汇编语言寻址方式

合集下载

DSP第四章 TMS320C20X系列的寻址方式及汇编指令

DSP第四章 TMS320C20X系列的寻址方式及汇编指令

LT *0+
执行指令前: ARP=1, (AR1)=100H,(AR0)=3 执行操作: 用AR1所指的数据存储器100H内 容装载暂时寄存器; 执行指令后: ARP=1,(AR1)=103H
⑤减去索引量
方法
举例
指令使用AR内容作
LT *0-
为数据存储器地址,
执行指令后AR内容 执行指令前:
自动减去ARO的内容。 ARP=1, (AR1)=100H,(AR0)=3
执行操作:
用AR1所指的数据存储器100H内
容装载暂时寄存器;
执行指令后:
ARP=1,(AR1)=FEH
⑥加上索引量,反向进位
方法
举例
指令使用AR内容作为 数据存储器地址,执 行指令后AR内容自动 加上AR0的内容,该 加法采用反向进位方 法。 注:主要用于FFT算 法
LT *BR0+
把AR0加到辅助寄存器中时,地址以位倒序的方 式产生,即进位是从左向右,而不是从右向左进位。
LTP ind [,ARn]
MAC MAC pma , dma
乘且累加
MAC pma, ind [ , ARn]
MACD MACD pma, dma
乘且累加,并将被寻址数据移至下一单元
MACD pma, ind [, ARn]
MPY MPY dma
MPY ind [, ARn]
MPYA/MPYS
累加前次乘积,再将TREG与被寻址数相乘
PAC PAC
PREG转入累加器ACC
SPH
存储PREG高16位,直接或间接寻址
SPL
存储PREG低16位,直接或间接寻址
例1:MAC
0FF00H,02H ;DP=6,地址300H~37FH,PM=0, CNF=1

第3章 8086的指令系统—3.1寻址方式

第3章 8086的指令系统—3.1寻址方式
EA=[基址寄存器]+([变址寄存器] *比例因子)+位移量 BX,BP SI,DI 1 0,8,16
例:(BX)=2000H,(SI)=1000H,偏移量=0250H,
则EA= 2000H+1000H+0250H=3250H
寻址目的
确定本条指令的操作数据 在指令中 PA:存储器内的绝对地址(20位) 在存储器中 EA:某个段内的相对地址(16位) 在寄存器中 确定下一条指令的地址 根据指令长度计算 根据转移指令的目标地址
寄存器名表示其内容(操作数)
MOV AX, BX
MOV AL, BH
;AX←BX
;AL←BH
演示
第3章: 3.1.3 存储器寻址方式
操作数在主存储器中,用主存地址表示 程序设计时,8088采用逻辑地址表示主存地址
段地址在默认的或用段超越前缀指定的段寄存器中 指令中只需给出操作数的偏移地址(有效地址EA)
演示
;AX←DS:[SI+06H]
第3章:4. 基址加变址寻址方式
有效地址由基址寄存器(BX或BP)的内容加上 变址寄存器(SI或DI)的内容构成: 有效地址=BX/BP+SI/DI 段地址对应BX基址寄存器默认是DS,对应BP基 址寄存器默认是SS;可用段超越前缀改变
MOV AX, [BX+SI] MOV AX, [BX][SI]
*微型计算机汇编语言特点 *微型计算机指令系统概述 *寻址方式
指令及其格式
指令及指令集 计算机能够识别和执行的基本操作命令
指令的作用
告诉CPU干什么?What? 告诉CPU从哪儿取数据?Where? 告诉CPU下一条指令在哪儿?Where? 操作码 操作数或操作数地址 指令的格式

DSP28335汇编教程

DSP28335汇编教程

DSP28335汇编教程当硬件执行指令时,寻找指令所指定的参与运算飞操作数的方式——寻址方式。

根据程序的要求采用不同的寻址方式,可以有效地缩短程序的运行时间和提高代码执行效率。

汇编指令是可执行指令,每一条指令对应一条机器码,用来控制处理器仲的执行部分进行各种操作。

在本章节当中将主要以基于C28x的DSP芯片为例,为读者讲解DSP的寻址方式和汇编指令系统,其中大部分内容也可适用于其他Ti公司的DSP产品。

6.1汇编语言指令集概述在学习C28x系列DSP的寻址方式和汇编指令指令之前,先来对一些基础的知识进行讲解一下先,在汇编程序当中开发人员会常常使用到许多的特殊符号和标志,它们都具有特殊的含义,在学习汇编之前读者们必须先理解这些符号和标志含义,在这里会对其中最常用最重要的操作数符号和寄存器经行详细说明。

在进行汇编讲解之前先来了解一下开发的核心——CPU。

在TMS320C2000系列中,CPU 内核为:C20x/C24x/C240x:C2xLP:C27x/C28x:C27x、C28x这些CPU的硬件结构有一定差别,指令集也不相同,但是,在C28x芯片中可以通过选择兼容特性模式,使C28xCPU与C27xCPU及C2xLPCPU具有最佳兼容性。

可通过状寄存器STl的位OBJMODE和位AMODE的组合,选定模式。

C28x芯片具有3种操作模式:1.C28x模式:在该模式中,用户可以使用C28x的所有有效特性、寻址方式和指令系统,因此,一般应使C28x芯片工作于该种模式。

2.C27x目标——兼容模式:在复位时,C28x的CPU处于C27x目标-兼容模式。

在该模式下,目标码与C27xCPU完全兼容,且它的循环—计数也与C27xCPU兼容。

3.C2xLP源——兼容模式:该模式允许用户运行C2xLP的源代码,这些源代码是用C28x代码生成工具编译生成的。

在下面的讲解当中会牵涉到模式的转换,希望读者要搞清楚每一个模式的对应关系。

汇编语言

汇编语言
练习:
MOV 23H,#30H
MOV 12H,#34H MOV R0,#23H MOV R7,#22H MOV R1,12H; MOV A,@R0; r1=? a=?
MOV 34H,@R1; 34h=? MOV DPTR,#6712H MOV 12H,DPH; 12h=? MOV R0,DPL; MOV A,@R0; r0=? a=?
LOOP: ADD INC
R0, #0FF
A, DPTR R1
;1机器周期
;1机器周期 ;2机器周期
DJNZ
RET
R0, LOOP
;2机器周期
;2机器周期
结果:定时时间 =▁▁▁▁▁
六、控制转移类指令
子程序调用:
概念:子程序(c中叫函数),调用。
1)acall/lcall addr11/addr16 区别在于访问的范围:一个是2k一个是64k; 2)ret
三、算术运算类指令
十进制调整:
例: mov a,#23h
add a,#18h; a=? da a; a=?
note: DA指令将十六进制的加法结果调整为BCD码加 法的结果。
四、逻辑运算&位运算
逻辑运算:0-1表示true-false
1)与: anl
2)或: rol 3)异或:xrl 4)非: cpl
xchd a,@r0;
寻址方式
寻址方式: (操作数如何取得的问题) 上述提到了类似的指令:
1)mov a,#30h 2)mov a,30h 3)mov a,r0 4)mov c,30h 5)movc a,@a+dptr
对应的寻址方式是: 1)立即数寻址;2)直接寻址;3)寄存器寻址; 4)位寻址;5)变址寻址;

第二章 80868088寻址方式和指令系统

第二章 80868088寻址方式和指令系统

(5)奇偶标志PF
用于反映运算结果中“1”的个数。如果“1”的个数为偶数,则OF被置1,否则OF被清0。
(6)辅助进位标志AF
在字节操作时,如发生低半字节向高半字节进位或借位;在字操作时,如发生低字节向高字 节进位或借位,则辅助进位标志AF被置1,否则AF被清0。
②状态控制标志
(1)方向标志DF
方向标志决定着串操作指令执行时,有关指针寄存器调整方向。 当DF为1时,串操作指令按减方式改变有关的存储器指针值, 当DF为0时,串操作指令按加方式 改变有关的存储器指针值。
其中:存储单元的物理地址是12345H, 标出的:两个重叠段的段值分别是:1002H和1233H, 在对应段内的偏移分别是2325H和0015H。
采用段值和偏移构成逻辑地址后,段值由段寄存器给出,偏移可由指令指针IP、堆栈指针SP 和其他可作为存储器指针使用的寄存器(SI、DI、BX和BP)给出,偏移还可直接用16位数给 出。
图中指令存放在代码段中,OP表示该指令的操作码部分 再例如: MOV AL,5 则指令执行后,(AL)=05H
MOV BX,3064H 则指令执行后, (BX)=3064H
2、寄存器寻址方式
操作数在CPU内部的寄存器中,指令指定寄存器号。
对于16位操作数数,寄存器可以是:
AX、BX、CX、DX、SI、DI、SP和BP等;
指令中不使用物理地址,而是使用逻辑地址,由总线接口单元BIU按需要根据段值和偏移自动 形成20位物理址。
3、段寄存器的引用
由于8086/8088CPU有四个段寄存器,可保存四个段值。所以可同时使用四个段值,但这四个 段有所分工。
在取指令的时候,自动引用代码段寄存器CS,再加上由IP所给出的16位偏移,得到要取指令 的物理地址。

汇编语言第3章 指令系统和寻址方式

汇编语言第3章 指令系统和寻址方式

5.寄存器相对寻址方式(register relative addressing)
EA=基址(base) 或变址( index)+偏移量 (displacement)
基址寄存器有:BX,BP 变址寄存器有:SI,DI 注:默认段是数据段和堆栈段
(SI) 物理地址=(DS)*16+(BX)+displacement
(DI) =(SS)*16+(BP)+ (SI)+displacement (DI)
例:mov AX,ARRAY[BX][DI] (DS)=1000H,(BX)=1200H, (DI)=1000H, ARRAY=1000H 物理地址=DS*16+(BX)+(DI)+ARRAY =DS*16+1200+1000+1000=13200H 若:(13200)=34H,(13201)=12H 则,(AX)=1234H 允许段超越。 例:mov AL,ES:ARRAY[BX][DI] 用途:处理成组数据(举例说明)
2.段内间接寻址(intrasegment indirect addressing) (IP)新=EA=寄存器或存储单元的内容 寄存器:所有寄存器寻址方式可用的寄存器 存储单元:所有存储单元寻址方式均适用 例:JMP SI (IP)=(SI) JMP WORD PTR VAR或简写JMP VAR (DS)=1000H,VAR=2000H 存储单元的物理地址=(DS)*16+VAR=12000H (12000H)=1234H 则,(IP)新=1234H
4.寄存器间接寻址方式(register indirect addressing)
EA=基址(base) 或变址( index) 基址寄存器有:BX,BP 变址寄存器有:SI,DI 注:默认段是数据段和堆栈段 (SI) 物理地址=(DS)*16+(BX) (DI) =(SS)*16+(BP)

汇编的寻址方式

汇编的寻址方式

在汇编语言中,寻址方式指的是指令如何访问内存中的操作数或数据。

不同的处理器体系结构支持不同的寻址方式。

以下是一些常见的寻址方式:立即寻址(Immediate Addressing):操作数直接包含在指令中。

例如:MOV AX, 5 ; 将寄存器AX 设置为立即数5寄存器寻址(Register Addressing):操作数位于寄存器中。

例如:MOV AX, BX ; 将寄存器BX 的值移动到寄存器AX直接寻址(Direct Addressing):操作数的地址直接指定在指令中。

例如:MOV AX, [1234] ; 将内存地址1234 处的数据移动到寄存器AX寄存器间接寻址(Register Indirect Addressing):指令中包含一个寄存器,该寄存器包含操作数的地址。

例如:MOV AX, [BX] ; 将寄存器BX 中存储的地址处的数据移动到寄存器AX基址寻址(Base Addressing):使用基址寄存器加上一个偏移量来计算内存地址。

例如:MOV AX, [BX + 10] ; 将寄存器BX 加上偏移量10 后的地址处的数据移动到寄存器AX相对寻址(Relative Addressing):操作数的地址是相对于当前指令位置的偏移量。

例如:JMP label_name ; 无条件跳转到标签label_name 处变址寻址(Indexed Addressing):使用一个寄存器的值作为基址,另一个寄存器的值作为偏移量。

例如:MOV AX, [SI + DI] ; 将寄存器SI 和DI 中的值相加,然后将结果作为地址处的数据移动到寄存器AX相对基址寻址(Relative Base Addressing):使用基址寄存器和相对偏移量的组合。

例如:MOV AX, [BX + 10] ; 将寄存器BX 加上偏移量10 后的地址处的数据移动到寄存器AX这只是一些基本的寻址方式,具体的汇编语言和处理器架构可能会有其他特定的寻址方式。

汇编语言2-1寻址方式

汇编语言2-1寻址方式

EA =
+
பைடு நூலகம்
注意: 允许段超越。 注意:①允许段超越。 ②[BX+BP]或[SI+DI]是非法搭配 或 是非法搭配
例: MOV AX, [BX] [SI] MOV AX, [BX+SI] MOV AX, DS: [BP] [DI] 错误例: 错误例: × MOV AX, [BX] [BP] × MOV AX, [DI] [SI]
指令操作例:MOV AX,DATA[DI][BX] 指令操作例: , 操作例 若DS=8000H, BX=2000H, DI=1000H, DATA=200H 则指令执行后AH=[83201H], AL=[83200H] 则指令执行后
目的 源
指令举例:
MOV AX , BX 操作码 操作数 ADD AX,[SI+6] INC HLT [BX]
二、8086的操作数分类
立即数(常数) 1、立即数(常数)
取值范围如下表: 取值范围如下表 8位 无符号数 00H-FFH(0-255)
带符号数80H-7FH(-128~127)
16位 0000H-FFFFH(0-65535)
存储器寻址方式
1、 立即寻址 、
直接把参与操作的数据写在指令中,是指令的一部分, 直接把参与操作的数据写在指令中,是指令的一部分,该数 据称为立即数。操作数可以是各种数制下的数值(相当于8位 据称为立即数。操作数可以是各种数制下的数值(相当于 位 位二进制数),也可以是带单引号的字符。 或16位二进制数),也可以是带单引号的字符。 位二进制数),也可以是带单引号的字符 强调: 强调:立即寻址只能用于源操作数 例如: 2050H,执行后, 执行后, 例如: MOV AX,2050H ; AX , 执行后 MOV AL,05H , ;AH = 20H,AL = 50H , MOV AL,‘A’ , 观察指令: 观察指令: MOV 05H,AL MOV BL,324D , , MOV CH,2050H MOV DL,‘25’ , , 注意: 立即数永远不能作目的操作数。 注意:1. 立即数永远不能作目的操作数。 2. 源操作数和目的操作数要互相匹配。 源操作数和目的操作数要互相匹配。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
80x86的寻址方式
计算机是通过执行指令序列来解决问题的,因此每种计算机都 有一组指令系统提供给用户使用,这组指令集就称为计算机的 指令系统。 计算机中的指令由操作码字段和操作数字段两部分组成。 操作码 操作数 ... 操作数
指令的操作码字段在机器里面的表示比较简单,只需对每一种 操作指定确定的二进制代码就可以了。 指令的操作数字段情况较为复杂。 确定指令中用于说明操作数所在地址的方法称为寻址方法。 8086/8088有七种基本的寻址方式。
1.立即寻址方式 操作数就包含在指令中,它作为指令的一部分,跟在操作后存 放在代码段,这种操作数就称为立即数。 立即数可以是8位的,也可以是16位的。 如果是16位立即数,按“高高低低”原则进行读取。 例如:MOV AX, 1234H
再如:MOV AL, 5 MOV BX, 2064H
则执行指令后(AL)=05H 则执行指令后,(BX)=3064H
指令中也可指定段超越前缀来取得其它段中的数据。 如,MOV AX , ES : [BX] 引用的段寄存器是ES 请熟悉下面的表达形式: MOV [SI] , AX ; 目的操作数间接寻址 MOV [BP] , CX ;目的操作数引用的段寄存器是SS MOV SI , AX; 目的操作数寄存器寻址
5.寄存器相对寻址方式 操作数在存储器中,操作数的有效地址是一个基址寄存器 (BX、BP)或变址寄存器(SI、DI)内容加上指令中给定的8 位或16位位移量之和。 即:
7.相对基址加变址寻址方式 操作数在存储器中,操作数的有效地址是由: 基址寄存器之一的内容与变址寄存器之一的内容 及指令中给定的8位或16位位移量相加得到。 即:
在一般情况下,如果BP之内容作为有效地址的一部分,那么 引用的段寄存器是SS;否者以DS之内容为段值。 在指令中给定的8位或16位位移量采用补码形式表示。在计算 机有效地址时,如果位移量是8位,那么被带符号扩展成16位。 当所取得的有效地址超过FFFFH是,就取64K的模。
请熟悉下面的写作形式: MOV BX , [BP-4] 源操作数间接相对寻址,引用的段寄存器是SS。 MOV ES : [BX + 5] , AL 目的操作数采用寄存器相对寻址,引用的段寄存器是ES。 指令MOV AX , [SI + 3]与MOV AX , 3[SI]是等价的。
6.基址加变址寻址方式 操作数在存储器中,操作数的有效地址是由: 基址寄存器之一的内容与变址寄存器之一的内容相加。 即:
3.直接寻址方式 操作数在寄存器中,指令直接包含有操作数的有效地址(偏移 地址)。操作数一般存放在数据段。 所以,操作数低地址由DS加上指令中直接给出的16位偏移得 到。 例如:如果(DS)=2000H ,MOV AX, [8054H]
在汇编语言指令中,可以用符号地址代替数值地址, 如:MOV AX, VALUE 此时,VALUE为存放操作数单元的符号地址。 如写成:MOV AX, [VALUE]也是可以的,两者等价。 如VALUE在附加段中,则应指定段超越前缀如下: MOV AX , ES : VALUE 或MOV AX , ES:[VALUE] 直接寻址方式常用语处理单个存储器变量的情况。它可以实现 在64K字节的段内寻址操作数。直接寻址的操作数通常是程序 使用的变量。 注意:立即寻址和直接寻址书写表示方法上是不同的,直接寻 址的地址要放在方括号中。在源程序中,往往用变量名表示。
2.寄存器寻址方式 操作数在CPU内部的寄存器中,指令指定寄存器号。 对于16位操作数,寄存器可以是: AX,BX,CX,DX,SI,DI,SP,BP 对于8位操作数,寄存器可以是: AL,AH,BL,BH,CL,CH,DL,DH 这种寻址方式由于操作数就在寄存器中,不需要访问存储器来 取得操作数,因而可以取得较高的运算速度。 例如:MOV AX, BX 如指令执行前(AX)=3064H, (BX)=1234H。则指令执行后, (AX)=1234H, (BX)保持不变 又如: MOV SI, AX MOV AL, DH 都是寄存器寻址的的例子。
4.寄存器间接寻址方式 操作数在存储器中,操作数有效地址在SI、DI、BX、BP这四 个寄存器之一中。 在一般情况下,如果有效地址在SI、DI和BX中,则以DS寄存 器之内容位段值。 如果有效地址在BP中,则以SS段寄存器之内容位段值。 例如:如果(DS)=5000H ,(SI)=1234H MOV AX, [SI]
在一般情况下,如果SI、DI或BX之内容作为有效地址的一部 分,那么引用的段寄存器是DS;如果BP之内容作为有效地址的 一部分,那么引用的段寄存器是SS。 在指令中给定的8位或16位位移量采用补码形式表示。在计算 有效地址时,如位移量是8位,则被带符号扩展成,(DI)=3678H MOV AX, [DI+1234H] 则,物理地址=50000+3678+1223=5489BH 假设该字存储单元的内容如下,则(AX)=55AAH
在一般情况下,如果BP之内容作为有效地址的一部分,那么 引用的段寄存器是SS;否者以DS之内容为段值。
例如:如果(DS)=2100H ,(BX)=0158H,(DI)=10A5H MOV AX, [BX][DI] 假设该字存储单元的内容如下,则(AX)=1234H
下面两种表示方法是等价的: MOV AX , [BX + DI] MOV AX , [DI][BX] 下面指令中,目的操作数采用基址加变址寻址,引用的段寄存 器是DS。 MOV DS :[BP + SI] , AL 下面指令中,源操作数采用基址加变址寻址,引用的段寄存器 ES。 MOV AX , ES :[BX + SI] 这种寻址方式适用于处理数据或表格。用基址寄存器存放数组 首地址,而用变址寄存器来定位数组中的各元素。或反之。 由于两个寄存器都可改变,所以能更加灵活地访问数组或表格 中的元素。
相关文档
最新文档