2020年新人教版八年级上册数学知识点归纳

合集下载

新人版八年级数学(上册)知识点总结归纳

新人版八年级数学(上册)知识点总结归纳

新人教版八年级上册数学知识点总结归纳1 第十一章三角形第十二章全等三角形第十三章轴对称第十四章整式乘法和因式分解第十五章分式第十一章三角形1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。

2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。

(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。

三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。

4、三角形的特性与表示三角形有下面三个特性:(1)三角形有三条线段(2)三条线段不在同一直线上三角形是封闭图形(3)首尾顺次相接三角形用符号“∆”表示,顶点是A、B、C的三角形记作“∆ABC”,读作“三角形ABC”。

5、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。

它是两条直角边相等的直角三角形。

6、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。

推论:三角形的两边之差小于第三边。

(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。

③证明线段不等关系。

7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。

人教版八年级数学上册各章节知识点归纳与总结

人教版八年级数学上册各章节知识点归纳与总结

第一章:有理数1. 正数和负数有理数的概念是数学之中一个非常重要的基础概念,也是数轴上各点的集合。

它包括正数、负数和零。

其中,正数和负数是相对的概念。

正数是指大于零的数,负数是指小于零的数。

2. 有理数的加法和减法有理数的加法和减法符合交换律和结合律。

在进行有理数的加法和减法运算时,首先要对齐小数点,然后按照正数加正数、负数加负数、正数加负数的规律进行运算。

3. 有理数的乘法和除法有理数的乘法和除法同样也是非常重要的知识点。

有理数的乘法遵循交换律、结合律和分配律,而有理数的除法则是乘法的逆运算。

第二章:平方根与立方根1. 平方根的概念平方根是指某个数的平方等于给定数的性质,它是一个非负数。

在实际生活中,平方根的概念经常被用来求解一些几何问题和物理问题。

2. 平方根的性质平方根的运算规律包括:非负实数都有唯一的非负实数平方根,平方根的乘法性质等。

这些性质在进行平方根的计算时非常重要。

3. 立方根的概念及运算立方根是指一个数的立方等于给定数的性质,它有唯一的实数解。

在实际问题中,立方根的概念常常被用来求解体积和立方体的边长等问题。

第三章:实数的比较1. 实数的大小比较实数的大小比较是指根据实数的大小关系,进行大小比较。

在进行实数的大小比较时,首先要明确两个实数的正负情况,然后按照数轴上的位置进行判断,从而得出大小关系。

2. 实数的绝对值实数的绝对值是指一个数离开原点的距离,它是一个非负数。

在进行实数的比较时,绝对值是一个非常重要的概念。

求解绝对值的大小可以帮助我们更加准确地比较实数的大小关系。

第四章:一元一次方程1. 方程的概念方程是一个等式,它包含了一个未知数和一个已知数。

一元一次方程是指方程中只含有一个未知数,并且未知数的最高次数为一的方程。

2. 解一元一次方程解一元一次方程的过程包括移项、去括号、合并同类项、系数互除和检验等步骤。

在解题过程中,要注意化简和检查解是否符合原方程。

3. 化解实际问题一元一次方程在实际生活中有着广泛的应用,比如分配问题、芳龄问题、速度问题等。

新人教版八年级上册数学知识点归纳及常考题型

新人教版八年级上册数学知识点归纳及常考题型
方案二:乙队单独工作时完成这一工程要比规定时间多用5天; 方案三:假设甲乙两队合作4天后,余下的由乙队单独工作也正 好如期完成。
问:〔1〕求甲乙两队单独工作完成这一工程各需多少天?
〔2〕在不耽误工期的情况下,你认为哪种施工方案较节省 工程款?
第二十四页,共24页。
教学资料整理
• 仅供参考,
只需增加的一个条件是
.A
D
B
图3
C
第七页,共24页。
考点2.如图2,∠1=∠2,要得到
△ABD≌△ACD,还需从以下条件中补选一个,
则错误的选法是〔 〕
A、AB=AC
B、DB=DC
C、∠ADB=∠ADC D、∠B=∠C
考点3.如右图所示,点A、D、B、F在一
条直线上,AC=EF,AD=FB,要使
△ABC≌△FDE,还需添加一个条件,
第十七页,共24页。
第十五章分式考点归纳
1、分式的判断 P127
考点 1.下列各式中, 1 x+ 1 y, 1 , 1 ,—4xy , x , x
3 2 xy 5 a
x2
是分式有
2、分式方程的判断 P
考点 1:下列属于分式的是(
A. X-2
B. y 2x x 1
) C. 8 6 a3
D. 2X-7=16
新人教版八年级上册数学知识点 归纳及常考题型
第十一章三角形考点归纳
1、判断三边能否组成三角形。P3
考点1.以以下各组线段为边,能组成三角形的是〔

A. 1,2,4
B. 4,6,8 C. 5,6,12 D.2,3,5
2、求第三边的取值范围。P3
考点1.三角形的三边长分别是2 ,5 ,x,则x的取值范围

新人教版八年级数学上册知识点总结-人教数学八年级上册知识点

新人教版八年级数学上册知识点总结-人教数学八年级上册知识点

新人教版八年级数学上册知识点总结-人教数学八年
级上册知识点
以下是新人教版八年级数学上册的知识点总结:
1. 负数的概念和运算:了解负数的概念和性质,掌握负数的四则运算法则,学会在数轴上表示负数。

2. 整式的加减法:了解整式的概念和性质,学会整式的加减运算法则。

3. 一元一次方程:了解一元一次方程的概念和性质,学会解一元一次方程,了解方程的解集和方程解的判断。

4. 一次函数的概念:了解函数的概念和性质,学会用函数的图象、方程、表格等形式描述函数,了解一次函数的特点。

5. 一次函数的应用:学会利用一次函数解决实际问题,包括线性规律、线性关系和一次函数的应用问题。

6. 一次不等式:了解一次不等式的概念和性质,学会解一元一次不等式,并了解不等式解集的表示方法。

7. 数据的收集整理和可视化:了解数据的收集和整理方法,学会利用统计图形描述数据分布和提取数据信息。

8. 小数运算:了解小数的概念和性质,学会小数的四则运算和混合运算。

9. 长方形和正方形:了解长方形和正方形的性质和关系,学会计算长方形和正方形的面积和周长。

10. 平行线与角:了解平行线的性质和判定方法,学会利用平行线的性质解决平行线和角的问题。

以上是新人教版八年级数学上册的主要知识点总结,希望对你有帮助!。

人教版八年级上册数学知识点(7篇)

人教版八年级上册数学知识点(7篇)

人教版八年级上册数学知识点(7篇)人教版八年级上册数学知识点11 全等三角形的对应边、对应角相等2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等5 边边边公理(SSS) 有三边对应相等的两个三角形全等6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等7 定理1 在角的平分线上的点到这个角的两边的距离相等8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上9 角的平分线是到角的两边距离相等的所有点的集合10 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)11 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边12 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合13 推论3 等边三角形的各角都相等,并且每一个角都等于60°14 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)15 推论1 三个角都相等的三角形是等边三角形16 推论 2 有一个角等于60°的等腰三角形是等边三角形17 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半18 直角三角形斜边上的中线等于斜边上的一半19 定理线段垂直平分线上的点和这条线段两个端点的距离相等20 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上初二数学求定义域口诀求定义域有讲究,四项原则须留意。

负数不能开平方,分母为零无意义。

指是分数底正数,数零没有零次。

限制条件不唯一,满足多个不等式。

求定义域要过关,四项原则须注意。

负数不能开平方,分母为零无意义。

分数指数底正数,数零没有零次。

限制条件不唯一,不等式组求解集。

初中提高数学成绩诀窍很多初中生认为自己只要上数学课听得懂就够了,但是一做到综合题就蒙了,基础题会做,但是会马虎。

(完整版)新人教版八年级数学上册知识点总结归纳

(完整版)新人教版八年级数学上册知识点总结归纳

新人教版八年级上册数学知识点总结新人教版八年级上册数学知识点总结归纳1第十一章三角形第12章全等三角形第13章轴对称第14章整式乘法和因式分解第15章分式多边形知识要点梳理ar知识点一:多边形及有关概念多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(见图an dAl l th i n gs in t h ei r b e i n g a r eg o o d f or s o 新人教版八年级上册数学知识点总结 凸多边形 凹多边形 图1 (2)多边形通常还以边数命名,多边形有n 条边就叫做n 边形.三角形、四边形都属于多边形,其中三角 形是边数最少的多边形.知识点二:正多边形 各个角都相等、各个边都相等的多边形叫做正多边形。

如正三角形、正方形、正五边形等。

正三角形 正方形 正五边形 正六边形 正十二边形要点诠释: 各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形知识点三:多边形的对角线 多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. 如图2,BD 为四边形ABCD 的一条对角线。

要点诠释: (1)从n 边形一个顶点可以引(n -3)条对角线,将多边形分成(n -2)个三角形。

(2)n 边形共有条对角线。

证明:过一个顶点有n -3条对角线(n ≥3的正整数),又∵共有n 个顶点,∴共有n(n-3)条对角线,但过两个不相邻顶点的对角线重复了一次,∴凸n 边形,共有条对角线。

知识点四:多边形的内角和公式 1.公式:边形的内角和为. 2.公式的证明: 证法1:在边形内任取一点,并把这点与各个顶点连接起来,共构成个三角形,这个三角形的内角和为,再减去一个周角,即得到边形的内角和为. 证法2:从边形一个顶点作对角线,可以作条对角线,并且边形被分成个三角形,这个三角形内角和恰好是边形的内角和,等于.i e an dl l th i n gs i n t h e i r b e i n g a r e g o o d f o r s o 新人教版八年级上册数学知识点总结 证法3:在边形的一边上取一点与各个顶点相连,得个三角形,边形内角和等于这个三角形的内角和减去所取的一点处的一个平角的度数, 即.要点诠释: (1)注意:以上各推导方法体现出将多边形问题转化为三角形问题来解决的基础思想。

2023年人教版八年级上册数学课本知识点归纳

2023年人教版八年级上册数学课本知识点归纳

人教版八年级上册数学书本知识点归纳第十一章全等三角形一、全等形可以完全重叠旳两个图形叫做全等形。

二、全等三角形1. 全等三角形: 可以完全重叠旳两个三角形叫做全等三角形。

(两个三角形全等, 互相重叠旳顶点叫做对应点, 互相重叠旳边叫做对应边, 互相重叠旳角叫做对应角。

)2. 全等三角形旳符号表达、读法: △ABC与△A′B′C′全等记作△ABC≌△A′B′C′, “≌”读作“全等于”。

(两个三角形全等时, 一般把对应顶点旳字母写在对应旳位置上, 这样对应旳两个字母为端点旳线段是对应边;对应旳三个字母表达旳角是对应角)。

3.全等三角形旳性质:全等三角形旳对应边相等, 对应角相等。

二、三角形全等旳鉴定:1. 三边对应相等旳两个三角形全等, 简写成“边边边”或“SSS”。

2. 两边和他们旳夹角对应相等旳两个三角形全等, 简写成“边角边”或“SAS”。

3. 两角和他们旳夹边对应相等旳两个三角形全等, 简写成“角边角”或“ASA”。

4. 两个角和其中一种角旳对边对应相等旳两个三角形全等, 简写成“角角边”或“AAS”。

5. 斜边和一条直角边对应相等旳两个直角三角形全等, 简写成“斜边、直角边”或“HL”。

(SSA、AAA不能识别两个三角形全等, 识别两个三角形全等时, 必须有边旳参与, 假如有两边和一角对应相等时, 角必须是两边旳夹角。

)三、角旳平分线旳性质1. 性质: 角平分线上旳点到角旳两边距离相等。

2. 逆定理:在角旳内部, 到角旳两边距离相等旳点在角平分线上。

(3.三角形旳内心:运用角旳平分线旳性质定理可以导出:三角形旳三个内角旳角平分线交于一点, 此点叫做三角形旳内心, 它到三边旳距离相等。

)第十二章轴对称一、轴对称1.轴对称图形: 假如一种图形沿一条直线折叠, 直线两旁旳部分可以互相重叠, 这个图形就叫做轴对称图形, 这条直线就叫做对称轴。

折叠后重叠旳点是对应点, 叫做对称点。

2. 线段旳垂直平分线: 通过线段中点并且垂直于这条线段旳直线, 叫做这条线段旳垂直平分线3. 轴对称旳性质:1.假如两个图形有关某条直线对称, 那么对称轴是任何一对对应点所连线段旳垂直平分线。

人教版八年级上册数学知识点总结归纳

人教版八年级上册数学知识点总结归纳

人教版八年级上册数学知识点总结归纳一、三角形1. 三角形的概念及分类-由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

-按角分类:锐角三角形、直角三角形、钝角三角形。

-按边分类:不等边三角形、等腰三角形(等边三角形是特殊的等腰三角形)。

2. 三角形的三边关系-三角形任意两边之和大于第三边,任意两边之差小于第三边。

3. 三角形的内角和与外角和-三角形内角和为180°。

-三角形的外角等于与它不相邻的两个内角之和。

三角形外角和为360°。

4. 三角形的高、中线、角平分线-从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。

-三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

-三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

二、全等三角形1. 全等三角形的概念及性质-能够完全重合的两个三角形叫做全等三角形。

-全等三角形的对应边相等、对应角相等。

2. 全等三角形的判定- “边边边”(SSS):三边对应相等的两个三角形全等。

- “边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。

- “角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。

- “角角边”(AAS):两角和其中一个角的对边对应相等的两个三角形全等。

- “斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。

三、轴对称1. 轴对称图形和轴对称-如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。

-把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。

2. 线段的垂直平分线-经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

-线段垂直平分线上的点与这条线段两个端点的距离相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级上册数学知识点归纳第十一章 三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点:①三条线段;②不在同一直线上;③首尾顺次相接2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.注意:已知两边可得第三边的取值范围是:两边之差<第三边<两边之和3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.注意:①三角形的三条高是线段;②画三角形的高时,只需要三角形一个顶点向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.注意:①三角形有三条中线,且它们相交三角形内部一点,交点叫重心.②画三角形中线时只需连结顶点及对边的中点即可.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和定理:三角形的内角和为180°直角三角形的两个锐角互余;有两个角互余的三角形是直角三角形.⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角. 三角形的一个外角和与之相邻的内角互补. 过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有六个外角.⑶多边形内角和公式:n 边形的内角和等于(2)n -·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n 边形的一个顶点出发可以引(3)n -条对角线,把多边形分成(2)n -个三角形.②n 边形共有(3)2n n -条对角线. 第十二章 全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。

⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

(3)全等三角形的周长相等、面积相等。

(4)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.证明两个三角形全等的基本思路:5.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.(4)三角形的三条角平分线交于三角形内部一点,并且这点到三边的距离相等6.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.7.学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)截长补短法证三角形全等。

第十三章轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.(4)线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.(5)等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.(6)等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.③如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

④两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质①点(x, y)关于x轴对称的点的坐标为(x, -y).②点(x, y)关于y轴对称的点的坐标为(-x, y).③点(x, y)关于原点对称的点的坐标为(-x,- y)⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).(6)三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章整式的乘除与分解因式一、知识框架:二、知识概念:1.基本运算:⑴同底数幂的乘法:m n m n a a a +⨯= ⑵幂的乘方:()n m mn a a = ⑶积的乘方:()nn n ab a b = 2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式.⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+ 4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式.⑶多项式÷单项式:用多项式每个项除以单项式后相加.⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:()()22a b a b a b -=+- ②完全平方公式:()2222a ab b a b ±+=± ③立方和:3322()()a b a b a ab b +=+-+ ④立方差:3322()()a b a b a ab b -=-++⑶十字相乘法:()()()2x p q x pq x p x q +++=++ ⑷拆项法 ⑸添项法 第十五章 分式一、知识框架 :二、知识概念:1.分式:形如A B,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a b c c c±±= ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c ac b d bd⨯= ⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d ad b d b c bc÷=⨯= ⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:n n n a a b b⎛⎫= ⎪⎝⎭ 8.整数指数幂:⑴m n m n a a a+⨯=(m n 、是正整数) ⑵()n m mn a a =(m n 、是正整数)⑶()n n n ab a b =(n 是正整数)⑷m n m n a a a-÷=(0a ≠,m n 、是正整数,m n >) ⑸n n n a a b b⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1n n a a-=(0a ≠,n 是正整数) 9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).。

相关文档
最新文档