物理竞赛知识点总结 (1)(良心出品必属精品)
高中物理竞赛知识点

高中物理竞赛知识点摘要:在高中物理竞赛中,掌握一定的物理知识点对于取得好成绩至关重要。
本文将介绍一些高中物理竞赛中常见的知识点,包括力学、热学、电磁学和光学等方面的内容。
通过学习和理解这些知识点,同学们可以更好地准备和应对物理竞赛。
一、力学1. 牛顿三定律:牛顿第一定律(惯性定律)、牛顿第二定律(力与加速度的关系)、牛顿第三定律(作用力和反作用力)。
2. 运动学:匀速直线运动、匀加速直线运动、曲线运动、圆周运动等基本概念和计算方法。
3. 力学中的几个关键概念:作用力、质量、重力、摩擦力、弹力、弹性势能、动能、功和功率等。
4. 牛顿运动定律的应用:通过具体问题的分析和计算,掌握牛顿运动定律在实际运动中的应用,如斜面运动、谐振运动等。
5. 天体运动:了解行星运动和开普勒定律,理解宇宙中的引力作用。
二、热学1. 温度和热量:热学基本概念,包括温度、热量、热平衡、比热容等。
2. 热传导和传热:热传导的基本原理和计算,了解传热的三种方式:导热、对流和辐射。
3. 热力学定律:热力学第一定律(能量守恒定律)、热力学第二定律(热不可逆过程、熵增原理)等。
4. 热力学循环和功率:热力学循环的工作原理与效率计算,了解功率的概念和计算方法。
三、电磁学1. 电荷和电场:电荷的性质和基本单位,电场的概念和计算方法。
2. 电位差和电势:电场中两点之间的电位差和电势差的概念和计算。
3. 电流和电阻:电流的定义和计算,欧姆定律及其在电路中的应用。
4. 电路分析和电路图:串联、并联、混联电路的分析,理解电路图的符号和组成。
5. 磁场和电磁感应:磁场的产生和性质,电磁感应的基本原理和应用,包括法拉第电磁感应定律等。
四、光学1. 光的直线传播和折射:光的直线传播和折射的基本规律与计算方法,了解光的折射定律和斯涅尔定律。
2. 光的反射:光的反射定律和镜面成像的基本原理。
3. 光的干涉与衍射:理解干涉和衍射的基本概念和现象,了解杨氏双缝干涉和单缝衍射的基本原理。
初中物理竞赛的知识点梳理与归纳

初中物理竞赛的知识点梳理与归纳物理竞赛是一项挑战性极高,充满乐趣和智慧的活动。
参加物理竞赛不仅可以提升学生的科学素养和动手能力,还能培养学生的解决问题的能力和团队合作精神。
在参加初中物理竞赛前,我们需要充分了解和掌握涉及的知识点。
本文将梳理和归纳初中物理竞赛常见的知识点,帮助大家更好地备战竞赛。
1. 运动力学运动力学是物理学中非常基础的一个分支,主要研究物体的运动规律和相关的物理量。
在初中物理竞赛中,运动力学通常涉及以下几个方面的内容:1.1 运动的描述与分析:涉及到速度、加速度、位移、时间、路径等物理量的概念和计算方法,例如匀速运动、加速运动、自由落体等。
1.2 牛顿运动定律:涉及到质量、力、加速度的关系,以及力的合成和分解等。
1.3 平抛运动:涉及到水平抛射的物体的运动轨迹、最大高度、飞行时间等。
2. 力学力学是研究物体受力和运动的学科,是物理竞赛中的重点内容。
以下是常见的力学知识点:2.1 牛顿第一定律:也称为惯性定律,描述了物体在受力为零时的状态。
2.2 牛顿第二定律:描述了力与物体质量和加速度之间的关系,通常用公式F=ma表示。
2.3 牛顿第三定律:描述了物体间互相作用的力的特点,即作用力和反作用力大小相等,方向相反。
2.4 弹簧力与弹簧振动:涉及到弹簧的弹力和弹性势能,以及弹簧振动的周期、频率等。
3. 热学热学是研究热量、温度以及热量传递的学科。
以下是与热学相关的知识点:3.1 温度与热量:涉及到温度的计量单位,以及热量的传递方式(传导、对流和辐射)。
3.2 热平衡与热传导:涉及到热平衡和物体间的热传导等概念。
3.3 热膨胀:涉及到物体由于温度变化而发生的体积、长度等变化。
3.4 热量计算:涉及到热量的计算,包括物体的热容量、比热容等。
4. 电学电学是研究电荷、电场、电流以及电磁场的学科。
以下是初中物理竞赛中常见的电学知识点:4.1 静电学:涉及到静电荷、静电场、电势差、电容等概念和计算方法。
物理竞赛知识点总结word

物理竞赛知识点总结word1. 粒子力学粒子力学是物理竞赛中的重要知识点,它研究了微观量子领域中的粒子运动规律。
在粒子力学中,物理学家们研究了微观粒子(如电子、质子等)的特性和运动规律。
在物理竞赛中,考生需要了解量子力学中的一些重要概念,如波粒二象性、不确定性原理等。
此外,还需要熟悉一些重要的量子力学公式和应用。
2. 特殊相对论特殊相对论是物理竞赛中的另一重要知识点,它由爱因斯坦在20世纪初提出。
特殊相对论研究了高速运动物体的运动规律,推导出了著名的质能方程E=mc^2。
在物理竞赛中,考生需要了解特殊相对论中的洛伦兹变换、时间膨胀、长度收缩等重要概念,以及掌握相对论效应的应用。
3. 经典力学经典力学是物理竞赛中的基础知识点,它研究了宏观物体的运动规律。
在经典力学中,牛顿三定律是最重要的基础。
在物理竞赛中,考生需要熟练掌握牛顿运动定律、牛顿万有引力定律、动量守恒定律等经典力学的基本原理和公式,并能够熟练应用到各种物理问题中。
4. 电磁学电磁学是物理竞赛中的另一个重要知识点,它研究了电场和磁场的相互作用规律。
在电磁学中,麦克斯韦方程组是最重要的理论基础。
在物理竞赛中,考生需要熟练掌握电场和磁场的基本概念、麦克斯韦方程组以及电磁场的性质和应用。
5. 光学光学是物理竞赛中的重要知识点,它研究了光的传播规律和光学现象。
在光学中,光的折射、反射、干涉、衍射等现象是重要内容。
在物理竞赛中,考生需要熟练掌握光学中的基本规律和公式,并能够应用到各种光学问题中。
6. 热力学热力学是物理竞赛中的另一个重要知识点,它研究了热量和能量的转化规律。
在热力学中,热力学定律和热力学循环是重要内容。
在物理竞赛中,考生需要了解热力学的基本概念、热力学定律和循环原理,并能够应用到各种热力学问题中。
7. 物质结构物质结构是物理竞赛中的另一个重要知识点,它研究了物质的结构和性质。
在物质结构中,结晶学和凝聚态物理是重要内容。
在物理竞赛中,考生需要了解晶体结构和物质的晶体性质,掌握凝聚态物理的基本概念和原理,并能够应用到各种材料科学问题中。
高考物理常用竞赛知识点

高考物理常用竞赛知识点物理是高考科目中的一个重要组成部分,也是竞赛中常考的科目之一。
本文将介绍高考物理竞赛中常用的知识点,帮助同学们快速掌握关键内容。
1. 动力学1.1 牛顿第一定律:物体在外力作用下静止或匀速运动。
例如,当一个车在平地上匀速行驶时,承受的摩擦力与推动力相等。
1.2 牛顿第二定律:物体的加速度与作用力成正比,与质量成反比。
F=ma是牛顿第二定律的基本表达式。
1.3 牛顿第三定律:作用力与反作用力大小相等,方向相反。
例如,两个人拉扯一根绳子,受力大小相等,方向相反。
2. 动能和势能2.1 动能:物体运动时具有的能量。
动能与物体的质量和速度的平方成正比。
动能定理表示为:E_k=1/2mv^2,其中E_k为动能,m为质量,v为速度。
2.2 势能:物体由于位置、形状等因素具有的能量。
常见势能包括重力势能、弹性势能和化学势能等。
3. 电学基础3.1 电流和电路:电流是电荷在导体中移动的现象。
电路是由电源、导线和电阻等组成的路径,电流从电源正极到负极流动。
3.2 电压和电阻:电压是电流推动电荷流动的力量,单位为伏特(V)。
电阻是阻碍电流流动的因素,单位为欧姆(Ω)。
3.3 欧姆定律:在恒定温度下,电流通过导体的大小与电阻成反比,与电压成正比。
表达式为:I=V/R,其中I为电流,V为电压,R为电阻。
4. 光学4.1 光的直线传播:光在同一介质中直线传播,当遇到不同介质时,会产生折射现象。
4.2 光的反射:光线遇到光滑的表面时,发生反射。
光的入射角等于反射角。
4.3 球面镜成像:凸透镜和凹透镜能够使平行光汇聚或发散,形成实像或虚像。
5. 热学基础5.1 温度和热量:温度是物体热运动程度的度量,热量是物体传递热能的形式。
温度的单位是摄氏度(℃),热量的单位是焦耳(J)。
5.2 热传导:热量通过物体内部分子间的碰撞传递。
热传导受材料热导率和温度差的影响。
5.3 热容和相变:热容是物体温度升高1摄氏度所吸收或释放的热量。
初中物理竞赛知识点汇总

初中物理竞赛知识点汇总物理是一门研究物质和能量、以及它们之间相互作用的学科。
在初中物理竞赛中,学生需要掌握一定的物理知识,以便应对各种题目和问题。
以下是初中物理竞赛知识点的汇总。
1. 运动学和力学- 直线运动和曲线运动的区别:直线运动是指物体沿直线路径运动,而曲线运动是指物体沿弯曲路径运动。
- 速度和加速度的计算:速度是物体在单位时间内所做的位移,加速度是物体在单位时间内速度的变化量。
- 牛顿三定律:第一定律(惯性定律)、第二定律(加速度定律)、第三定律(作用-反作用定律)。
- 重力和万有引力定律:万有引力是指两个物体之间存在的引力,大小与两个物体的质量和距离有关。
2. 热学- 温度和热量:温度是物体内部分子运动的快慢程度,热量是物体和周围环境之间的能量传递。
- 热传导和热辐射:热传导是指物体内部的热量传递,热辐射是指物体发出的热能以光的形式传递。
- 热膨胀和热收缩:热膨胀是指物体在受热时体积扩大,热收缩是指物体在受冷时体积缩小。
3. 光学- 光的反射和折射:光的反射是指光线从一种介质进入另一种介质时改变传播方向,折射是指光线通过界面后改变传播方向。
- 光的色散:光的色散是指白光经过光的折射而被分解成不同颜色的光束。
- 镜子和透镜:凸透镜会聚光线,凹透镜发散光线,平面镜反射光线。
4. 电学- 电流和电阻:电流是指电荷在单位时间内通过导体的数量,电阻是指阻碍电流通过的导体特性。
- 串联和并联电路:串联电路是指电流依次通过各个元件,而并联电路是指电流分流通过多个元件。
- 电场和电力线:电场是指电荷周围的作用域,电力线是用来表示电场强度和方向的线。
5. 动力学- 动能和势能:动能是物体由于运动而具有的能量,势能是物体由于位置或形状而具有的能量。
- 功和功率:功是力对物体做的位移产生的效果,功率是单位时间内做功的能力。
- 机械能守恒定律:在没有外力做功的情况下,封闭系统内的机械能守恒。
以上仅是初中物理竞赛中的一些基本知识点,除了了解这些知识点,学生还应该能够运用它们解决实际问题。
物理竞赛必备知识点总结

物理竞赛必备知识点总结一、力学1. 运动学(1)速度、加速度的定义及其计算方法;(2)匀变速直线运动的相关公式以及应用;(3)平抛运动、倾斜抛体运动的相关公式及其应用。
2. 动力学(1)牛顿三定律及其应用;(2)运动方程的推导和应用;(3)弹簧振子、简谐振动的相关公式及其应用;(4)摩擦力的计算及其应用。
二、热学1. 热力学基本概念(1)热力学系统、热力学平衡和热平衡的含义及其判定方法;(2)内能、热量和做功的关系;(3)理想气体状态方程及其应用。
2. 热力学第一定律(1)热功当量的含义及其计算;(2)绝热过程、等容过程、等压过程、等温过程的基本特征及其应用。
3. 热力学第二定律(1)卡诺循环的原理及其效率;(2)热机和制冷机的效率公式及其应用。
三、电磁学1. 电学基础(1)库仑定律及其应用;(2)电场强度、电势以及电势差的定义及计算方法;(3)电场中带电粒子的运动方程及其应用。
2. 磁学基础(1)洛伦兹力的计算及其应用;(2)电流和磁场的相互作用;(3)安培环路定理、比奥-萨伐特定律及其应用。
3. 电磁感应(1)法拉第电磁感应定律的条件和公式;(2)楞次定律的应用;(3)自感系数和互感系数的计算及其应用。
四、光学1. 几何光学(1)光的直线传播及其应用;(2)折射定律、全反射定律及其应用;(3)薄透镜成像公式、放大倍数计算及其应用。
2. 波动光学(1)双缝干涉、多缝干涉及其应用;(2)多普勒效应的计算和应用;(3)光的偏振和光栅原理及其应用。
五、原子物理1. 光电效应(1)光电效应的基本概念和实验事实;(2)光电发射功函数及其与光强的关系;(3)反光电效应及其应用。
2. 波尔模型(1)原子光谱的特点及其解释;(2)氢原子光谱的解释及其能级计算。
六、现代物理1. 相对论(1)相对论长度收缩及其推导;(2)相对论时间膨胀及其推导;(3)相对论动量和能量的变化及其应用。
2. 量子力学(1)波粒二象性及其实验事实;(2)薛定谔方程的基本概念及其应用;(3)不确定性原理的解释及其应用。
物理知识竞赛知识点总结

物理知识竞赛知识点总结物理知识竞赛常常是学生们参与的一种竞赛活动,这类竞赛要求参赛者对物理学的知识有着深入的了解和掌握。
下面将对物理知识竞赛的一些常见考点进行总结,以帮助参赛者更好地备战竞赛。
力学1. 牛顿运动定律物体保持匀速直线运动或静止状态的状态称为惯性状态:第一定律:一个物体若受到外力为零,则物体将保持匀速直线运动或静止状态。
第二定律:一个物体的加速度与它所受的合外力成正比,方向与合外力方向相同,与物体的质量成反比。
第三定律:任意两个物体之间互相作用的两个力大小相等,方向相反。
2. 动能和动能定理动能是物体由于运动而具有的能量。
物体的动能与其质量和速度的平方成正比。
动能定理:当物体受到外力做功时,它的动能发生改变,其变化量等于外力对物体做的功。
3. 势能和机械能守恒重力势能:物体由于被抬高而具有的能量。
重力势能的大小取决于物体的高度和重力加速度。
弹簧势能:弹簧在被拉伸或压缩时具有的能量,与弹簧的弹性系数和伸长或压缩的距离成正比。
机械能守恒定律:只有重力和非弹性力(摩擦力等)对物体做功的情况下,机械能(动能和重力势能之和)在过程中是守恒的。
4. 圆周运动角速度:描述物体在圆周运动中的角位移与时间的比率。
角加速度:描述物体在圆周运动中的角速度随时间的变化率。
向心力:使物体朝轴心方向运动的力。
向心力大小与物体质量、角速度和半径成正比。
热学1. 热力学定律热力学第一定律:热力学能量守恒定律,系统的内能变化等于系统所接受的热量与做功的和。
热力学第二定律:热量不可能自发地从低温物体传递给高温物体而不产生其他效果。
2. 热传递热传递方式包括传导、对流和辐射。
传导是指热量通过材料分子间的碰撞而传递,对流是指流体内部的热量传递方式,辐射是指热量以电磁波形式传递。
3. 热力学循环卡诺循环:热力学中具有最高效率的循环。
它由两个等温过程和两个绝热过程组成,并且在温度高的热源和温度低的热源之间实现理想的热力学循环。
初中物理竞赛常考知识点的梳理

初中物理竞赛常考知识点的梳理物理是自然科学的一个重要分支,它研究的是自然界中物质、能量、力量之间的相互关系。
在初中物理竞赛中,考察的知识点涉及广泛,既包括基础理论,也包括实际应用。
为了更好地准备竞赛,本文对初中物理竞赛常考的知识点进行梳理和总结。
一、力的基本概念与运动学1. 力的概念和分类力是物体之间相互作用的结果,可以分为接触力和非接触力。
常见的接触力有摩擦力、弹力和支持力等,而非接触力有重力、电磁力等。
2. 公式:力的计算公式是力等于质量乘以加速度,即 F = m × a。
3. 运动图像与速度运动图像包括匀速直线运动、加速直线运动和自由落体运动。
速度是描述物体运动快慢和方向的物理量,用公式 v = s / t 来计算。
4. 速度图像与位移速度图像包括匀速直线运动的速度-时间图和加速直线运动的速度-时间图。
位移是物体运动的起点和终点之间的直线距离,用公式 s = v × t 来计算。
5. 加速度和力的关系加速度是速度变化率的物理量,用公式 a = (v - u) / t 来计算。
力和加速度成正比,即 F ∝ a,这是牛顿第二定律的基本原理。
二、光的传播和反射1. 光的直线传播光在真空中是直线传播的。
光线的方向可以用光的传播路径表示,光线的传播方向和光的传播方向相同。
2. 反射定律光在界面上的入射角等于反射角,即 i = r。
当光从光疏介质射向光密介质时,入射角大于和反射角小于90°;当光从光密介质射向光疏介质时,入射角小于和反射角大于90°。
3. 镜子和镜像平面镜上的每一个点都能够发出光线,并且按照反射定律进行反射。
镜子的位置称为光学中心。
镜面上的光线经过反射形成的像称为镜像。
4. 光的折射光从一种介质进入另一种介质时会发生折射。
光线由光疏介质射向光密介质时向法线偏向,光线由光密介质射向光疏介质时远离法线。
三、热传导和热传递1. 热传导热传导是热从高温物体传到低温物体的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、理论基础力学1、运动学参照系。
质点运动的位移和路程,速度,加速度。
相对速度。
矢量和标量。
矢量的合成和分解。
匀速及匀速直线运动及其图象。
运动的合成。
抛体运动。
圆周运动。
刚体的平动和绕定轴的转动。
2、牛顿运动定律力学中常见的几种力牛顿第一、二、三运动定律。
惯性参照系的概念。
摩擦力。
弹性力。
胡克定律。
万有引力定律。
均匀球壳对壳内和壳外质点的引力公式(不要求导出)。
开普勒定律。
行星和人造卫星的运动。
3、物体的平衡共点力作用下物体的平衡。
力矩。
刚体的平衡。
重心。
物体平衡的种类。
4、动量冲量。
动量。
动量定理。
动量守恒定律。
反冲运动及火箭。
5、机械能功和功率。
动能和动能定理。
重力势能。
引力势能。
质点及均匀球壳壳内和壳外的引力势能公式(不要求导出)。
弹簧的弹性势能。
功能原理。
机械能守恒定律。
碰撞。
6、流体静力学静止流体中的压强。
浮力。
7、振动简揩振动。
振幅。
频率和周期。
位相。
振动的图象。
参考圆。
振动的速度和加速度。
由动力学方程确定简谐振动的频率。
阻尼振动。
受迫振动和共振(定性了解)。
8、波和声横波和纵波。
波长、频率和波速的关系。
波的图象。
波的干涉和衍射(定性)。
声波。
声音的响度、音调和音品。
声音的共鸣。
乐音和噪声。
热学1、分子动理论原子和分子的量级。
分子的热运动。
布朗运动。
温度的微观意义。
分子力。
分子的动能和分子间的势能。
物体的内能。
2、热力学第一定律热力学第一定律。
3、气体的性质热力学温标。
理想气体状态方程。
普适气体恒量。
理想气体状态方程的微观解释(定性)。
理想气体的内能。
理想气体的等容、等压、等温和绝热过程(不要求用微积分运算)。
4、液体的性质流体分子运动的特点。
表面张力系数。
浸润现象和毛细现象(定性)。
5、固体的性质晶体和非晶体。
空间点阵。
固体分子运动的特点。
6、物态变化熔解和凝固。
熔点。
熔解热。
蒸发和凝结。
饱和汽压。
沸腾和沸点。
汽化热。
临界温度。
固体的升华。
空气的湿度和湿度计。
露点。
7、热传递的方式传导、对流和辐射。
8、热膨胀热膨胀和膨胀系数。
电学1、静电场库仑定律。
电荷守恒定律。
电场强度。
电场线。
点电荷的场强,场强叠加原理。
均匀带电球壳壳内的场强和壳外的场强公式(不要求导出)。
匀强电场。
电场中的导体。
静电屏蔽。
电势和电势差。
等势面。
点电荷电场的电势公式(不要求导出)。
电势叠加原理。
均匀带电球壳壳内和壳外的电势公式(不要求导出)。
电容。
电容器的连接。
平行板电容器的电容公式(不要求导出)。
电容器充电后的电能。
电介质的极化。
介电常数。
2、恒定电流欧姆定律。
电阻率和温度的关系。
电功和电功率。
电阻的串、并联。
电动势。
闭合电路的欧姆定律。
一段含源电路的欧姆定律。
电流表。
电压表。
欧姆表。
惠斯通电桥,补偿电路。
3、物质的导电性金属中的电流。
欧姆定律的微观解释。
液体中的电流。
法拉第电解定律。
气体中的电流。
被激放电和自激放电(定性)。
真空中的电流。
示波器。
半导体的导电特性。
P型半导体和N型半导体。
晶体二极管的单向导电性。
三极管的放大作用(不要求机理)。
超导现象。
4、磁场电流的磁场。
磁感应强度。
磁感线。
匀强磁场。
安培力。
洛仑兹力。
电子荷质比的测定。
质谱仪。
回旋加速器。
5、电磁感应法拉第电磁感应定律。
楞次定律。
自感系数。
互感和变压器。
6、交流电交流发电机原理。
交流电的最大值和有效值。
纯电阻、纯电感、纯电容电路。
整流和滤波。
三相交流电及其连接法。
感应电动机原理。
7、电磁振荡和电磁波电磁振荡。
振荡电路及振荡频率。
电磁场和电磁波。
电磁波的波速,赫兹实验。
电磁波的发射和调制。
电磁波的接收、调谐,检波。
光学1、几何光学光的直进、反射、折射。
全反射。
光的色散。
折射率与光速的关系。
平面镜成像。
球面镜成像公式及作图法。
薄透镜成像公式及作图法。
眼睛。
放大镜。
显微镜。
望远镜。
2、波动光学光的干涉和衍射(定性)光谱和光谱分析。
电磁波谱。
3、光的本性光的学说的历史发展。
光电效应。
爱因斯坦方程。
波粒二象性。
原子和原子核1、原子结构卢瑟福实验。
原子的核式结构。
玻尔模型。
用玻尔模型解释氢光谱。
玻尔模型的局限性。
原子的受激辐射。
激光。
2、原子核原子核的量级。
天然放射现象。
放射线的探测。
质子的发现。
中子的发现。
原子核的组成。
核反应方程。
质能方程。
裂变和聚变。
基本粒子。
数学基础1、中学阶段全部初等数学(包括解析几何)。
2、矢量的合成和分解。
极限、无限大和无限小的初步概念。
3、不要求用微积分进行推导或运算。
二、实验基础1、要求掌握国家教委制订的《全日制中学物理教学大纲》中的全部学生实验。
2、要求能正确地使用(有的包括选用)下列仪器和用具:米尺。
游标卡尺。
螺旋测微器。
天平。
停表。
温度计。
量热器。
电流表。
电压表。
欧姆表。
万用电表。
电池。
电阻箱。
变阻器。
电容器。
变压器。
电键。
二极管。
光具座(包括平面镜、球面镜、棱镜、透镜等光学元件在内)。
3、有些没有见过的仪器。
要求能按给定的使用说明书正确使用仪器。
例如:电桥、电势差计、示波器、稳压电源、信号发生器等。
4、除了国家教委制订的《全日制中学物理教学大纲》中规定的学生实验外,还可安排其它的实验来考查学生的实验能力,但这些实验所涉及到的原理和方法不应超过本提要第一部分(理论基础),而所用仪器就在上述第2、3指出的范围内。
5、对数据处理,除计算外,还要求会用作图法。
关于误差只要求:直读示数时的有效数字和误差;计算结果的有效数字(不做严格的要求);主要系统误差来源的分析。
三、其它方面物理竞赛的内容有一部分要扩及到课外获得的知识。
主要包括以下三方面:1、物理知识在各方面的应用。
对自然界、生产和日常生活中一些物理现象的解释。
2、近代物理的一些重大成果和现代的一些重大信息。
3、一些有重要贡献的物理学家的姓名和他们的主要贡献。
1.重力物体的重心与质心重心:从效果上看,我们可以认为物体各部分受到的重力作用集中于一点,这一点叫做物体的重心。
质心:物体的质量中心。
设物体各部分的重力分别为G 1、G 2……G n ,且各部分重力的作用点在oxy 坐标系中的坐标分别是(x 1,y 1)(x 2,y 2)……(x n ,y n ),物体的重心坐标x c ,y c 可表示为 x c =∑∑iii Gx G =n nn G G G x G x G x G ++++++ 212211, y c =∑∑ii i G y G =n n n G G G y G y G y G ++++++ 2122112.弹力胡克定律:在弹性限度内,弹力F 的大小与弹簧伸长(或缩短)的长度x 成正比,即F=k x ,k 为弹簧的劲度系数。
两根劲度系数分别为k 1,k 2的弹簧串联后的劲度系数可由k1=11k +21k 求得,并联后劲度系数为k=k 1+k 2. 3.摩擦力最大静摩擦力:可用公式F m =μ0F N 来计算。
F N 为正压力,μ0为静摩擦因素,对于相同的接触面,应有μ0>μ(μ为动摩擦因素) 摩擦角:若令μ0=NmF F =tan φ,则φ称为摩擦角。
摩擦角是正压力F N 与最大静摩擦力F m 的合力与接触面法线间的夹角。
4.力的合成与分解余弦定理:计算共点力F 1与F 2的合力FF=θcos 2212221F F F F ++ φ=arctanθθcos sin 212F F F +(φ为合力F 与分力F 1的夹角)三角形法则与多边形法则:多个共点共面的力合成,可把一个力的始端依次画到另一个力的终端,则从第一个力的始端到最后一个力的终端的连线就表示这些力的合力。
拉密定理:三个共点力的合力为零时,任一个力与其它两个力夹角正弦的比值是相等的。
5.有固定转动轴物体的平衡力矩:力F 与力臂L 的乘积叫做力对转动轴的力矩。
即M=FL , 单位:N ·m 。
平衡条件:力矩的代数和为零。
即M 1+M 2+M 3+……=0。
6.刚体的平衡刚体:在任何情况下形状大小都不发生变化的力学研究对象。
力偶、力偶矩:二个大小相等、方向相反而不在一直线上的平行力称为力偶。
力偶中的一个力与力偶臂(两力作用线之间的垂直距离)的乘积叫做力偶矩。
在同一平面内各力偶的合力偶矩等于各力偶矩的代数和。
平衡条件:合力为零,即∑F=0;对任一转动轴合力矩为零,即∑M=0。
7.物体平衡的种类分为稳定平衡、不稳定平衡和随遇平衡三种类型。
稳度及改变稳度的方法:处于稳定平衡的物体,靠重力矩回复原来平衡位置的能力,叫稳度。
降低重心高度、加大支持面的有效面积都能提高物体的稳度;反之,则降低物体的稳度。
一.质点运动的基本概念1.位置、位移和路程位置指运动质点在某一时刻的处所,在直角坐标系中,可用质点在坐标轴上的投影坐标(x,y,z )来表示。
在定量计算时,为了使位置的确定与位移的计算一致,人们还引入位置矢量(简称位矢)的概念,在直角坐标系中,位矢r 定义为自坐标原点到质点位置P(x,y,z)所引的有向线段,故有222z y x r ++=,r 的方向为自原点O 点指向质点P ,如图所示。
位移指质点在运动过程中,某一段时间t ∆内的位置变化,即位矢的增量t t t r r s _)(∆+=,它的方向为自始位置指向末位置,如图2所示,路程指质点在时间内通过的实际轨迹的长度。
2.平均速度和平均速率平均速度是质点在一段时间内通过的位移和所用时间之比tsv ∆=平,平均速度是矢量,方向与位移s 的方向相同。
平均速率是质点在一段时间内通过的路程与所用时间的比值,是标量。
3.瞬时速度和瞬时速率瞬时速度是质点在某一时刻或经过某一位置是的速度,它定义为在时的平均速度的极限,简称为速度,即tsv t ∆=→∆0lim。
瞬时速度是矢量,它的方向就是平均速度极限的方向。
瞬时速度的大小叫瞬时速率,简称速率。
4.加速度加速度是描述物体运动速度变化快慢的物理量,等于速度对时间的变化率,即tva ∆∆=,这样求得的加速度实际上是物体运动的平均加速度,瞬时加速度应为tva t ∆∆=→∆0lim 。
加速度是矢量。
二、运动的合成和分解 1.标量和矢量物理量分为两大类:凡是只须数值就能决定的物理量叫做标量;凡是既有大小,又需要方向才能决定的物理量叫做矢量。
标量和矢量在进行运算是遵守不同的法则:标量的运算遵守代数法则;矢量的运算遵守平行四边形法则(或三角形法则)。
2.运动的合成和分解在研究物体运动时,将碰到一些较复杂的运动,我们常把它分解为两个或几个简单的分运动来研究。
任何一个方向上的分运动,都按其本身的规律进行,不会因为其它方向的分运动的存在而受到影响,这叫做运动的独立性原理。
运动的合成和分解包括位移、速度、加速度的合成和分解,他们都遵守平行四边形法则。
三、竖直上抛运动定义:物体以初速度v向上抛出,不考虑空气阻力作用,这样的运动叫做竖直上抛运动。
四、相对运动物体的运动是相对于参照系而言的,同一物体的运动相对于不同的参照系其运动情况不相同,这就是运动的相对性。