多级齿轮传动比的分配

合集下载

齿轮系传动比计算

齿轮系传动比计算

齿轮系传动比计算齿 轮 系 传 动 比 计 算 C1 齿轮系的分类在复杂的现代机械中,为了满足各种不同的需要,常常采用一系列齿轮组成的传动系统。

这种由一系列相互啮合的齿轮(蜗杆、蜗轮)组成的传动系统即齿轮系。

下面主要讨论齿轮系的常见类型、不同类型齿轮系传动比的计算方法。

齿轮系可以分为两种基本类型:定轴齿轮系和行星齿轮系。

一、定轴齿轮系在传动时所有齿轮的回转轴线固定不变齿轮系,称为定轴齿轮系。

定轴齿轮系是最基本的齿轮系,应用很广。

如下图所示。

二、行星齿轮系若有一个或一个以上的齿轮除绕自身轴线自转外,其轴线又绕另一个轴线转动的轮系称为行星齿轮系,如下图所示。

1. 行星轮——轴线活动的齿轮.2. 系杆 (行星架、转臂) H .1450rpm53.7rpm12 H3 1234H 512 H 33. 中心轮—与系杆同轴线、与行星轮相啮合、轴线固定的齿轮4. 主轴线—系杆和中心轮所在轴线.5. 基本构件—主轴线上直接承受载荷的构件.行星齿轮系中,既绕自身轴线自转又绕另一固定轴线(轴线O1)公转的齿轮2形象的称为行星轮。

支承行星轮作自转并带动行星轮作公转的构件H称为行星架。

轴线固定的齿轮1、3则称为中心轮或太阳轮。

因此行星齿轮系是由中心轮、行星架和行星轮三种基本构件组成。

显然,行星齿轮系中行星架与两中心轮的几何轴线(O1-O3-OH)必须重合。

否则无法运动。

根据结构复杂程度不同,行星齿轮系可分为以下三类:(1)单级行星齿轮系:它是由一级行星齿轮传动机构构成的轮系。

一个行星架及和其上的行星轮及与之啮合的中心轮组成。

(2)多级行星齿轮系:它是由两级或两级以上同类单级行星齿轮传动机构构成的轮系。

(3)组合行星齿轮系:它是由一级或多级以上行星齿轮系与定轴齿轮系组成的轮系。

行星齿轮系根据自由度的不同。

可分为两类:(1)自由度为2 的称差动齿轮系。

(2)自由度为1 的称单级行星齿轮系。

按中心轮的个数不同又分为:2K—H型行星齿轮系;3K型行星齿轮系;K—H—V 型行星齿轮系。

传动比分配原则

传动比分配原则
传动比分配原则?
多级减速器各级传动比的分配,直接影响减速器的承载能力和使用寿命,还会影响其体积、重量和润滑。传动比一般按以下原则分配:使各级传动承载能力大致相等;使减速器的尺寸与质量较小;使各级齿轮圆周速度较小;采用油浴润滑时,使各级齿轮副的大齿轮浸油深度相差较小。 低速级大齿轮直接影响减速器的尺寸和重量,减小低速级传动比,即减小了低速级大齿轮及包容它Байду номын сангаас机体的尺寸和重量。增大高速级的传动比,即增大高速级大齿轮的尺寸,减小了与低速级大齿轮的尺寸差,有利于各级齿轮同时油浴润滑;同时高速级小齿轮尺寸减小后,降低了高速级及后面各级齿轮的圆周速度,有利于降低噪声和振动,提高传动的平稳性。故在满足强度的条件下,末级传动比小较合理。 减速器的承载能力和寿命,取决于最弱一级齿轮的强度。仅满足于强度能通得过,而不追求各级大致等强度常常会造成承载能力和使用寿命的很大浪费。通用减速器为减少齿轮的数量,单级和多级中同中心距同传动比的齿轮一般取相同参数。当a和i设置较密时,较易实现各级等强度分配;a和i设置较疏时,难以全部实现等强度。按等强度设计比不按等强度设计的通用减速器约半数产品的承载能力可提高10%-20%。 和强度相比,各级大齿轮浸油深度相近是较次要分配的原则,即使高速级大齿轮浸不到油,由结构设计也可设法使其得到充分的润滑。 三级传动比分配 )对于多级减速传动,可按照“前小后大”(即由高速级向低速级逐渐增大)的原则分配传动比,且相邻两级差值不要过大。这种分配方法可使各级中间轴获得较高转速和较小的转矩,因此轴及轴上零件的尺寸和质量下降,结构较为紧凑。增速传动也可按这一原则分配。 4)在多级齿轮减速传动中,传动比的分配将直接影响传动的多项技术经济指标。例如: 传动的外廓尺寸和质量很大程度上取决于低速级大齿轮的尺寸,低速级传动比小些,有利于减小外廓尺寸和质量。 闭式传动中,齿轮多采用溅油润滑,为避免各级大齿轮直径相差悬殊时,因大直径齿轮浸油深度过大导致搅油损失增加过多,常希望各级大齿轮直径相近。故适当加大高速级传动比,有利于减少各级大齿轮的直径差。 此外,为使各级传动寿命接近,应按等强度的原则进行设计,通常高速级传动比略大于低速级时,容易接近等强度。 由以上分析可知,高速级采用较大的传动比,对减小传动的外廓尺寸、减轻质量、改善润滑条件、实现等强度设计等方面都是有利的。 当二级圆柱齿轮减速器按照轮齿接触强度相等的条件进行传动比分配时,应该取高速级的传动比。 三级圆柱齿轮减速器的传动比分配同样可以采用二级减速器的分配原则。

多级行星齿轮传动的传动比分配方案

多级行星齿轮传动的传动比分配方案

多级行星齿轮传动的传动比分配
多级行星齿轮传动各级传动比的分配原则是获得各级传动的等强度和最小的外形尺寸。

在两级NGW型行星齿轮传动中,欲得到最小的传动径向尺寸,可使低速级内齿轮分度圆直径d BⅡ与高速级内齿轮分度圆直径d BⅠ之比(d BⅡ/d B Ⅰ)接近于1。

通常使d BⅡ/d BⅠ=1~1.2
NGW型两级行星齿轮传动的传动比可利用下图进行分配(图中i1和i分别为高速级及总的传动比)先按下式计算数值E,而后根据总传动比i和算出的E值查线图确定高速级传动比iⅠ后,低速级传动比iⅡ由式iⅡ=i/iⅠ求得
E=AB3
式中和图中代号的角标Ⅰ和Ⅱ分别表示高速级和低速级;C s
为行星轮数目,K c为载荷分布系数,按表行星齿轮传动载荷不
均匀系数中表1选取;K Hβ为接触强度的载荷分布系数。

K V、
K Hβ
及的比值,可用类比法进行试凑,或取三项比值的乘积
等于1.8~2。

齿面工作硬化系数Z W,一般可
取Z W=1,如果全部采用硬度>350HB的齿轮时,可取。

最后算得之E值如果大于6,则取E=6 两级NGW型传动比分配。

三级齿轮传动比分配

三级齿轮传动比分配
滴油润滑有间歇滴油润滑和连续滴油润滑两种方式。为保证机器起动时轴承能得到一定量的润滑油,最好在轴承内侧设置一圆缺形挡板,以便轴承能积存少量的油。挡板高度不超过最低滚珠(柱)的中心。经常运转的减速器可以不设这种挡板。
——转速很高的轴承需要采用压力喷油润滑。
如果减速器用的是滑动轴承,由于传动用油的
减速器油池的容积平均可按1kW约需0.35L一0.7L润滑油计算(大值用于粘度较高的油),同时应保持齿轮顶圆距离箱底不低于30mm一50mm左右,以免太浅时激起沉降在箱底的油泥。减速器的工作平衡温度超过90℃时,需采用循环油润滑,或其他冷却措施,如油池润滑加风扇,油池内装冷却盘管等。循环润滑的油量一般不少于0.5L/kW。圆周速度u>12m/s的齿轮减速器不宜采用油池润滑,因为:1)由齿轮带上的油会被离心力甩出去而送不到啮合处;2)由于搅油会使减速器的温升增加;3)会搅起箱底油泥,从而加速齿轮和轴承的磨损;4)加速润滑油的氧化和降低润滑性能等等。这时,最好采用喷油润滑。润滑油从自备油泵或中心供油站送来,借助管子上的喷嘴将油喷人轮齿啮合区。速度高时,对着啮出区喷油有利于迅速带出热量,降低啮合区温度,提高抗点蚀能力。速度u≤20心s的齿轮传动常在油管上开一排直径为4mm的喷油孔,速度更高时财应开多排喷油孔。喷油孔的位置还应注意沿齿轮宽度均匀分布。喷油润滑也常用于速度并不很高而工作条件相当繁重的重型减速器中和需要用大量润滑油进行冷却的减速器中。喷油润滑需要专门的管路装置、油的过滤和冷却装置以及油量调节装置等,所以费用较贵。此外,还应注意,箱座上的排油孔宜开大些,以便热油迅速排出。
15.4减速器润滑
15.4.1传动的润滑
圆周速度u≤12m/s一15m/s的齿轮减速器广泛采用油池润滑,自然冷却。为了减少齿轮运动的阻力和油的温升,浸入油中的齿轮深度以1—2个齿高为宜。速度高的还应该浅些,建议在0.7倍齿高左右,但至少为10mm。速度低的(0.5m/s一0.8m/s)也允许浸入深些,可达到1/6的齿轮半径;更低速时,甚至可到1/3的齿轮半径。润滑圆锥齿轮传动时,齿轮浸入油中的深度应达到轮齿的整个宽度。对于油面有波动的减速器(如船用减速器),浸入宜深些。在多级减速器中应尽量使各级传动浸入油中深度近予相等。如果发生低速级齿轮浸油太深的情况,则为了降低其探度可以采取下列措施:将高速级齿轮采用惰轮蘸油润滑;或将减速器箱盖和箱座的剖分面做成倾斜的,从而使高速级和低速级传动的浸油深度大致相等。 ?. ’

齿轮传动比

齿轮传动比
编辑本段传动比计算方法
传动比=使用扭矩÷9550÷电机功率×电机功率输入转数÷使用系数 传动比=主动轮转速与从动轮的比值=它们直径的反比。即:i=n1/n2=D2/D1 i=n1/n2=z2/z1(齿轮的)
传动比分配原则?
多级减速器各级传动比的分配,直接影响减速器的承载能力和使用寿命,还会影响其体积、重量和滑。传动比一般按以下原则分配:使各级传动承载能力大致相等;使减速器的尺寸与质量较小;使各级齿轮圆周速度较小;采用油浴润滑时,使各级齿轮副的大齿轮浸油深度相差较小。
此外,为使各级传动寿命接近,应按等强度的原则进行设计,通常高速级传动比略大于低速级的传动比,对减小传动的外廓尺寸、减轻质量、改善润滑条件、实现等强度设计等方面都是有利的。
当二级圆柱齿轮减速器按照轮齿接触强度相等的条件进行传动比分配时,应该取高速级的传动比。 三级圆柱齿轮减速器的传动比分配同样可以采用二级减速器的分配原则。
低速级大齿轮直接影响减速器的尺寸和重量,减小低速级传动比,即减小了低速级大齿轮及包容它的机体的尺寸和重量。增大高速级的传动比,即增大高速级大齿轮的尺寸,减小了与低速级大齿轮的尺寸差,有利于各级齿轮同时油浴润滑;同时高速级小齿轮尺寸减小后,降低了高速级及后面各级齿轮的圆周速度,有利于降低噪声和振动,提高传动的平稳性。故在满足强度的条件下,末级传动比小较合理。
4)在多级齿轮减速传动中,传动比的分配将直接影响传动的多项技术经济指标。
例如: 传动的外廓尺寸和质量很大程度上取决于低速级大齿轮的尺寸,低速级传动比小些,有利于减小外廓尺寸和质量。
闭式传动中,齿轮多采用溅油润滑,为避免各级大齿轮直径相差悬殊时,因大直径齿轮浸油深度过大导致搅油损失增加过多,常希望各级大齿轮直径相近。故适当加大高速级传动比,有利于减少各级大齿轮的直径差。

多级行星齿轮传动的传动比分配方案

多级行星齿轮传动的传动比分配方案

多级行星齿轮传动的传动比分配
多级行星齿轮传动各级传动比的分配原则是获得各级传动的等强度和最小的外形尺寸。

在两级NGW型行星齿轮传动中,欲得到最小的传动径向尺寸,可使低速级内齿轮分度圆直径d BⅡ与高速级内齿轮分度圆直径d BⅠ之比(d BⅡ/d B Ⅰ)接近于1。

通常使d BⅡ/d BⅠ=1~1.2
NGW型两级行星齿轮传动的传动比可利用下图进行分配(图中i1和i分别为高速级及总的传动比)先按下式计算数值E,而后根据总传动比i和算出的E值查线图确定高速级传动比iⅠ后,低速级传动比iⅡ由式iⅡ=i/iⅠ求得
E=AB3
式中和图中代号的角标Ⅰ和Ⅱ分别表示高速级和低速级;C s
为行星轮数目,K c为载荷分布系数,按表行星齿轮传动载荷不
均匀系数中表1选取;K Hβ为接触强度的载荷分布系数。

K V、
K Hβ
及的比值,可用类比法进行试凑,或取三项比值的乘积
等于1.8~2。

齿面工作硬化系数Z W,一般可
取Z W=1,如果全部采用硬度>350HB的齿轮时,可取。

最后算得之E值如果大于6,则取E=6 两级NGW型传动比分配。

机电一体化系统设计-复习提纲(1)

机电一体化系统设计-复习提纲(1)

1. 以下产品不属于机电一体化产品的是(D )。

2. STD 总线属于什么接口类型?(A )3. RS232C 属于什么接口类型?(C )4. 以下哪项不属于机电一体化的发展方向。

(B )5. 机电一体化产品所设计的固有频率一般较高,其原因之一是(D )。

6. 以下属于机电一体化产品的是(C )。

7. 机电一体化系统有时采用半闭环控制,可能原因是(B )。

8. 能够使工业机器人传动链短的主要原因是(D )。

9. 关于机电一体化说法不确切的表达是(D )。

10. 关于机电一体化说法不确切的表达是(A )。

11. 机电一体化技术是以(C )部分为主体,强调各种技术的协同和集成的综合性技术 12. 以下哪项不属于概念设计的特征。

(A )13. 在机电一体化概念设计过程中,形态学矩阵的作用是(C )。

14. 在机电一体化概念设计过程中,黑箱分析方法的作用是(B )。

15. 关于机电一体化系统可靠性,以下论述错误的是(C )。

16. 机电一体化现代设计方法不包括(A )。

17. 谐波齿轮具有速比大、传动精度和效率高等优点,它是由以下哪种传动演变而来的。

( C )18. 使滚珠丝杠具有最大刚度的支承方式是( A )19. 在机电一体化系统设计中,齿轮系常用于伺服系统传动机构中,作用是( A ) 20. 多级齿轮传动中,各级传动比“前大后小”的分配原则适用于按( D )设计的传动链。

21. 下列哪种传动机构具有自锁功能 ( C )22. 滚珠丝杠传动轴向间隙的调整,下列哪一种方法精度高,结构复杂。

( B ) 23. 为了提高滚珠丝杠副的旋转精度,滚珠丝杠副在使用之前应该进行( B ) 24. 在滚珠丝杠副中,公式IE Ml ES Pl L π200±±=∆是验算满载时滚珠丝杠副的 ( A )25. 在同步齿型带传动中,节线的长度在工作过程中 ( A ) 26. 滚珠丝杠副基本导程指丝杠相对于螺母旋转2π弧度时,螺母上基准点的( B ) 27. 在两级齿轮传动中,若传动比的分配方案是i i =,则其遵循的原则是( D ) 28. 当刚轮固定,柔轮输出,波形发生器输入时,谐波齿轮可实现(B )传动。

齿轮传动比计算公式【大全】

齿轮传动比计算公式【大全】

齿轮传动比计算公式内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.传动比=从动轮齿数/主动轮齿数=主动轮转速/从动轮转速i=z2/z1=n1/n21、传动比是机构中两转动构件角速度的比值,也称速比。

构件a和构件b的传动比为i=ωa/ ωb=na/nb,式中ωa和ωb分别为构件a和b的角速度(弧度/秒);na和nb分别为构件a和b的转速(转/分)。

2、当式中的角速度为瞬时值时,则求得的传动比为瞬时传动比。

当式中的角速度为平均值时,则求得的传动比为平均传动比。

理论上对于大多数渐开线齿廓正确的齿轮传动,瞬时传动比是不变的;对于链传动和摩擦轮传动,瞬时传动比是变化的。

对于啮合传动,传动比可用a和b轮的齿数Za和Zb表示,i=Zb/Za;对于摩擦传动,传动比可用a和b轮的直径Da和Db表示,i=Db/Da。

3、多级减速器各级传动比的分配,直接影响减速器的承载能力和使用寿命,还会影响其体积、重量和润滑。

传动比一般按以下原则分配:使各级传动承载能力大致相等;使减速器的尺寸与质量较小;使各级齿轮圆周速度较小;采用油浴润滑时,使各级齿轮副的大齿轮浸油深度相差较小。

4、低速级大齿轮直接影响减速器的尺寸和重量,减小低速级传动比,即减小了低速级大齿轮及包容它的机体的尺寸和重量。

增大高速级的传动比,即增大高速级大齿轮的尺寸,减小了与低速级大齿轮的尺寸差,有利于各级齿轮同时油浴润滑;同时高速级小齿轮尺寸减小后,降低了高速级及后面各级齿轮的圆周速度,有利于降低噪声和振动,提高传动的平稳性。

故在满足强度的条件下,末级传动比小较合理。

5、传动比=使用扭矩÷9550÷电机功率×电机功率输入转数÷使用系数6、传动比=主动轮转速除以从动轮转速的值=它们分度圆直径比值的倒数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多级齿轮传动比的分配
一、分配传动的基本原则是:
a)使各级传动的承载能力接近相等(一般指面接触强度)。

b)使各级传动的大齿轮浸入油中的尝试大致相等,以使润滑简便。

c)使减速机获得最小的外形尺寸和重量。

(1)两级圆柱齿轮减速机按齿面接触强度相等及较有利的润滑条件,可按关系分配传动比,高速级的传动比。

当调整级和低速级齿轮
的材料和热处理条件相同时,传动动力比可按进行。

两级卧式圆柱齿轮减速机,按调整级和低速级的大齿轮浸入油中尝试大致相等的原则,传
动比的分配,可按下述经验数据和经验公式进行。

对于展开式和分流式减速机,由于中心距a2>a1,甩以常使i1>i2.
对于同轴式减速机,同于a1=a2,应使i1≈i2,使浸油深度相等。

(2)两级圆锥-圆柱齿轮减速机对这种减速机的传动进行分配时,要尽量避免圆锥齿轮尺寸过大,制造困难,因而调整级圆锥齿轮的
传动比i不宜过大,通常取i1≈0.25i,最好使i≤3。

当要求两级传动大齿轮的浸油尝试大致相等时,也可取i1-3.5~4.
(3)三级圆柱和圆锥-圆柱齿轮减速器按各级齿轮齿面接触强度相等,并能获得较小的外形尺寸和重量的原则,三级圆柱齿轮减速器
的传动比分配可按图进行。

(4)两级蜗轮蜗杆减速机这类减速机,为满足a1≈a2/2的要求,使高速级和低速级传动浸油深度大致相等。

(5)两级齿轮-蜗轮和蜗杆-齿轮减速机这类减速机,当齿轮传动布置在高速级时,为使箱体结构紧凑和便于润滑,通常取齿轮传动
比i1≤2~2.5.而当蜗杆布置在高速级时,可使传动有较高的效率,这时齿轮传动的传动比2-(0.03-0.06)i 为宜。

多级减速机传动比等强度分配应注意的问题
一台圆柱齿轮减速机,输入15KW,1500RPM;输出转速3RPM。

减速比分配:假设按五级传动设计
原始参数:
第一级:σHlim1=1450 a1=100 φa1=0.35
第二级:σHlim2=1450 a2=160 φa2=0.35
第三级:σHlim3=1450 a3=250 φa3=0.35
第四级:σHlim4=1450 a4=355 φa4=0.35
第五级:σHlim5=1450 a5=450 φa5=0.35
传动比i分配结果:
i1=4.511441 i2=4.218812 i3=3.927702 i4=3.097363 i5=2.159404 齿宽系数φd结果:
φd1=0.9645φd2=0.91329φd3=0.86235φd4=0.71704φd5=0.5529对结果检验:
接触疲劳极限σHlim=1450.0MPa
弯曲疲劳极限σFlim=430.0Mpa
精度等级:6
输入功率P=15.0KW
输入转速n1=1500RPM
使用寿命:20000.0小时
第一级
法向模数mn=2.0 mm
齿数Z1=18 Z2=80
法向变位系数Xn1=0.0 Xn2=-0.282834
螺旋角β=13.0度
有效齿宽b=37.0 mm
中心距a=100.0 mm
输入转速n1=1500RPM
接触强度计算的寿命系数Znt1=0.896143 Znt2=0.937995
接触强度的计算安全系数SH1=1.0228 SH2=1.0706
弯曲强度的计算安全系数SF1=2.0009 SF2=2.1723
第五级
法向模数mn=12.0 mm
齿数Z1=23 Z2=50
法向变位系数Xn1=0.270333 Xn2=-0.082523
螺旋角β=12.0度
有效齿宽b=155.0 mm
中心距a=450.0 mm
输入转速n1=6.478RPM
接触强度计算的寿命系数Znt1=1.151095 Znt2=1.220693
接触强度的计算安全系数SH1=1.3068 SH2=1.3905
弯曲强度的计算安全系数SF1=2.1882 SF2=2.1208
可以看出,末级的接触强度安全系数为第一级的1.3倍左右,
按等接触强度设计,为什么接触强度安全系数会相差近30%呢?
分析其原因,可以发现;导致这种因素的主要原因时寿命系数Znt,如果剔除Znt的影响;接触强度还是基本一致的。

本例中若将末级寿命设为4631059小时,则接触强度计算的寿命系数Znt1=0.89614
3 Znt2=0.917692
接触强度的计算安全系数SH1=1.0174 SH2=1.0453
和第一级的SH1=1.0228 SH2=1.0706
相比,还是很接近的。

所以设计多级、大传动比减速机时应额外考虑啮合次数及传动效率的影响。

相关文档
最新文档