六年级追及问题应用题(优选.)

合集下载

六年级下册数学试卷追击及相遇应用题综合练习_人教新课标(含解析)

六年级下册数学试卷追击及相遇应用题综合练习_人教新课标(含解析)

六年级下册数学试卷追击及相遇应用题综合练习_人教新课标(含解析)1、甲、乙两车站相距900千米,两列火车同时从两地相对开出,6小时后相遇,第一列火车比第二列火车每小时快6千米,求两列火车每小时各行多少千米?解法:已知两列火车同时从两地相对开出,6小时后相遇,依照如此的条件,能够求出两列火车的速度之和;又明白第一列火车比第二列火车每小时快6千米,如此,依照两列火车的“速度和”与“速度差”,即可求出两列火车的各自速度。

900÷6=150千米第一列火车的速度:(150+6)÷2=78千米第二列火车的速度:150—78=72千米2、放学时,弟弟乙每根中60米的速度不行回家,3分钟后,哥哥乙每根中70米的速度从学校不行回家,哥哥动身后,通过几分钟能够追上弟弟?3、上午9时,有一辆火车从甲地以每小时45千米的速度开往乙地,1 1时,一辆客车以每小时60千米的速度从甲地开往乙地,几小时后,客车能够追上货车?追上时离甲地多远?解法:为了求出几小时后客车能够追上货车,应该明白两车相距多远以及两车速度之差,由于货车比客车早动身11-9=2小时,能够求出两车相距的千米数,依照已知条件,能够求出两车速度之差。

45×(11-9)÷(60-45)=45×2÷15=6小时60×6=360千米答:6小时后,客车能够追上货车,追上时离甲地360千米。

4、甲、乙两辆汽车分别从张村和李村同时相对开出,甲车每小时行4 5千米,乙车每小时行35千米,两车行50小时后还相距240千米,求张村和李村的距离是多少?5、甲乙两地相距1500米,张丽每分钟走150米,她从甲地除法2分钟后,王明才从异地动身。

王明每分钟走90米,他动身几分钟后两人才能相遇?6、甲每小时行8千米,乙每小时比甲少行1千米,两人于相距20千米的两地同时相背而行,几小时后两人相距80千米?7、两列火车同时从甲、乙两城相对开出,甲车每小时行220千米,乙车每小时比甲车少行70千米,甲、乙两城相距1480千米,求甲、乙两车几小时相遇?8、甲汽车从某地以每小时80千米的速度开往甲地,4小时后,乙汽车从某地追赶甲汽车,相遇时,乙汽车正好行了8小时,乙汽车每行多少千米?解法:80×(4+8)÷8=80×12÷8=120千米9、A、B两地相距80千米,甲、乙两人分别从两地同时动身,相向而行,甲每小时行的路程是乙的3倍,4小时后两人相遇,两人的速度分别是多少?10、A车从甲站开往乙站需要12小时,开除了3小时后,B车从乙站开往甲站,已知甲乙两站相距780千米,5小时后,A、B两车的速度分别是多少?解法一:A车的时速:780÷12=65千米/小时B车的时速:[780-780÷12×(3+5)]÷5=(780-780÷12×8)÷5=(7 80-65×8)÷5=260÷5=52千米/小时解法二:依照已知条件能够求出A车每小时行780÷12千米,则3小时行了780÷12×3千米,还剩780-780÷12×3千米,这段路是A、B两车5小时共行的路程,求出1小时两车共行多少千米,再减去A车所行的路程,确实是B车1小时行的路程。

(小升初思维拓展)专题17追及问题(提高卷)

(小升初思维拓展)专题17追及问题(提高卷)

(小升初思维拓展)专题17:追及问题(提高卷)六年级下册小升初数学高频考点专项培优卷一.选择题(共10小题)1.羚羊每秒跑22米,豹子每秒跑31米,一只豹子正在快速追赶奔跑中的羚羊,当距离羚羊150米时,再过20秒()追上。

A.能B.不能C.不能确定2.小陈、小李、小王三个人的跑步速度之比为7:3:6。

他们三人沿一环形跑道从同一点同时同向出发,当他们首次同时回到出发点之前,小王追上小李多少次?()A.1B.2C.3D.43.小王、小李沿着400米的环行跑道跑步.他们同时从同一地点出发,同向而行.小王每分钟跑280米,小李每分钟跑240米,经过()分钟后小王第二次追上小李.A.10B.15C.20D.304.甲、乙两人步行的速度比是13:11,如果甲、乙分别由A、B两地同时出发相向而行,0.5小时后相遇,如果他们同向而行,那么甲追上乙需要()小时.A.4.5B.5C.5.5D.65.下午放学后,弟弟以每分钟40米的速度步行回家,5分钟后,哥哥以每分60米的速度也从学校步行回家,哥哥出发后,经过()可以追上弟弟.A.10分钟B.15分钟C.20分钟6.有28人到翠湖划船,每条大船限坐6人,每条小船限坐4人,如果每条船都坐满,以下方案中船不能刚好坐满的是()A.4条大船,1条小船B.3条大船,3条小船C.2条大船,4条小船7.方老师带47名同学去植物园参观,选择租车方案()最省钱。

大车:每辆80元,限坐8人小车:每辆45元,限坐4人A.6辆大车B.6辆大车和2辆小车C.4辆大车和4辆小车8.元旦期间,甲、乙两个商场都采取了优惠措施,甲商场全部商品九折出售,乙商场每消费100元送10元的购物券,若两商场的同种商品原定价都相同,小明计划用500元购物,选择()A.甲商场合算些B.乙商场合算些C.两个商场都一样D.无法判断9.美思商城与扬帆商城以同样的标价卖同种洗发水,为了促销,两家商城分别打出以下优惠:美思商城,买三送一,扬帆商城降价25%销售。

六年级相遇和追及问题(含答案)

六年级相遇和追及问题(含答案)

一、 相遇甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A,B 之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间 =(甲的速度+乙的速度)×相遇时间=速度和×相遇时间. 一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即=tS V 和和二、 追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间 =(甲的速度-乙的速度)×追及时间 =速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即=tS V 差差三、 在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同 (2)在整个运行过程中,2个物体所走的是同一路径。

⨯⎧⎪÷⎨⎪÷⎩÷⎧⎪⨯⎨⎪÷⎩n n n n n n n nn n n n n n n n nn n 路程=速度和相遇相遇速度和=路程相遇相遇=路程速度和追及=追及路程速度差追及追及路程=速度差追及速度差=追及路程追及知识框架相遇和追及问题重难点能够解决行程中复杂的相遇与追及问题能够画出多人相遇和追及的示意图并将问题转化多个简单相遇和追及环节进行解题能够利用柳卡图、比例解决多次相遇和追及问题例题精讲一、相遇和追及【例 1】在一条笔直的高速公路上,前面一辆汽车以90千米/小时的速度行驶,后面一辆汽车以108千米/小时的速度行驶.后面的汽车刹车突然失控,向前冲去(车速不变).在它鸣笛示警后5秒钟撞上了前面的汽车.在这辆车鸣笛时两车相距多少米?【巩固】乙二人同时从A地去B地,甲每分钟行60米,乙每分钟行90米,乙到达B地后立即返回,并与甲相遇,相遇时,甲还需行3分钟才能到达B地,A、B两地相距多少米?【例 2】甲、乙二人分别从山顶和山脚同时出发,沿同一山道行进。

应用题-追及问题

应用题-追及问题

应⽤题-追及问题应⽤题——追及问题100道1、两辆汽车同时从甲、⼄两地相对开出,⼀辆汽车每⼩时⾏56千⽶,另⼀辆汽车每⼩时⾏63千⽶,经过4⼩时后相遇。

甲⼄两地相距多少千⽶(适于五年级程度)2、两列⽕车同时从相距480千⽶的两个城市出发,相向⽽⾏,甲车每⼩时⾏驶40千⽶,⼄车每⼩时⾏驶42千⽶。

5⼩时后,两列⽕车相距多少千⽶(适于五年级程度)3、甲、⼄⼆⼈分别从A、B两地同时相向⽽⾏,甲每⼩时⾏5千⽶,⼄每⼩时⾏4千⽶。

⼆⼈第⼀次相遇后,都继续前进,分别到达B、A两地后⼜⽴即按原速度返回。

从开始⾛到第⼆次相遇,共⽤了6⼩时。

A、B两地相距多少千⽶(适于五年级程度)4、两列⽕车从甲、⼄两地同时出发对⾯开来,第⼀列⽕车每⼩时⾏驶60千⽶,第⼆列⽕车每⼩时⾏驶55千⽶。

两车相遇时,第⼀列⽕车⽐第⼆列⽕车多⾏了20千⽶。

求甲、⼄两地间的距离。

(适于五年级程度)5、甲、⼄⼆⼈同时从A、B两地相向⽽⾏,甲每⼩时⾛6千⽶,⼄每⼩时⾛5千⽶,两个⼈在距离中点千⽶的地⽅相遇。

求A、B两地之间的距离。

(适于五年级程度)6、两地相距千⽶,甲、⼄⼆⼈同时从两地出发相向⽽⾏,甲每⼩时⾛千⽶,⼄每⼩时⾛4千⽶。

相遇时甲、⼄⼆⼈各⾛了多少千⽶(适于五年级程度)7、甲、⼄⼆⼈从相距40千⽶的两地同时相对⾛来,甲每⼩时⾛4千⽶,⼄每⼩时⾛6千⽶。

相遇后他们⼜都⾛了1⼩时。

两⼈各⾛了多少千⽶(适于五年级程度)8、两列⽕车分别从甲、⼄两个⽕车站相对开出,第⼀列⽕车每⼩时⾏千⽶,第⼆列⽕车每⼩时⾏千⽶。

在相遇时第⼀列⽕车⽐第⼆列⽕车多⾏了千⽶。

到相遇时两列⽕车各⾏了多少千⽶(适于五年级程度)9、东、西两车站相距564千⽶,两列⽕车同时从两站相对开出,经6⼩时相遇。

第⼀列⽕车⽐第⼆列⽕车每⼩时快2千⽶。

相遇时这两列⽕车各⾏了多少千⽶(适于五年级程度)10、两个城市之间的路程是500千⽶,⼀列客车和⼀列货车同时从两个城市相对开出,客车的平均速度是每⼩时55千⽶,货车的平均速度是每⼩时45千⽶。

六年级相遇和追及问题(含答案)

六年级相遇和追及问题(含答案)

一、 相遇甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A,B 之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间 =(甲的速度+乙的速度)×相遇时间=速度和×相遇时间. 一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即=tS V 和和二、 追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间 =(甲的速度-乙的速度)×追及时间 =速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即=tS V 差差三、 在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同 (2)在整个运行过程中,2个物体所走的是同一路径。

⨯⎧⎪÷⎨⎪÷⎩÷⎧⎪⨯⎨⎪÷⎩路程=速度和相遇相遇速度和=路程相遇相遇=路程速度和追及=追及路程速度差追及追及路程=速度差追及速度差=追及路程追及知识框架相遇和追及问题重难点能够解决行程中复杂的相遇与追及问题能够画出多人相遇和追及的示意图并将问题转化多个简单相遇和追及环节进行解题能够利用柳卡图、比例解决多次相遇和追及问题例题精讲一、相遇和追及【例 1】在一条笔直的高速公路上,前面一辆汽车以90千米/小时的速度行驶,后面一辆汽车以108千米/小时的速度行驶.后面的汽车刹车突然失控,向前冲去(车速不变).在它鸣笛示警后5秒钟撞上了前面的汽车.在这辆车鸣笛时两车相距多少米?【巩固】乙二人同时从A地去B地,甲每分钟行60米,乙每分钟行90米,乙到达B地后立即返回,并与甲相遇,相遇时,甲还需行3分钟才能到达B地,A、B两地相距多少米?【例 2】甲、乙二人分别从山顶和山脚同时出发,沿同一山道行进。

追及问题的应用题

追及问题的应用题

追及问题1.哥哥和弟弟去人民公园参观菊花展,弟弟每分钟走50米,走了10分钟后,哥哥以每分钟70米的速度去追弟弟,问:经过多少分钟以后哥哥可以追上弟弟?2.甲乙两地相距160千米,一列快车从甲地开出,每小时行60千米,一慢车从乙地开出,每小时行40千米,两辆车同时同向行驶,快在慢后面,问经过多长时间追上?3.小红和小明分别从西村和东村同时向西而行,小明骑自行车每小时行16千米,小红步行每小时行5千米,2小时后小明追上小红,求东西村相距多少千米?4、一列慢车在早晨6:30以每小时40千米的速度由甲城开往乙城,另一列快车在早晨7:30以每小时56千米的速度也由甲城开往乙城。

铁路部门规定,向相同方向的两列火车之间的距离不能小于8千米。

那么,这列慢车最迟应该在什么时候停车让快车超过?5、一队中学生到某地进行军事训练,他们以每小时5千米的速度前进,走了6小时后,学校派秦老师骑自行车以每小时15千米的速度追赶学生队伍,传达学校通知。

秦老师几小时可追上队伍?追上时队伍已经行了多少路?6、小明步行上学,每分钟行70米,离家12分钟后,爸爸发现小明的文具盒忘记在家里,立即骑自行车以每分钟280米的速度去小明,那么爸爸出发后几分钟追上小明?7、一条环形跑道长400米,小强每分钟跑300米,小星每分钟跑250米,两人同时同地同向出发,经过多长时间,小强第一次追上小星?8、在一条长300米的环形跑道上,甲乙两人同时从一起点出发,同向而跑,甲每秒跑9米,乙每秒跑7米,现在乙在甲后面100米,问:甲追上乙要多少时间?9、某学校组织学生去长城春游,租用了一辆大客车,从学校到长城相距150千米。

大客车和学校的一辆小汽车同时从学校出发,当小汽车到长城时,大客车还有30千米。

已知大客车每小时行60千米,则小汽车比大客车快多少千米?10、甲乙两人从周长为800米的正方形水池相对的两个顶点同时出发逆时针行走,乙在前,甲在后。

甲每分钟走50米,乙每分钟走46米,出发多长时间甲和乙在同一点上?11、甲、乙两人同时从A地去B地,甲每分钟行250米,乙每分钟行90米,甲到达B地后立即返回A地,在离B地1200米处与乙相遇,A、B两地相距多少千米?。

追及问题应用题及答案

追及问题应用题及答案

追及问题应用题及答案追及问题应用题及答案「篇一」1、小王、小李同住一楼中,两人从家去上班,小王先走20分钟后小李才出发。

已知小李的速度是小王速度的3倍,则小李出发后多少时间能追上小王?2、甲每分钟行80米,乙每分钟行50米,在下午1:30分时,两人在同地背向而行了6分钟,甲又调转方向追乙,则甲在几点的时候追上乙?3、某学校组织学生去长城春游,租用了一辆大客车,从学校到长城相距150千米。

大客车和学校的一辆小汽车同时从学校出发,当小汽车到长城时,大客车还有30千米。

已知大客车每小时行60千米,则小汽车比大客车快多少千米?4、甲乙两人从周长为800米的正方形水池相对的两个顶点同时出发逆时针行走,乙在前,甲在后。

甲每分钟走50米,乙每分钟走46米,出发多长时间甲和乙在同一点上?5、甲、乙两人同时从东村出发到西村,甲的速度是每小时6千米,乙的速度是每小时4千米,甲中途有事休息了2小时,结果比乙迟到了1个小时,求两村相隔的距离?6、龟兔赛跑,同时出发,全程7000米。

龟以每分钟30米的速度爬行,兔每分钟跑330米,兔跑了10分钟后停下来睡觉了200分钟,醒来后立即以原速往前跑,当兔追上龟时,离中点是多少米?7、学校组织四年级学生春游,包了两辆大面包车从学校出发。

第一辆车速每小时30千米,上午7:00出发,第二辆晚开1小时,速度是每小时40千米。

结果两辆车同时到达,问春游的景区离学校多远?8、甲、乙两人同时从A地去B地,甲每分钟行250米,乙每分钟行90米,甲到达B地后立即返回A地,在离B地1200米处与乙相遇,A、B两地相距多少千米?追及问题应用题及答案「篇二」【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。

这类应用题就叫做追及问题。

【数量关系】1.追及时间=追及路程÷(快速-慢速)2.追及路程=(快速-慢速)×追及时间【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。

【奥数题】人教版小学数学六年级上册追及问题奥数思维拓展(试题)含答案与解析

【奥数题】人教版小学数学六年级上册追及问题奥数思维拓展(试题)含答案与解析

追及问题奥数思维拓展(试题)一.填空题(共10小题)1.良种马每天跑120千米,劣种马每天跑75千米,若劣种马先跑3天,良种马需天追上劣种马.2.甲、乙两人步行的速度之比是8:7,甲、乙分别从A、B两地同时出发,如果相向而行,0.5小时以后相遇;如果它们同向而行,那么甲追上乙需要小时.3.某人执行爆破任务时,点燃导火线后往70米开外的安全地带奔跑,其奔跑的速度为7米/秒.已知导火线的燃烧速度时0.121米/秒.问:导火线的长度至少米才能确保安全.(进一精确到0.1米)4.甲、乙两车同时从A地向B地开出,甲每小时行45千米,乙每小时行30千米,开出1小时后,甲车因有紧急任务返回A地,到达A地后又立即向B地开出追上乙车,当甲追上乙车时,两车正好都到达B地,AB两地的距离是千米.5.小明走路去上学.爸爸发现小明没带课本后.骑车去追,在离家1500米处追上小明.这时小明又发现没带铅笔.于是爸爸再次回家去取.若爸爸骑车速度是小明走路速度的4倍.则爸爸再次追上小明时离家千米.6.某校202名学生排成两路纵队,以每秒3米的速度去春游,前后相邻两个人之间的距离为0.5米.李老师从队尾骑自行车以每秒5米的速度到队头,然后又返回到队尾,一共要用秒.7.狗兔进行100米赛跑,当狗跑到终点,兔子才跑到90米.现在狗的起跑线向后移10米,再和兔子赛跑,最先到达终点的是.8.某人在公共汽车上发现一个小偷向反方向步行,10秒钟后他下去追小偷,如其速度比小偷快一倍,比汽车慢,则追上小偷要秒.9.两个调皮的孩子逆着自动扶梯行驶的方向行走,从扶梯的一端到达另一端,男孩走了100秒,女孩走了300秒.已知在电梯静止时,男孩每秒走3级台阶,女孩每秒走2级台阶.则该自动扶梯共有级台阶.10.甲乙丙三人同时从同一地点出发去追前面的一个人,甲每分钟行400米,6分钟可以追上;乙每分钟行360米,9分钟可以追上,丙12分钟能追上,丙每分钟行米.二.应用题(共11小题)11.一天,猫发现前面20米的地方有只老鼠,立即去追,同时,老鼠也发现了猫,掉头就跑,猫每秒跑7米,用了10秒追上老鼠,老鼠每秒跑多少米?12.父子二人在同一个工厂上班,父亲从家里走到工厂需要30分钟,儿子走这段路只需要20分钟,一天,父亲比儿子早走5分钟,问儿子追上父亲需要几分钟?13.甲乙两车从A地开往B地分别需要用10小时和15小时,若乙车先出发3小时,则甲车出发几小时后能追上乙车?14.一只野兔逃出80步后猎狗才追它,野兔跑8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步.猎狗至少要跑多少步才能追上野兔?15.甲乙丙三个微型机器人在环形导轨上同时同地同向出发匀速行进;当甲第一次追上乙时,丙恰好行了3圈;当甲第一次追上丙时,乙恰好行了5圈.那么,当丙第一次追上乙时,甲恰好行了多少圈?16.东东和乐乐练习100米赛跑,东东每秒跑8米,乐乐每秒跑6米,东东站在跑道的起点处,乐乐站在他前面30米处,两人同时起跑同向而行,几秒后东东追上乐乐?17.甲、乙、丙三人在一条跑道上赛跑,当甲跑到终点时,乙离终点12米,丙离终点36米;而当乙跑到终点时,丙离终点还有28米.如果甲、乙、丙三人在赛跑中速度始终保持不变,那么这条跑道长多少米?18.快、中、慢三辆车同时从甲地出发追赶前方的骑车人,分别用2小时、4小时、10小时追上,已知快车每小时行24千米中车每小时行20千米,求慢车时速.19.A、B两地之间的距离是50千米,甲、乙两车同时从A出发向B地行驶,在A、B之间不断往返.已知甲车的速度是每小时87千米,乙车的速度是每小时57千米,请问:第6次甲追上乙时的地点距A地多少千米?20.甲、乙、丙、丁四辆车在一条路上行驶.甲车8点追上丙车,10点与丁车相遇,12点与乙车相遇,乙车13点与丙车相遇,14点追上丁车.请问:丙车和丁车几点、时几分相遇?21.惊险逃生陶陶和丁丁在野外玩耍时经过一个隧道口,尽管隧道口竖着一个大标牌,写着“行人,为了你的生命不受死亡的威胁,请别入内,危险!”出于好奇,他俩还是进入了隧道(你可别学调皮的陶陶和丁丁哟,别做一些毫无意义的冒险,要爱惜自己的生命),隧道很狭窄,仅够一列火车通过,当他俩走到隧道口内四分之一的路程时,突然听到后面传来火车准备进洞的汽笛声.陶陶和丁丁一下子吓呆了,慌乱下,陶陶以每秒5米的速度没命地向前跑;丁丁也以每秒5米的速度转头向入口跑去.他俩先后都跑出了洞口,而且丁丁刚跑出洞口,豪华火车就进隧道了:陶陶刚出洞,火车就出了隧道,考考你,你能从他俩的惊险逃生过程中,推算出火车行驶的速度是多少吗?参考答案与试题解析一.填空题(共10小题)1.【解答】解:(75×3)÷(120﹣75)=225÷45=5(天)答:良种马需5天追上劣种马.故答案为:5.2.【解答】解:(7+8)×0.5÷(8﹣7)=15×0.5÷1=7.5(小时)答:甲追上乙需要7.5小时.故答案为:7.5.3.【解答】解:0.121×(70÷7)=0.121×10=1.21≈1.3(米)答:导火线的长度至少 1.3米才能确保安全.故答案为:1.3.4.【解答】解:设乙车到达B地时用了x小时.45x﹣45×2=30x45x﹣90=30x45x﹣90+90=30x+9045x=30x+9045x﹣30x=30x+90﹣30x5x=905x÷5=90÷5x=630×6=180(千米)答:AB两地的距离是180千米.故答案为:180.5.【解答】解:1500×2÷(4﹣1)+1500=3000÷3+1500=1000+1500=2500(米)2500米=2.5千米答:爸爸再次追上小明时离家2.5千米.故答案为:2.5.6.【解答】解:①这支路队伍长度:(202÷2﹣1)×0.5=100×0.5=50(米)②赶上队头所需要时间:50÷(5﹣3)=50÷2=25(秒)③返回队尾所需时间:50÷(5+3)=50÷8=6.25(秒)④一共用的时间:25+6.25=31.25(秒)答:一共要用31.25秒.故答案为:31.25.7.【解答】解:100:90=10:9(100+10)×=110×0.9=99(米)100>99所以,兔子还没到达终点;答:最先到达终点的是狗.故答案为:狗.8.【解答】解:假设小偷的速度为“1”,则这人的速度就是“2”,汽车的速度就是:2÷(1﹣)=10,路程差:10×(1+10)=110110÷(2﹣1)=110(秒)答:追上小偷要110秒.故答案为:110.9.【解答】解:扶梯每秒自动下降:[(300×2)﹣(3×100)]÷(300﹣100)=[600﹣300]÷200,=300÷200,=1.5(级).该扶梯共有:300﹣100×1.5=300﹣150,=150(级).答:扶梯共有150级扶梯.故答案为:150.10.【解答】解;(360×9﹣400×6)÷(9﹣6)×(12﹣9)=840÷3×3=840(米)(840+360×9)÷12=4080÷12=340(米)故答案为:340米.二.应用题(共11小题)11.【解答】解:(7×10﹣20)÷10=50÷10=5(米)答:老鼠每秒跑5米.12.【解答】解:(×5)÷(﹣)=÷=10(分钟)答:儿子追上父亲需要10分钟.13.【解答】解:(×3)÷(﹣)==6(小时)答:甲车出发6小时后能追上乙车.14.【解答】解:设野兔跑9步和猎狗跑4步的时间为1秒,则:野兔跑8步的路程猎狗只需跑3步,设兔子一步3米,狗一步8米,则狗速度每秒为:8×4=32(米),兔速度每秒为9×3=27(米);距离为:80×3=240(米),追上的时间为240÷(32﹣27)=48(秒),狗一秒跑4步,所以总共跑了4×48=192(步).答:猎狗至少要跑192步才能追上野兔.15.【解答】解:甲第一次追上乙时,甲跑了(x+1)圈,乙跑了x圈,丙跑了3圈;甲第一次追上丙时,甲跑了(y+1)圈,丙跑了y圈,乙跑了5圈.利用三个机器人速度比不变,有:(x+1):(y+1)=x:5=3:y解得:x=25,y=6即甲追上乙时,甲跑3.5圈,乙跑2.5圈,丙跑3圈.显然当丙领先乙半圈时,甲跑3.5圈,那么丙追上乙时(领先1圈),甲跑7圈.答:当丙第一次追上乙时,甲恰好行了7圈.16.【解答】解:按追及问题及时,乐乐追东东所需时间为:30÷(8﹣6)=15(秒)而15秒二人均以超过终点.所以应把这一问题看作相遇问题,100×2﹣30=200﹣30=170(米)170÷(8+6)=170÷14≈12.1(秒)答:东东12.1秒后追上乐乐.17.【解答】解:由题可知:乙跑12米,丙跑36﹣28=8米乙:丙=3:2假设这条跑道长S米(S﹣12):(S﹣36)=3:22S﹣24=3S﹣108S=84答:这条跑道长84米.18.【解答】解:设骑车人的速度为v千米/小时,得2:4:10=1:2:5(24﹣v):(20﹣v)=2:124﹣v=40﹣2vv=1624﹣6=8(千米/小时)8÷5=1.6(千米/小时)1.6+16=17.6(千米/小时)答:慢车的速度为17.6千米/小时.19.【解答】解:(50×2)÷87×57=(千米)÷(87﹣57)=(小时)100÷(87﹣57)×5=(小时)(+)×87=1640(千米)1640÷(50×2)=16 (40)50×2﹣40=60(千米)答:第6次甲追上乙时的地点距A地60千米.20.【解答】解:以8点为基点,以此时的甲乙距离为“1”,甲车8点追上丙车,12点与乙相遇,从8点到12点共经过4小时,由此可知知:甲速+乙速=……①;由乙车13点与丙相遇,可知:乙速+丙速=……②;甲与丁相遇用了10﹣8=2小时,此时丁与乙的距离是1﹣2×=,此后乙用14﹣10=4小时追上丁,那么乙速﹣丁速=……③;①﹣③,得:甲速+丁速=……④,那么开始时,甲与丁的距离是2×,也就是丙与丁的距离是.②﹣④,得:丙速+丁速=,丙丁相遇时间是,即在8点+点=11点20分丙和丁相遇.答:丙丁在11点20分相遇.21.【解答】解:=1÷=25×2=10(米/秒)答:火车行驶的速度是10米/秒.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改
追及问题
【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。

这类应用题就叫做追及问题。

【数量关系】追及时间=追及路程÷(快速-慢速)
追及路程=(快速-慢速)×追及时间【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。

例1 好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?
解(1)劣马先走12天能走多少千米? 75×12=900(千米)
(2)好马几天追上劣马? 900÷(120-75)=20(天)
列成综合算式 75×12÷(120-75)=900÷45=20(天)
答:好马20天能追上劣马。

例2 小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。

小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。

解小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。

又知小明跑200米用40秒,则跑500米用[40×(500÷200)]秒,所以小亮的速度是(500-200)÷[40×(500÷200)]=300÷100=3(米)
答:小亮的速度是每秒3米。

例3 我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。

已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?
解敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×(22-6)]千米,甲乙两地相距60千米。

由此推知
追及时间=[10×(22-6)+60]÷(30-10)=220÷20=11(小时)
答:解放军在11小时后可以追上敌人。

例4 一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。

解这道题可以由相遇问题转化为追及问题来解决。

从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,
这个时间为 16×2÷(48-40)=4(小时)
所以两站间的距离为(48+40)×4=352(千米)
列成综合算式(48+40)×[16×2÷(48-40)]=88×4=352(千米)
答:甲乙两站的距离是352千米。

例5 兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。

哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。

问他们家离学校有多远?
解要求距离,速度已知,所以关键是求出相遇时间。

从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(180×2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,那么,二人从家出走到相遇所用时间为
180×2÷(90-60)=12(分钟)
家离学校的距离为 90×12-180=900(米)
答:家离学校有900米远。

例6 孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。

后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。

求孙亮跑步的速度。

解手表慢了10分钟,就等于晚出发10分钟,如果按原速走下去,就要迟到(10-5)分钟,后段路程跑步恰准时到学校,说明后段路程跑比走少用了(10-5)分钟。

如果从家一开始就跑步,可比步行少9分钟,由此可知,行1千米,跑步比步行少用[9-(10-5)]分钟。

所以
步行1千米所用时间为 1÷[9-(10-5)]=0.25(小时)=15(分钟)
跑步1千米所用时间为 15-[9-(10-5)]=11(分钟)
跑步速度为每小时 1÷11/60=1×60/11=5.5(千米)
答:孙亮跑步速度为每小时5.5千米
最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改。

相关文档
最新文档