(完整版)空间立体几何知识点归纳,推荐文档

合集下载

高中数学必修空间几何体知识点精选全文完整版

高中数学必修空间几何体知识点精选全文完整版

可编辑修改精选全文完整版第1讲空间几何体一、空间几何体1、空间几何体在我们周围存在着各种各样的物体,它们都占据着空间的一部分。

如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体。

2、多面体和旋转体多面体:由若干个平面多边形围成的几何体叫做多面体。

围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱及棱的公共点叫做多面体的顶点。

旋转体:由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转几何体。

这条定直线叫做旋转体的轴。

多面体旋转体圆台圆柱-圆锥圆柱+圆锥圆台+大圆锥-小圆锥二、柱、锥、台、球的结构特征1.棱柱定义图形表示分类性质有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

两个互相平行的平面叫做棱柱的底面,其余各面叫做棱柱的侧面。

用平行的两底面多边形的字母表示棱柱,如:棱柱ABCDEF-A1B1C1D1E1F1。

棱柱的分类一(底面):棱柱的底面可以是三角形、四边形、五边形、……我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱、……棱柱的分类二(根据侧棱及底面的关系):斜棱柱: 侧棱不垂直于底面的棱柱.直棱柱: 侧棱垂直于底面的棱柱叫做直棱柱(1)上下底面平行,且是全等的多边形。

(2)侧棱相等且相互平行。

(3) 侧面是平行四边形。

正棱柱: 底面是正多边形的直棱柱叫做正棱柱三棱柱四棱柱五棱柱斜棱柱直棱柱正棱柱2.棱锥定义图形表示性质分类有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

用顶点及底面各顶点字母表示棱锥,如:棱锥S-ABC侧面是三角形,底面是多边形。

按底面多边形的边数分类可分为三棱锥、四棱锥、五棱锥等等,其中三棱锥又叫四面体。

特殊的棱锥-正棱锥定义:如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面中心三棱锥四棱锥五棱锥直棱锥2.棱台定义图形表示分类性质用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台。

(完整版)立体几何知识点总结完整版

(完整版)立体几何知识点总结完整版

立体几何知识点【考纲解读】1、平面的概念及平面的表示法,理解三个公理及三个推论的内容及作用,初步掌握性质与推论的简单应用。

2、 空间两条直线的三种位置关系,并会判定。

3、 平行公理、等角定理及其推论,了解它们的作用,会用它们来证明简单的几何问题,掌握证明空间两直线 平行及角相等的方法。

4、 异面直线所成角的定义,异面直线垂直的概念,会用图形来表示两条异面直线,掌握异面直线所成角的范 围,会求异面直线的所成角。

5•理解空间向量的概念,掌握空间向量的加法、减法和数乘;了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算 ;掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式.6•了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念•掌握棱柱,棱锥的性质,并会灵活应用,掌握球的表面积、体积公式;能画出简单空间图形的三视图, 能识别上述的三视图所表示的立体模型, 会用斜二测法画出它们的直观图•7•空间平行与垂直关系的论证 •8.掌握直线与平面所成角、二面角的计算方法,掌握三垂线定理及其逆定理,并能熟练解决有关问题 ,进一步掌握异面直线所成角的求解方法,熟练解决有关问题9•理解点到平面、直线和直线、直线和平面、平面和平面距离的概念会用求距离的常用方法(如:直接法、转 化法、向量法)•对异面直线的距离只要求学生掌握作出公垂线段或用向量表示的情况)和距离公式计算距离。

【知识络构建】<— 翅MJL 何体的峯构特征一袞间几何怀的表面锲和体枳 —I 吩间儿何体的三视图和吒现图 空何向話的槪念线性运算空间向园数呈积理和坐标运算【重点知识整合】1. 空间几何体的三视图专间儿何体空问点仁n线、平面ft置关系宀VIHI向虽与<体儿何(1) 正视图:光线从几何体的前面向后面正投影得到的投影图;(2) 侧视图:光线从几何体的左面向右面正投影得到的投影图;(3) 俯视图:光线从几何体的上面向下面正投影得到的投影图.几何体的正视图、侧视图和俯视图统称为几何体的三视图.2. 斜二测画水平放置的平面图形的基本步骤(1) 建立直角坐标系,在已知水平放置的平面图形中取互相垂直的Ox, Oy,建立直角坐标系;(2) 画出斜坐标系,在画直观图的纸上(平面上)画出对应的Ox', Oy',使/ x Oy = 45。

空间几何体知识点归纳总结(超详细)(精华版)

空间几何体知识点归纳总结(超详细)(精华版)

空间几何体一:棱柱1,定义有两个面相互平行,其余各面都是四边形,并且每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体叫做“棱柱”2,分类斜棱柱棱柱;正棱柱(侧棱垂直于底)其他棱柱面,且底面是正多边形)直棱柱(侧棱与底面垂直3,底面:两个可以重合的多边形4,侧面:平行四边形5,侧面积6,表面积7,体积二:棱锥1,“棱锥”定义有一个面是多边形,锥;2,分类“正棱锥”定义其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱假如一个棱锥的底面是正多边形,棱锥;否就它是斜棱锥;3,底面4,侧面5,侧面积6,表面积7,体积并且顶点在底面的射影是底面的中心,这样的棱锥叫做正PCOBAD三:棱台1,“棱台”定义用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台;2,分类“正棱台”定义由正棱锥截得的棱台叫做正棱台;3,底面4,侧面5,侧面积6,表面积7,体积留意:棱台常常补成棱锥讨论四:圆柱1,定义 以矩形的一边所在的直线为旋转轴, 2,底面 3,侧面 4,侧面积 5,表面积 6,体积其余各边旋转而形成的曲面所围成的几何体叫“圆柱”;五:圆锥1,定义 以直角三角形的一条直角边所在直线为旋转轴, “圆锥”;该直角边叫圆锥的轴; 2,底面 3,侧面 4,侧面积 5,表面积 6,体积其余两边旋转形成的面所围成的旋转体叫做六:圆台1,定义 用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做“圆台” 2,底面 3,侧面 4,侧面积 5,表面积 6,体积;七:空间几何体的体积与表面积 1,多面体的面积和体积公式名称 侧面积 (S 侧 ) 全面积 (S 全)体 积 (V)S 底 ·h=S 直截面 ·h 棱柱直截面周长 ×l棱 柱S 侧+2S 底S 底 ·h直棱柱 ch 棱锥 各侧面积之和棱 锥1 底 ·hS 3S 侧+S 12底正棱锥 ch ′ 棱台 各侧面面积之和1 棱 台上底 +S 下底 + h(S 3)侧+S 上底 +S 下底1 2S S 下S 下正棱台(c+c ′h )′表中 S 表示面积, c ′, c 分别表示上,下底面周长, h 表示高, h ′表示斜高, l 表示侧棱长;2,旋转体的面积和体积公式名称圆柱圆锥圆台球2πrl πrl π(r1+r2)lS 侧222 2πr(l+r ) πr(l +r ) π(r1+r 2)l+π(r 1+r 2)4πR S 全1 31343222322πr hπh(r 1+r1r 2+r 2)πR πr h( 即πr l)V表中l ,h 分别表示母线,高,r 表示圆柱,圆锥与球冠的底半径,r 1,r 2 分别表示圆台上,下底面半径,R表示半径;八:空间几何体的三视图与直观图1,正视图光线从几何体的前面对后面正投影,得到投影图;2,侧视图光线从几何体的左面对右面正投影,得到投影图;3,俯视图光线从几何体的左面对右面正投影,得到投影图;九,“斜二测”画法.正六面形的斜二测画法示意图xoy 901:在已知图形中取相互垂直的轴Ox,Oy,(即取);o ' x ', o' y' ,取x ' o' y ' 45 (or135 ) ,它们确定的平2:画直观图时,把它画成对应的轴面表示水平平面;x 'o ' y ' 中画直观图时,已知图形中平行于数轴的线段保持平行性不变,平行于3:在坐标系x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半;24结论:一般地,采纳斜二测法作出的直观图面积是原平面图形面积的倍.。

空间立体几何知识点

空间立体几何知识点

A BCDA 1B 1C 1D 1侧棱 侧面 上底顶点 下底CDP侧棱 侧面 顶点底面轴高轴高半径球心ABCDα空间立体几何板块知识归纳(向量法只适合理科)一、空间几何体的结构特征及体积和表面积1.棱柱:有两个面相互平行,其余各面都是四边形,每相邻两个四边形的公共边都互相平行.(如图:四棱柱1111D C B A ABCD -)(1)体积: h S V ⋅=底 (2)表面积: 侧底S S S +=22.棱锥:有一个面是多边形,其余各面都是有一个公共点的三角形. (如图:四棱锥ABCD P -)(1)体积: h S V ⋅=底31(2)表面积: 侧底S S S +=3.圆柱:以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体. (如图:圆柱'OO ) (1)体积: h r h S V 2π=⋅=底(2)表面积: rl r S S S ππ2222+=+=侧底4.圆锥:以直角三角形一条直角边为旋转轴,其余两边旋转形成的曲面所围成的几何体. (如图:圆柱SO ) (1)体积: h r h S V 231π=⋅=底 (2)表面积: rl r S S S ππ+=+=2侧底5.球体:以半圆直径为旋转转,半圆弧旋转一周形成的曲面围成的几何体.(1)体积: 334R V π= (2)表面积: 24R S π=6.棱台与圆台:用一个平行于棱锥(圆锥)底面的平面去截棱锥(圆锥),底面与截面之间的部分叫做棱台(圆台).(1)体积: h S S S S V ⋅⋅++=)下上下上(31(2)表面积: 侧下上S S S S ++=二、空间几何体的三视图与直观图1.三视图:正视图、侧视图、俯视图(1)三视图为正投影图象,当线段与投影面平行时, 线段的投影与线段等长,否则线段的投影比线段短.(2)长对正、高平齐、宽相等:正视图与俯视图等长(几何体的长),正视图与侧视图等高(几何体的高),侧视图与俯视图等宽(几何体的宽).(3)三视图还原时(一般情况下):当三视图中有圆时,原几何体为旋转体;当三视图中全部为长方形,原几何体为长方体或者长方体切割所得;当三视图中有两个矩形时,原几何体为柱体,当三视图中有两个三角形时,原几何体为锥体.2.直观图(用斜二测画法所得)与平面图的面积关系:平面图直观图S S 42=三、空间直角坐标系(空间中两两相互垂直的三条线作为坐标轴)1.空间点:),,(z y x P ;2.空间向量: ),,(12121221z z y y x x P P ---=3.空间距离: 2122122122121)()()(||||z z y y x x P P P P -+-+-==四、空间立体几何中新概念1.平面:绝对平没有厚度无限延伸的理想模型.常用封闭的图形(经常用平行四边形)画出来,经常用希腊字母 γβα,,等表示,也可以用封闭图形的顶点字母表,如:平面α,平面ABCD 等.2.异面直线:空间中不行也不相交的两条直线.画异面直线时, 需要用平面来衬托.3.平面法向量:与平面垂直的向量.(长度任意,方向可以朝上,也可以朝下)五、空间立体几何中的基本位置关系1.点与直线的位置关系(1)点P 在直线l 上(l P ∈); (2)点Q 不在直线l 上(l Q ∉) 2.点与平面的位置关系(1)点P 在平面α上(α∈P );(2)点Q 不在平面α上(α∉Q ) 3.直线与之间的位置关系(1)平行:21//l l ; (2)相交:P l l =21 ; (3)异面:1l 与2l 异面 4.直线与平面的位置关系(1)平行:α//1l ; (2)相交:P l =α 2; (3)直线在平面平面内:α⊂l 5.平面与平面的位置关系(1)平行:βα//; (2)相交:l =βα六、空间立体几何中的四个公理1.公理1:如果一条直线的两个点在一个平面内,那么这条直线在这个平面内.2.公理2:过不在一条直线上的三点,有且只有一个平面.(推论)过直线和直线外一点,有且只有一个平面;过两条平行直线,有且只有一个平面;过两条相交直线,有且只有一个平面.3.公理3:如果两个平面有一个公共点,那么他们有且只有一条过该点的直线.4.公理4:平行于共一条直线的两直线平行(平行于同于平面的两平面平行)七、空间立体几何中的平行1.直线与直线平行的判定:(1)三角形中位线;(2)平行四边形;(3)PQ AB λ=; (4)传递性;(5)内错角,同位角,同旁内角等的关系;(6)相似.(备注:中点获得的方法:题目已知;平行四边形对角线交点;根据需要自取) 2.直线与平面平行的判定(1)判定定理:平面外一条直线与平面内一条直线平行,则该直线平行于此平面.αα⊄⊂a b b a ,,// ⇒ α//a(2)判定定理向量法:ααλ⊄⊂=PQ AB AB PQ ,, ⇒ α//PQ (3)法向量法:⋅PQ 0=n ⇒ α//PQ (n 为平面α的法向量)3.平面与平面平行的判定(1)判定定理:一个平面的两条相交直线与另一个平面平行,则这两个平面平行.ααββ//,//,,,b a P b a b a =⊂⊂ ⇒ αβ//(2)判定定理推论:若一个平面的两条相交直线分别与另一个平面的两条相交直线平行,则这两个平面平行.(3)法向量:n m λ= ⇒ βα// (n m ,分别为βα,的法向量)4.直线与平面平行的性质:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.5.平面与平面平行的性质:(1)如果两个平面平行,则一个平面内的任意一条直线与另一个平面平行. (2)如果两个平行平面同时和第三个平面相交,那么他们的交线平行.αl 1l 2lQQl 2 l 1 Pαββαl八、空间立体几何中的垂直1.直线与直线垂直的判定:(1)等腰三角形三线合一;(2)三角形边长满足勾股定理;(3)利用线面垂直的性质反推(证明异面直线垂直的方法);(4)0=⋅PQ AB ;(5)直角,矩形,菱形对角线,圆直径所对的圆周角等.2.直线与平面平行的判断:(1)判定定理:一条直线与一个平面内两条相交直线垂直,则该直线与此平面垂直.αα⊂⊂=⊥⊥b a P b a b l a l ,,,, ⇒ α⊥l(2)判定定理向量法:A AD AB AD PQ AB PQ ==⋅=⋅ ,0,0 ⇒ ⊥PQ 平面ABC .3.平面与平面垂直的判定:(1)判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.βα⊂⊥l l , ⇒ αβ⊥(2)法向量法:0=⋅n m ⇒ βα⊥ (n m ,分别为βα,的法向量) 4.直线与平面垂直的性质(1)若一条直线与一个平面垂直,则这条直线垂直于平面内的任意一条直线.αα⊂⊥a l , ⇒ a l ⊥(2)垂直于同一平面的两条直线平行. αα⊥⊥21,l l ⇒ 21//l l 5.平面与平面垂直的性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.αβαβα⊂⊥=⊥a l a l ,,, ⇒ β⊥a九、空间角问题1.线线角(异面直线所成角) ︒≤<︒900θ(1)几何法(定义法):b a ,为两条异面直线,在直线b 上取一点O ,过O 作a 的平行线'a ,'a 与b 所成的锐角(或直角)就是异面直线a 与b 所成角.(2)向量法:设异面直线b a ,的夹角为θ,在直线b a ,上分别取向量PQ AB ,,则|,cos |cos ><=PQ AB θ.2.线面角(直线与平面所成角) ︒≤≤︒900θ(1)几何法(定义法):一条直线PA 和一个平面α相交但不垂直,这条直线叫做这个平面的斜线,斜线与平面的交点A 叫做斜足.过斜线上斜足外一点向平面引垂线PO ,过垂足O 和斜足A 的直线AO 叫做斜线PA 在平面α上的射影.平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线与这个平面所称的角.一条直线与平面平行或者直线在平面内,线面角为︒0,一条直线与一个平面垂直,线面角为︒90.(2)向量法:设直线l 与平面α所成交为θ,在直线l 上取向量,设n 为平面α的法向量,则,cos |sin AB <=θ|>n . 3.面面角(二面角) ︒≤≤︒1800θ(1)几何法(定义法):从一条直线出发的两个半平面所组成的图象叫做二面角,这条直线叫做二面角的棱.在二面角βα--l (或者二面角D BC A --)的棱l 上任取一点O ,以点O 为垂足,在半平面βα,内分别作垂直于棱l 的射线OA 和OB ,则射线射线OA 和OB 所成的角AOB ∠叫做二面角的平面角.二面角的平面角的大小就是二面角的大小.αPaa ’b OP αPAOP半径球心(2)向量法:设平面βα,所成角为θ,且平面βα,的法向量分别为n m ,,则平面><=n m ,cos cos θ.注意:①法向量方向的调整:一个指入二面角,一个指出二面角②二面角与向量角的关系:互补或相等关系.十、球体1.球体的基本概念:(如图)2.球的大圆与小圆:用一个平面截球,所得截面为圆.当截面过球心时,截面圆最大,此圆称为球的大圆.球大圆的半径就是球的半径.其余截面圆称为球的小圆.3.球心距:球心到截面圆的距离(也是球心与截面圆圆心的线段)4.体积: 334R V π=5.表面积:24R S π=6.求解球半径的几种重要思想方法(1)截面法:设截面圆半径为r ,球心距为d ,则222d r R +=(2)长方体的外接球类:长方体的对角线为球的直径2222)2(c b a R ++= ⇒ 22224c b a R ++=(备注:条件中出现一个线面垂直和一个线线垂直) (3)正四面体的外接球:等体积法(球体的半径是锥体高 的43倍) 设正四面体的棱长为a ,则球的半径为:a R 46= (4)棱锥的内切球问题:等体积法球心到每一个面的面积均为球的半径R ,球心与每一个面分得一个小的锥体,小锥体的高均为球的半径R ,各个小锥体的体积之和等于整个大锥体的体积.(5)棱柱内放置最大球问题:平行面距离法找到所有平行面的距离,最小的距离就是球体的直径.十一、空间距离1.异面直线的距离:两条异面直线的距离为他们的共垂线段的距离.2.直线与平面平行的距离:直线上任意一点到平面的距离3.平行平面的距离:一个平面内任意一点到另一个平面的距离.4.点P 到平面α的距离向量法公式:设平面α的法向量为n ,在平面内任取一点Q ,则点到平面的距离为||⋅=PQ d5.空间中两点的距离公式21221221221)()()(||z z y y x x P P -+-+-=十二、平面法向量的求解方法在平面α内找到两个相交向量),,(),,,(222111z y x AD z y x AB ==,设平面α的法向量为=n ),,(z y x ,则00=⋅=⋅⇒⎩⎨⎧=++=++00222111z z y y x x z z y y x x ,取z y x ,,三个变量中一个变量的值,就可以推算出其他两个变量的值,从而得出法向量.rO RdCn n n | n |。

高中立体几何知识点总结(通用5篇)精选全文完整版

高中立体几何知识点总结(通用5篇)精选全文完整版

可编辑修改精选全文完整版高中立体几何知识点总结(通用5篇)高中立体几何知识点总结(通用5篇)总结是事后对某一阶段的学习、工作或其完成情况加以回顾和分析的一种书面材料,它能够给人努力工作的动力,为此要我们写一份总结。

你想知道总结怎么写吗?下面是小编为大家整理的高中立体几何知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。

高中立体几何知识点总结篇11、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

高中数学必修2《空间几何体》知识点

高中数学必修2《空间几何体》知识点

第1讲空间几何体一、空间几何体1、空间几何体在我们周围存在着各种各样的物体,它们都占据着空间的一部分。

如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体。

2、多面体和旋转体多面体:由若干个平面多边形围成的几何体叫做多面体。

围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点。

旋转体:由一个平面图形绕它所在的平面内的一条定直线旋转所形成的圭寸闭几何体,叫做旋转几何体。

这条定直线叫做旋转体的轴。

圆台+大圆锥-小圆锥多面体旋转体圆台圆柱-圆锥圆柱+圆锥二、柱、锥、台、球的结构特征于底面的棱柱叫做直棱柱正棱柱:底面是正多边形的直棱柱叫做正棱柱四棱柱三棱柱斜棱柱直棱柱正棱柱左边那平是正四面体.右边那亍不是正四両萍 两于都是正三棱锥正四面悴是四千面祁是正三帝形I正三磧链只雯底面是正三甬港,具啊面是驴嗟三角托四棱锥 五棱锥三棱锥实用标准正棱台定义图形表示性质定义:以矩形的一边 所在直线为旋转轴, 其余三边旋转形成的 曲面所围成的几何体叫做圆柱。

定义图形表示性质以直角三角形的一条直角 边所在直线为旋转轴,其余 两边旋转而成的曲面所围 成的几何体叫做圆锥。

A用表示它的轴的字母表示,如圆锥S0。

用表示它的轴的字母表示,如圆柱00 1。

定义图形表示性质用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分,这样的几何体叫做圆台。

用表示它的轴的字母表示,如圆台00 '7.球的结构特征1、球的定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称球。

(1 )半圆的半径叫做球的半径。

(2 )半圆的圆心叫做球心。

(3)半圆的直径叫做球的直径。

2、球的表示:用表示球心的字母表示,如球03、球的性质(1)用一个平面去截球,截面是圆面;用一个平面去截球面,截线是圆。

大圆---截面过圆心,半径等于球半径;小圆---截面不过圆心。

(完整版)立体几何初步知识点(很详细的)

(完整版)立体几何初步知识点(很详细的)

立体几何初步1、 柱、锥、台、球的结构特征(1) 棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行 于底面的截面是与底面全等的多边形。

(2) 棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与 高的比的平方。

(3) 棱台:几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4) 圆柱:定义:以矩形的一边所在的直线为轴旋转 ,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直; ④侧面展开图是一个矩形。

(5) 圆锥:定义:以直角三角形的一条直角边为旋转轴 ,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6) 圆台:定义:以直角梯形的垂直与底边的腰为旋转轴 ,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7) 球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2、 空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影) ;侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽 度。

3、 空间几何体的直观图一一斜二测画法斜二测画法特点: ①原来与x 轴平行的线段仍然与 x 平行且长度不变;② 原来与y 轴平行的线段仍然与 y 平行,长度为原来的一半。

4、 柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。

(2)特姝儿何体表面积公式(、c 为底面周长, h 为高, h 为斜高, l 为母线)s 直棱柱侧面积 ch s ®柱侧 2 rh s 正棱锥侧面积 -ch' 2 S 圆锥侧面积 rls 正棱台侧面积1 尹 Q )h' s 圆台侧面积 (r R) ls 圆柱表 2 r r l S i 锥表 r r l s 圆台表 r rl Rl R 2(3) 柱体、 锥体、台体的体积公式V 柱 Sh 2V 圆柱 Sh r h V 锥 ’Sh 3 1 2V 圆锥-r h 3 V 台 S 'S S)h V I 台 3(s .S 'S S)h 12 2 -(r 2rR R 2)h3 (4)球体的表面积和体积公式: V 球=4 R 3 ; S 求面=4 R 234、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

高中数学—立体几何知识点总结(精华版)

高中数学—立体几何知识点总结(精华版)

立体几何知识点一.根本概念和原理:1.公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

公理3:过不在同一条直线上的三个点,有且只有一个平面。

推论1: 经过一条直线和这条直线外一点,有且只有一个平面。

推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

公理4 :平行于同一条直线的两条直线互相平行。

如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2平面的一条斜线和它在这个平面内的射影所成的锐角。

esp.空间向量法(找平面的法向量)〔规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°]〕斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。

a和一个平面内的任意一条直线都垂直,就说直线a和平面互相垂直.直线a叫平面的垂线,平面叫做直线a的垂面。

直,那么这条直线垂直于这个平面。

如果两条直线同垂直于一个平面,那么这两条直线平行。

如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

行,那么这条直线和这个平面平行。

如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

面,那么这两个平面平行。

行。

8.〔1〕二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。

二面角的取值范围为[0°,180°]〔2〕二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙与平面无任何公共点)

平行;a b
a a a ⊂ A
性质Ⅰ:如果一个平面与两平行平面都相交,那么它
α
α
性质Ⅱ:平行于同一平面的两平面平行;
建议收藏下载本文,以便随时学习!
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙
11、线面垂直:
⑵判定:一条直线与一个平面内的两条相交直
⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个
l l αα建议收藏下载本文,以便随时学习!
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙
空间角及空间距离的计算
1.异面直线所成角:使异面直线平移后相交形成的夹角,
通常在两异面直线中的一条上取一点,过该点作另一条直线平行线,
2. 斜线与平面成成的角:斜线与它在平面上的射影成的角。

如图:
PA 是平面的一α条斜线,A 为斜足,O 为垂足,OA 叫斜线PA 在平面上射影,为线
αPAO ∠面角。

3.二面角:从一条直线出发的两个半平面形成的图形,如图为二面角
,二
l αβ--面角的大小指的是二面角的平面角的大小。

二面角的平面角分别在两个半平面内且角的两边与二面角的棱垂直
用二面角的平面角的定
义求二面角的大小的关键点是:

确构成二面角两个半平面和棱;②明确二面角的平面角是哪个?
而要想明确二面角的平面角,关键是看该角的两边是否都和棱垂直。

(求空间角的三个步骤是“一找”、“二证”、“三计算”)
5.点到平面的距离:指该点与它在平面上的射影的连线段的长度。

如图:O 为P 在平面上的射影,
α线段OP 的长度为点P 到平面的距离求法通常有:定义法和等体积法α等体积法:就是将点到平面的距离看成是三棱锥的一个高。

如图在三棱锥V ABC
-中有:S ABC
A SBC
B SA
C C SAB
V V V V ----===----,,
l OA OB l OA l OB l AOB
αβαβ
αβ⊂⊂⊥⊥∠如图:在二面角中,O 棱上一点,,,的平面角。

且则为二面角 a b ''︒︒
如图:直线a 与b 异面,b//b ,直线a 与直线b 的夹角为两异面直线与所成的角,异面直线所成角取值范围是(0,90]。

相关文档
最新文档