,如果表达式e1 e2的树分别为T1和T2,那么e1+e2 e1*e2, 的树分别为T1 e1+e2, 和e2的树分别为T1和T2,那么e1+e2,e1*e2, e1的树分别为 的树分别为: -e1的树分别为:
9
–lexval 是单词 digit 的属性 lexval
例8-3 3*5+4 的
语法树与属性计算
L Print(19) E.val=19
E.val=15 T.val=15 T.val=3 F.val=3 digit.lexval=3 *
+
T.val=4 F.ቤተ መጻሕፍቲ ባይዱal=4
F.val=5 dgit.lexval=5
• 用中间语言过渡的好处: 用中间语言过渡的好处:
–便于编译系统的实现、移植、代码优化 便于编译系统的实现、移植、 便于编译系统的实现
编译第8章
• 属性变量=属性表达式
1、属性文法定义
属性文法(attribute grammar)是一个三元 组:A=(G,V,F),其中 G:是一个上下文无关文法 V:有穷的属性集,每个属性与文法的一个终结符或非 终结符相连,这些属性代表与文法符号相关信息, 如它的类型、值、代码序列、符号表内容等等 .属 性与变量一样,可以进行计算和传递。属性加工 的过程即是语义处理的过程。 F:关于属性的属性断言或一组属性的计算规则(称为 语义规则) . 断言或语义规则与一个产生式相联,只 引用该产生式左端或右端的终结符或非终结符相 联的属性.
addtype
id3
addtype
例5-4:real id1,id2,id3 的分析树和属性计算
8.3 中间代码的形式
何谓中间代码: 源程序的一种内部表示,不依赖目标机的 结构,易于机械生成目标代码的中间表示。 为什麽要此阶段 逻辑结构清楚; 利于不同目标机上实现同一种语言; 利于进行与机器无关的优化; 这些内部形式也能用于解释;
• 语义处理
–例:变量的存储分配 –例:表达式的求值 –例:语句的翻译(中间代码的生成)
• 总目标:生成等价的中间代码
语义处理方法
• 对应每一个产生式编制一个语义子程序, 当一个产生式获得匹配时,调用相应的 语义子程序实现语义检查与翻译。 • 在产生式的右部的适当位置,插入相应 的语义动作,按照分析的进程,执行遇 到的语义动作。
8)若把语义子程序改成产生某种中间代 码的动作,就能在语法分析制导下,随 着分析的进展逐步生成中间代码。 9)若把语义子程序改成产生某种机器的 汇编语言指令,就能随着分析的进展逐 步生成某机器的汇编语言代码。
语法制导翻译和中间代码生成
继承属性L.in
语 义 规 则
语句: real id1, id2, id3 的分析树,采用自上而下的分析方法
产 生 式
D TL
T int
T real
L L1,id
L id
L.in:=T.type
T.type=integer
F.val=3
F.val=5
digit.lexval=4
digit.lexval=5
digit.lexval=3
+
*
3*5+4的带注释的分析树
如果一个语法制导定义仅仅使用综合属性,则称这种语法制导定义为S属性定义。通常采用自底向上的方法对其分析树加注释,即从树叶到树根,按照语义规则计算每个节点的属性值。
表达式文法 E→T+T| T or T T → n | true | false
E → T1 + T2 { T1.type = int AND T2.type = T1. type E.type :=int } E → T1 or T2 { T1.type = bool AND T2.type= T1.type E.type :=bool } T → n { T.type := int } T → true { T.type := bool } T → false { T.type := bool }
T.type:=real
L1.in:=L.in
addtype(id.entry,L.in)
addtype(id.entry,L.in)
D
L.in= real
L.in= real
L.in= real
T.type=real
语法制导翻译和中间代码生成【共50张PPT】
例 完成类型检查的属性文法
1) E→T1+T2{T1.t=int AND T2.t=int}
2) E→T1 or T2 {T1.t=bool AND T2.t=bool}
3) T→num
{T.t :=int}
4) T→true {T.t :=bool}
5) T→false
{T.t :=bool}
6.1 属性文法(续)
四元式(续)
四元式的优点:
四元式比三元式更便于优化 优化要求改变运算顺序或删除某些运算,引起编号的变化。 三元式通过编号引用中间结果,编号的变化引起麻烦;四元 式通过临时变量引用中间结果,编号变化无影响。
四元式对生成目标代码有利
四元式表示很类似于三地址指令,很容易转换成机器代 码。
四元式(续)
3) E→T
{ E.val :=T.val }
4) T→T1*F { T.val :=T1.val * F.val }
5) T→F
{ T.val :=F.val }
6) F→(E) { F.val :=E.val }
7) F→digit { F.val :=digit.lexval }
E.val、T.val、F.val都是综合属性
每个使用性标识符是否都有声明? 运算符的分量类型是否相容? 赋值语句的左右部的类型是否相容?
➢ 赋值语句的翻译目标:
在赋值语句右部表达式产生的四元式序列后加一 条赋值四元式
简单赋值语句到四元式的翻译
考虑如下文法描述的简单赋值句的翻译: A→i:=E E→E+E|E*E|-E|(E)|i (6.1)
:=
a
+
叶子结点代表运算量, 非叶子结点代表运算符
语法制导翻译和中间代码生成
例如:
产生式 语义子程序 (0)S` E {PRINT E•VAL} (1)E E (1)+E(2) {E•VAL= E (1) •VAL +E(2) •VAL } (2)E E (1)*E(2) {E•VAL= E (1) •VAL *E(2) •VAL } (3)E (E (1)) {E•VAL= E (1) •VAL } (4)E i {E•VAL= LEXVAL } 注:LEXVAL指的是词法分析送来的机内二进制整数
3、后缀表示式(逆波兰表达式) Operand1 Operand2 Operator 4、树形表示法
注:常用中间代码表示法是四元式。
赋值语句的翻译
仅含简单变量的表达式的赋值语句的翻译 1、赋值语句的文法 A i=E E E+E|E*E|-E|(E)|i 2、需要的语义过程 NEWTEMP函数:每次调用送回一个代表新临时 变量的序号,可认为是送回T1 、 T2这样的一些 临时变量 ENTRY(i)函数:用于查变量i的符号表入口地址
2、实例:对布尔式X+Y>Z∨A∧(┐B∨C)进行翻译: 解:语法制导得翻译是在语法分析的过程中进行的,若利
用G(B)文法的LR分析表对上句进行LR分析,在其过程中 进行语义分析;则得到的四元式序列是:
(+,X,Y,T1) ;E+E进行归约,识别了算术运算 (>, T1,Z, T2) ; E >E进行归约,识别了关系运算 (┐,B,_, T3) ; ┐E归约 (∨, T3,C, T4) ; E∨E进行归约 (∧,A, T4,T5) ; E∧E进行归约 (∨, T2, T5, T6) ; E∨E进行归约
四、常见的中间代码形式 1、四元式形式: (Operator,Operand1,Operand2,Result) 注: 1) Operand1,Operand2,Result 可能是用户自定 义的变量,也可能是编译时引进的变量。 这里 Operator是双目运算符,若只有一个运算量,则 是单目运算符。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上次课主要内容
1. SLR(1)分析表的构造 • 由识别活前缀的DFA构造action和goto表
2. 非SLR(1)文法 • 二义文法 • 非二义文法
3. 语法分析内容复习 4. 语法制导翻译的基本概念
• 语法与语义 • 属性与语义规则
5
E→E1+E2 E.val:=E1.val+E2.val
3
5
3
5
产生式 语法制导定义
翻译方案
L→EpΒιβλιοθήκη int(E.post);E→E1+E2 E.post:=E1.post
print(+);
||E2.post||'+';
E→num E.post:=num.lexval; print(lexval);
4.1 语法制导翻译简介
4.1.1 语法与语义
<1> 语法与语义的关系 语法是指语言的结构、即语言的“样子”;语义是指附着于
语言结构上的实际含意 ,即语言的“意义”。 对于语法和语义: • 语义不能离开语法独立存在; • 语义远比语法复杂; • 同一语言结构可包含多种含意,不同语言结构表示相同含意; • 语法与语义之间没有明确的界线。
上依然存在。
f(c1, c2, ..., ck)
(4.2) ■
(4.1)中属性之间的依赖关系,实质上反映了属性计算的先后 次序,即所有属性ci被计算之后才能计算属性b。
E→E1+E2 print(E.val) 6
4.1.3 语义规则的两种形式
<1> 语法制导定义 用抽象的属性和运算符号表示的语义规则;(公式,做什么)
产生式 翻译方案2
L→E E→E1+E2 print(+); E→num print(lexval);
8
4.1.3 语义规则的两种形式(续2)
语法制导定义-算法 翻译方案-程序实现,
方法不唯一
翻译方案中需要考虑的问题: 1.采用什么样的语法分析方法; 2.为属性分配存储空间; 3.考虑计算次序。
翻译方案1,自下而上计算,LR分析。 (以3+5+8为例,归约时翻译)
例1:猫吃老鼠与老鼠吃猫
例2:程序设计语言中的分情况结构:
1.case condition is case1: stat1; case2: stat2; ...
end case;
2.switch (condition) { case condition1:stat1; break; case condition2:stat2; break; ...
<2> 翻译方案 用具体属性和运算表示的语义规则。(程序段,如何做) • 语义规则也被习惯上称为语义动作。 • 忽略实现细节,二者作用等价。(设计与实现)
7
4.1.3 语义规则的两种形式(续1)
例4.1 将中缀形式的算术表达式转换为后缀表示的语法制 导定义和翻译方案。虚拟属性print(E.post)可想象为 L.p:=print(E.post)
产生式 L→E E→E1+E2
E→num
语法制导定义
print(E.post) E.post:=E1.post
||E2.post||'+'; E.post:=num.lexval;
翻译方案1 print_post(post); post(k):='+'; k:=k+1;
post(k):=lexval; k:=k+1;
执行相应的语义动作。 具体方法: 1. 将文法符号所代表的语言结构的意思,用附着于该文法符
号的属性表示; 2. 用语义规则规定产生式所代表的语言结构之间的关系(即
属性之间的关系),即用语义规则实现属性计算。 语义规则的执行:在语法分析的适当时刻(如推导或归约)
执行附着在对应产生式上的语义规则,以实现 对语言结 构语义的处理,如计算、查填符号表、生成中间代码、发 布出错信息等。
}
1
4.1.1 语法与语义(续1) <2> 语义分析的两个作用
检查是否结构正确的句子所表示的意思也合法; 执行规定的语义动作,如:
表达式求值 符号表填写 中间代码生成等 <3> 语义分析的方法 语法制导翻译
2
4.1.2 属性与语义规则
<1> 语法制导翻译的基本思想 通俗地讲:以语法分析为基础,伴随语法分析的各个步骤,
例4.2 3+5+8的分析树和注释分析树:
L(print(35+8+))
E .post=35+8+
L E(print(+))
E .post=35+ + E.post=8
E(print(+)) + E(print(8))
E .post=3 + E .post=5 8
E(print(3)) + E(print(5)) 8
(2) 若b是α中某文法符号Xi的属性,c1, c2, ..., ck是A的 属性,或者是α中其它文法符号的属性,则称b是Xi的继承属性。
(3) 称(4.1)中属性b依赖于属性c1, c2, ..., ck。
(4) 若语义规则的形式如下述(4.2),则可将其想像为产生式左
部文法符号A的一个虚拟属性。属性之间的依赖关系,在虚拟属性
4.1.2 属性与语义规则(续2)
<3> 属性的定义**
定义4.1 对于产生式A→α,其中α是由文法符号X1X2...Xn组成 的序列,它的语义规则可以表示为(4.1)所示关于属性的函数:
b := f(c1, c2, ..., ck)
(4.1)
语义规则中的属性存在下述性质与关系。
(1) 若b是A的属性,c1, c2, ..., ck是α中文法符号的属性, 或者A的其它属性,则称b是A的综合属性。
3
4.1.2 属性与语义规则(续1)
<2> 属性的抽象表示 .attr 例如:E.val(值)
E.type(类型) E.code(代码序列) E.place(存储空间) <3> 对文法的约定 本章关注的是语法分析的基础上的语义处理,忽略语法 分析。 为了简单,本章的文法一般为二义文法。默认解决二义 的方法是规定常规意义下的优先级和结合性。
产生式
L→E E→E1+E2 E→num
翻译方案1
print_post(post); post(k):='+'; k:=k+1; post(k):=lexval; k:=k+1;
L E
E+E E+E 8
3
5
post:(3 5 + 8 +)
9
<3> 属性作为分析树的注释 4.1.3 语义规则的两种形式(续3) 将属性附着在分析树对应文法符号上,形成注释分析树。