第六章抽样估计
统计学第6章统计量及其抽样分布

整理ppt
16
2. T统计量
设X1,X2,…,Xn是来自正态总体N~ (μ,σ2 )
n
的一个样本,
X
1 n
n i 1
Xi
(Xi X )2 s 2 i1
n 1
则 T(X) ~t(n1)
S/ n
称为T统计量,它服从自由度为(n-1)的t分布。
整理ppt
17
F分布
定义:设随机变量Y与Z相互独立,且Y和Z分别服 从自由度为m和n的c2分布,随机变量X有如下表达式:
整理ppt
8
中心极限定理
设从均值为,方差为2的一个任意总 体中抽取容量为n的样本,当n充分大时, 样本均值的抽样分布近似服从均值为μ、 方差为σ2/n的正态分布。
当样本容量足够大时
(n≥30),样本均值的抽样
分布逐渐趋于正态分布
整理ppt
9
标准误差
标准误差:样本统计量与总体参数之间的平均差异
1. 所有可能的样本均值的标准差,测度所有样本 均值的离散程度
因此,估计这100名患者治愈成功的比 例在85%至95%的概率为90.5%
整理ppt
22
6.5 两个样本平均值之差的分布
设
X
1
是独立地抽自总体
X1 ~N(1,12)
的一个容量
为n1的样本的均值。 X 2 是独立地抽自总体
X2 ~N(2,22)的一个容量为n2的样本的均值,则有
E (X 1X 2)E (X 1) E (X 2)12
2. 样本均值的标准误差小于总体标准差
3. 计算公式为
x
n
整理ppt
10
【例】设从一个均值μ=8、标准差σ=0.7的总 体中随机抽取容量为n=49的样本。要求:
统计学第六章抽样推断

尖山一委…
尖山二委
居民一组
居民二
组
…
第六章 抽样推断
某外国公司在##进行 微波炉市场调查:
STAT
在商场的大门口
在微波炉柜台前
在市区街道旁边
在某个住宅小区
时间表抽样框
第六章 抽样推断
连续出产的产品总体 可以编制抽样框:均STAT 匀的出产时间、可以 预见到的产品总量.
连续到加油站加油的 汽车总体无法编制抽 样框:时间不定、总 量也无法确定.
抽样估计的特点
第六章 抽样推断
按随机原则抽取样本单位
目的是推断总体的数量特征
抽样推断的结果具有一定的可靠程度, 抽样误差可以事先计算并控制
抽样估计的应用
第六章 抽样推断
不可能进行全面调查时 不必要进行全面调查时 来不及进行全面调查时 对全面调查资料进行补充修正时
抽样调查研究
Sampling Study
P N nN N NN n
共n个
⒉ 不重复抽样的可能样本数目:
C N n N N 1 N n 1
第六章 抽样推断
第六章 抽样推断
STAT
★§1.1 抽样方案的设计 ★§1.2 简单随机抽样的抽样误差的测定
§1.3 简单随机抽样的抽样估计
第六章 抽样推断
§1.2 简单随机抽样的抽样误差的测定 STAT
n1 1{i n1E(xiX)2nn(E xX)2} 由E(于 xX)2D (x)D (i1 nxi)n 1 2i n1D (xi)n2
E(sn21)n11{n2nn2}
2
⒋ 样本成数:
pn1,qn0 1p nn
⒌ 样本单位是非标志的标准差:
第六章 抽样推断
市场调查分析师考试《调查概论(中级)》章节题库-第六章 抽样估计【圣才出品】

第六章抽样估计一、单项选择题1.评介估计量的标准之一是一致性,它是指()。
A.估计量和总体参数之间完全一致B.随着样本量的无限增大,样本的估计量就等于总体参数C.要求估计量的数学期望等于总体参数D.估计量的方差尽可能小【答案】B【解析】所谓一致性是指随着样本的无限增大,样本的估计量就等于待估的总体参数。
2.估计量的无偏性是指()。
A.估计量和总体参数之间完全一致B.随着样本量的无限增大,样本的估计量就等于总体参数C.要求估计量的数学期望等于总体参数D.估计量的方差尽可能小【答案】C【解析】无偏性的直观含义是指某个具体的估计值,由于随机的原因,对总体参数进行估计时可能出现偏高或偏低,但要求如果把所有的样本都抽出来,将估计值进行平均就应该等于总体参数。
即估计量的数学期望等于总体参数。
3.估计量的有效性是指()。
A.估计量和总体参数之间完全一致B.随着样本量的无限增大,样本的估计量就等于总体参数C.要求估计量的数学期望等于总体参数D.估计量的方差尽可能小【答案】D【解析】有效性是指对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。
4.抽样分布是指()。
A.估计量的分布B.样本观察值的分布C.总体参数的分布D.总体观察值的分布【答案】A【解析】估计量是一个随机变量,它的具体估计值是随着不同的样本单元而变化的,因而就有一定的分布,这个分布就叫做抽样分布。
5.抽样调查所关心的误差是()。
A.抽样误差B.非抽样误差C.抽样误差和非抽样误差D.由无回答产生的偏差【答案】C【解析】在抽样调查中,传统的参数估计主要是考察抽样误差,而抽样调查除了考察抽样误差外,还要注意非抽样误差。
6.用样本估计值对总体参数进行点估计的理论基础是()。
A.大数定律B.中心极限定理C.正态分布的原理D.无偏估计的原理【答案】A【解析】大数定律是用样本估计总体的理论基础。
其直观含义是随机事件的规律性是在大量观察中才能显露出来,虽然在每次试验中不可避免地出现随机误差,但随着观察次数的增加,随机影响将相互抵消而使规律具有稳定的性质。
统计学第六章 抽样法

第六章 抽样法
序号
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16 合计
样本变量x
40、40 40、50 40、70 40、80
50、40 50、50 50、70 50、80
70、40 70、50 70、70 70、80
80、40 80、50 80、70 80、80
-
x
x E(x)
总体
研究如何利用 样本数据来 推断总体特 征。
内容包括:参 数估计和假 设检验。
目的:对总体
特征作出推
样 本
断。
这是推断统计学研 究的问题
5
第六章 抽样法
描述统计与推断统计的关系
反映客观 现象的数
据
概率论
(包括分布理论、大 数定律和中心极限定
理等)
样本数
描述统计
推断统计
据
总体数 据
(统计数据的搜集 、整理、显示和分
13
第六章 抽样法
第二节 有关抽样的基本概念(2)
(二)抽样总体
也称子样,样本或样本总体,它是从全 及总体中随机抽取出来的,代表全及总体的 那部分单位的集合体。抽样总体的单位数称 为样本容量,用n表示,对于N来说,n是很 小的。
总体
样 本
14
第六章 抽样法
第二节 有关抽样的基本概念(3)
• 二 全及指标和抽样指标p.249 (一) 全及指标
研究总体中 的品质标志
总体成数 P N1
N
总体成数标准差 P
P1 P
17
第六章 抽样法
第二节 有关抽样的基本概念(5)
(二)抽样指标
抽样指标是由样本总体各单位标志值 或标志特征计算的综合指标,也称统计量。 与全及指标相对应有:样本平均数,样本 标准差;样本成数,样本成数的标准差。
06第六章 整群抽样

n
n
M
N M 1 S ( yij Y ) 2 为总体方差; NM 1 i 1 j 1 2
n M 1 s ( yij y ) 2 nM 1 i 1 j 1 2
2 b
为样本方差; 为总体群间方差;
M N 1 N 2 S (Yi Y ) N 1 (Yi Y ) 2 N 1 i 1 i 1
第一节 第二节 第三节 第四节
整群抽样概述 等概率整群抽样的情形 不等概率整群抽样的情形 设计效应和样本容量的确定
第一节 整群抽样概述
一、整群抽样的概念 整群抽样是先将总体各单元划分成若干群(组),然后以 群为单位,从中随机抽取一部分群,对中选群内的所有单 元进行全面调查。确切地说,这种抽样组织形式应称为单 级整群抽样。 如果总体中的单元可以分成多级,则可以对前几级单元采 用多阶抽样(详见下章),而在最后一阶中对该阶抽样单 元所包含的全部个体(最基本单元)进行调查,这种抽样 称作多级整群抽样。本章只讨论单级整群抽样。 设总体被划分为N群,第i群含有Mi个次级单元,全部总 体次级抽样单元数记为M 0,即 M 0 M i 。当诸Mi都相等 时,称为等群;否则,称为不等群。
M n 1 n 2 (Yi y ) (Yi y ) 2 s n 1 i 1 n 1 i 1
2 b
为样本群间方差;
N M 1 S ( yij Yi ) 2 N ( M 1) i 1 j 1 2
为总体平均群内方差; 为样本平均群内方差;
二、分群的原则 尽量扩大群内差异,而缩小群间差异。 三、整群抽样的特点 1.在大规模抽样调查中,常常没有或很难编制出包括总 体所有次级单元在内的抽样框,而整群抽样则不需要编制 庞大的抽样框。 2.在样本单元数相同的条件下,整群抽样与简单随机抽 样相比,样本单元的分布相对较集中,虽然样本的代表性 较差,但调查组织实施过程更加便利,同时还可以大大地 节省调查费用。因此,实际工作中,在权衡费用和精度之 后,有时宁可适当增加一些样本单元数,也采用整群抽样 方法。 3.整群抽样的随机性体现在群与群间不重叠,也无遗漏, 群的抽选按概率确定。
第6章--抽样推断PPT优秀课件

不考虑顺序
(N n 1)! n!(N 1)!
不重复抽样:又称不回置抽样。
考虑顺序 N !
( N n )!
可能组成的样本数目
不考虑ห้องสมุดไป่ตู้序
N! ( N n )! n!
7
标号为A、B、C、D的四个圆球从中随机抽取两个 可能样本个数
考虑顺序 N n
AA、AB、AC、AD BA 、BB、BC、BD
CA、CB、CC、CD
p
p1p0.9 8 0.0 20.8(0% 8 )
n
300
p p1np1N n 0.938 0 0.0021630000 00 0.80(6 %
计算结果表明:不重复抽样的平均误差小于重复抽样, 但是“N”的数值越大,则两种方法计算 的抽样平均误差就越接近。
24
四、抽样极限误差
含义:
抽样极限误差指在进行抽样估计时,根据研究对象的变 异程度和分析任务的要求所确定的样本指标与总体指标 之间可允许的最大误差范围。
例题二解 已知: N 20 ,n 040,0 x 0 48 ,0 3000
则:
x
n
3001(5小)时 400
x
2 1 n 3020140013.42(小时 )
n N 400 2000
计算结果表明:
根据部分产品推断全部产品的平均使用寿命时,采用
不重复抽样比重复抽样的平均误差要小。
21
抽样成数平均误差的计算公式
例题二:
某厂生产一种新型灯泡共2000只,随机抽出 400只作耐用时间试验,测试结果平均使用寿 命为4800小时,样本标准差为300小时,求抽 样推断的平均误差?
17
下面求 Y 的无偏估计 y 的方差 V ( y )
统计学第六章抽样和抽样分布

2021/3/4
统计学第六章抽样和抽样分布
4
一、总体与样本
▪ 把握两个问题: ▪ 1、总体和总体参数; ▪ 2、样本和样本统计量。
2021/3/4
统计学第六章抽样和抽样分布
5
1、总体与总体参数
(1)总体:指根据研究目的确定的所 要研究的同类事物的全体,是所要说 明其数量特征的研究对象。按所研究 标志性质不同,分为变量总体和属性 总体,分别研究总体的数量特征和品 质特征。 构成总体的个别事物(基本单元 )就是总体单位,也称个体。总体单 位的总数称为总体容量,记作N。
缺点:受主观影响易产生倾向性误差; 不能计算、控制误差,无法说明调查结果 的可靠程度。
抽样一般都是指概率抽样。
2021/3/4
统计学第六章抽样和抽样分布
15
2、重复抽样和非重复抽样
(1)重复抽样:又称重置抽样,是指从总体 中抽出一个样本单位,记录其标志值后,又将 其放回总体中继续参加下一轮单位的抽取。特 点是:第一,n个单位的样本是由n次试验的结 果构成的。第二,每次试验是独立的,即其试 验的结果与前次、后次的结果无关。第三,每 次试验是在相同条件下进行的,每个单位在多 次试验中选中的机会(概率)是相同的。在重复 试验中,样本可能的个数是 N n ,N为总体单位 数,n为样本容量。
2021/3/4
统计学第六章抽样和抽样分布
16
2、重复抽样和非重复抽样
(2)非重复抽样:又称为不重置抽样,即每次从
总体抽取一个单位,登记后不放回原总体,不参加下
一轮抽样。下一次继续从总体中余下的单位抽取样本
。特点是:第一,n个单位的样本由 n 次试验结果构成
统计学第六章抽样和抽样分 布
第六章 抽样与抽样分布
第六章抽样与参数估计

(1)验证 E(x) X
(2)计算重复抽样及不重复抽样的抽样平均误差。 24
第2节 参数估计的基本方法
参数估计——以实际观察的样本数据所计算的统计量作为未 知总体参数的估计值。
一、点估计(Point estimate) 点估计也称定值估计,就是直接以样本统计量作为总体参数
29
大样本(n≥30)下总体均值的区间估计
区间估计就是根据样本求出总体未知参数的估计区间,并使其 可靠程度达到预定要求。
(1) 总体方差σ 2已知时
由于 α ,有
z
x
/
n
N(0,1) ,所以对于给定的置信度1-
P {z 2
x/nz2}1
即
Px z/2
7
抽样法的特点:随机原则 部分估计总体 存在误差并可以控制
抽样法的应用:对某些不可能进行全面调查 而又需要了解其 全面情况的社会经济现象, 必须应用抽样法。(破坏性试验、总体过大、 单位过于分散,实际调查不可能的)
8
第1节 抽样与抽样分布
一、有关抽样的基本概念
总体(母体)(Population) 样本(子样)(Sample) 总体指标(总体参数)(Population parameter) 样本指标(样本统计量)(Sample statistic)
2、某工厂共生产新型聚光灯2000只,随机抽选400只进行耐 用时间调查,结果平均寿命为4800小时,标准差为300小时。 求抽样误差。
3、从某校学生中随机抽选400名,发现戴眼镜的有80人。计 算求抽样误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽样估计中的基本概念
(一)总体和样本 (二)总体指标和样本指标 (三)重复抽样和不重复抽样
总体和样本
总体:研究现象的全体,由所研究范围
内具有某种相同性质的全体单位所组成 的整体。通常用N表示。
属性总体 品质标志
总 体
变量总体 数量标志
样本(子样):从总体中随机抽取出来,
代表总体的那部分单位的集合。 样本单位数,又称样本容量,通常用n表 示。
业名录、电话本、花名册、俱 乐部名录、黄页簿、工商局企 业登记库、行业年鉴等都是市 场调查中常用的抽样框。
1.抽样估计的概述
概念:
在抽样调查的基础上,用样本的实际资料计算样 本指标,并据此估计和推断总体相应数量特征的 一种统计推断方法。
特点:
随机原则抽取; 部分单位推断总体; 误差可算可控; 基于概率的一种统计推断方法。
N
i i 1
k
i
类型抽样确定各组样本的方法:
N1
总体N
n1 n2
n3
比例抽样
n1
Ni n N
N2
N3
适宜抽样
n1
Ni i n N i i
例:某项粮食播种面积20000亩,其中有平原和山区两种地形。以类型 抽样的方法了解平均粮食产量。
地形 平原 山区 合计 全部面积(Ni) 14000 6000 20000 样本面积(ni)
适用范围: 总体规模不大,内部差异较小。
例:一个班组有A、B、C、D、E 5个工人,随机抽取2个工人的日 工资数作为了解整个班组平均工资水平的样本。 可能的结果是
样本号 A A B C D E B C D E
有放回抽样:25个样本 不放回抽样:20个样本
2. 等距抽样(机械抽样或系统抽样)
将总体按某一标志值顺序排列,然后相等距离或相等间隔抽取样本 单位。
x
2 ( x X )
M
P
2 ( p P )
M
(例题分析)
【例】设一个总体,含有4个元素(个体) ,即总体单位 数N=4。4 个个体分别为x1=1、x2=2、x3=3 、x4=4 。总 体的均值、方差及分布如下 总体分布
.3
均值和方差
x
i 1
N
i
.2 .1 0
1 2 3 4
理论基础:
大数法则、中心极限定理 大数法则:关于大量的随机现象具有稳定性质的 法则。它论证了抽样平均数趋近于总体平均数的 趋势,为抽样估计提供了重要的依据。 中心极限定理:研究变量和分布序列的极限定理。 如果总体变量存在有限的平均数和方差,那么不 论这个总体变量分布如何,随着抽样单位数n的增 加,抽样平均数的分布将趋近于正态分布。
因 此:理论上讲,抽样误差一般指随机误差, 而不包括登记性误差和系统性偏差。
影响抽样误差的因素
总体各单位的差异程度:
标准差越大,抽样误差越大;
样本单位数的多少:
n 越大,抽样误差越小; 抽样方法:不重复抽样比重复抽样小; 抽样组织方式:简单随机抽样最大。
抽样误差的侧度
(一)抽样实际误差 (二)抽样平均误差 (三)抽样极限误差
样本 从总体中抽出的部分单位 统计量 样本容量 样本平均数 样本比率 样本方差 样本标准差
n x p s2 s
总体 研究对象的全部单位 参数 总体容量 总体平均数 总体比率 总体方差 总体标准差
N
P
符号
2
随机抽样设计
1. 纯随机抽样(简单随机抽样)
对总体不做任何分类或排序,完全按随机原则抽样。
总体指标的数值也是唯一确定的
推断和估计
总体指标(未知)
总体指标:参
数(未知量)
统计推断
样本总体指标:统
计量(已知量)
注意
总体是唯一确定 的,样本总体不唯一
对于变量总体,常用的总体指标有总体 平均数 、总体标准差
设总体变量X为:X1,X2,X3…,XN,则有:
或
或
X
m i 1
i m
X fi
4. 整群抽样
将总体按某个标志分为多个群,按纯随机抽样方式或等距抽样方式, 抽取若干群,然后对所抽中的各群中的全部单位一一进行调查。
适宜范围:不适合单个抽样的场合,就可采用整群抽样方式。 优缺点:调查方便,但抽样误差较大。
总群数 R =13 A B C F D G H K I J C G D K n=nc+nd+ng+nk 样本数 r =4 样本容量
E
L
M
例:从某县100个村中抽出10个村,进行全面调查,就可以大致了 解农村家庭副业发展情况。
5. 多阶段抽样
总体包含的单位很多,分布很广,要通过一次抽样抽选样本很困 难,此时,可以将其分成若干阶段,然后逐阶段进行抽样,以完成 整个抽样过程。 特点:多个阶段、多种方法综合抽样,优点是降低抽样成本。
N1 P N
,
N 0 N N1 Q 1 P N N
样本指标:根据样本各单位标志值或标志
属性计算的综合指标,也称统计量,它是 来估计和推断总体参数的。 与总体指标相对应,有样本平均数、样本 成数及样本标准差等。
设样本变量x的观察值为:x1,x2,…,xn,则:
样本平均数:
x x n
Байду номын сангаас
3
4
1
2 3 4
1,1
2,1 3,1 4,1
1,2
2,2 3,2 4,2
1,3
2,3 3,3 4,3
1,4
2,4 3,4 4,4
(例题分析)
计算出各样本的均值,如下表。并给出样本均 值的抽样分布
16个样本的均值(x)
.3
P (X )
nk n1 n2 n N1 N 2 Nk N
类型适宜抽样:考虑各类型标志变动程度 i 不同,变动程度大的组
要多抽样,变动程度小的类型组可少抽样,使得各类型组的变动程度 Ni n i 在所有类型变动程度之和 N 中的比例相同,等同于 或 N
k i i i 1
n
ni n
N i i
量又较大。
优点:比简单纯随机抽样更精确,能以较少的抽样单位数得到较准确的
推断结果。特别是当总体各单位变量值大小悬殊、各组标志变动程度很 大时,划分类型能保证各组都有选中的机会。
• 类型抽样分类
类型比例抽样:按统一的比例来确定各类型组应抽选的样本单位数,
即各类型中抽取的样本单位数 ni 占各类型组所有单位数 Ni 的比例 是相等的,等同于样本单位总数 n 占总体单位数 N 的比例
同一总体单位有可能被重复抽中, 而且每次抽取都是独立进行
不重复抽样
抽出 个体 特点
又被称作不重置抽样、不 放回抽样 登记 特征 继续 抽取
同一总体中每个单位被抽中的机会并 不均等,在连续抽取时,每次抽取都 不是独立进行。
是最常用的抽样方法,用于无限总体和许多 有限总体样本单位的抽样。
名称 定义 特征
第六章 抽样估计
主要内容
1.抽样估计概述 2.抽样误差 3.抽样估计的方法 4.样本容量的确定
抽样调查的程序
定 义 总 体 及 样 本 确 定 样 本 容 量 进 入 调 查 阶 段
设 计 抽 样 方 案
选 择 抽 样 框
选 择 抽 样 方 法
选择抽样框
抽样框就是所有总体单位的集合, 是总体的数据目录或全部总体单位 的名单。 根据抽样框可以重新界定总体。如 抽样框是电话簿,则家庭成员总体 可以被重新界定为列入电话簿中的 那部分家庭的成员。
2
fi
i 1
对于属性总体,最常用的指标是成数。
总体成数表示总体中具有某种性质的单位数 在总体全部单位数中所占的比重,以P表示;总
体中不具有某种性质的单位数在总体全部单位数 中所占的比重则以Q表示。 设总体N个单位中,有N1个单位具有某种性质, N0个单位不具有某种性质,N1+ N0=N,则有:
样本均值的抽样分布
(例题分析)
总体分布
.3 P(X)
抽样分布
.3 .2 .1 0
.2 .1 0
1
2
3
4
1.0 1.5 2.0 2.5 3.0 3.5 4.0
X
= 2.5
σ2 =1.25
X 2.5 2 X 0.625
在实际抽样调查中,总体单位 数N常常很大,样本单位数n一般也 不小于30,由此产生的所有样本数 目是极大的,不可能抽完所有可能 的样本;同时,在开展抽样调查之 前,总体指标是未知的。因此,实 际工作中,定义式缺乏可操作性。
例:对某山区的林采蓄积量作抽样调查。将总体50块面积相等的地 划为10个区,每个区包括5个地块。采用两阶段抽样,先从10个区 选中30%,再从选中的区域中抽取60%的地块组成样本进行调查。
2.抽样误差
抽样误差地概念 抽样误差的侧度
抽样误差
----指所选取的样本的结果不能
完全代表总体而导致的误差。
排序标志
无关标志
有关标志
间隔距离:
N k n
N:总体单位数 n:需要抽取的样本单位数
例:从某企业5000名职工中抽取100人进行家庭收入水平调查。 样本的距离=
5000 50 100
起点的选择:按姓氏排序,在第一个间隔中随机选取。