八年级数学因式分解与平方差公式

合集下载

八年级数学因式分解(平方差公式)优秀教案

八年级数学因式分解(平方差公式)优秀教案

因式分解〔第二课时〕班级: 姓名:一、学习目标1、理解应用平方差公式进行因式分解的意义,能正确应用平方差公式进行因式分解2、能正确运用提公因式法和平方差公式进行较复杂的因式分解3、培养学生综合运用知识的能力二、重点难点重点:把符合公式形式的多项式写成平方差的形式,并分解因式。

难点:〔1〕确定多项式中的a 、b;〔2〕分解彻底;三、导学过程1、计算:()()x y x y +-= ()()b a a b ---+= ()()x y z x y z +--+=2、因式分解:32232718ax y bcx y - 23()27()x y x y +-+3、用符号表示整式乘法中的平方差公式:_________________【课堂探究】1、试着将多项式 24x - 与多项式 225y - 因式分解2、上述两个多项式有什么特点,向同伴交流3、把乘法的平方差公式22()()a b a b ab +-=-反过来,你得到了什么?4、分解因式的根本步骤以及注意的事项:四、学以致用1D 、分解因式:〔1〕32a ab -= 〔2〕 33416m n n m -=2D 、分解因式:〔1〕22()()a b a b +--= 〔2〕222()4()x x y y x ---=3C 、计算:2218181-=4、20a b +=,15a b -=,则22a b -=5、分解因式:〔1〕3()a b a b --+ 〔2〕2(2)(4)4x x x +-+-6、分解因式:〔1〕2ac bc a ab -+- 〔2〕3223x x y xy y +--。

八年级数学平方差公式

八年级数学平方差公式

几何图形面积计算
计算矩形面积
在几何图形中,矩形的面积可以表示 为长乘以宽,即 $S = ab$。当长和 宽相差不大时,可以利用平方差公式 近似计算面积。
计算平行四边形面积
平行四边形的面积可以表示为底乘以 高,即 $S = ah$。当底和高相差不大 时,同样可以利用平方差公式进行近 似计算。
实际问题解决策略
公式形式及推导过程
公式形式: (a+b)(ab)=a²-b²
推导过程
=a²ab+ab-b²
=a²-b²
左边 =(a+b)(ab)
=右边
适用范围及注意事项
适用范围:平方差公式适用于所有实数 范围内的运算,包括正数、负数以及0。
在进行复杂运算时,可以结合其他公式 或定理进行推导和计算。
在进行因式分解时,需要注意符号问题 ,确保分解后的因式与原式相等。
完全平方公式定义
阐述完全平方公式的概念, 即形如$(a+b)^2$或$(ab)^2$的代数式展开后得 到的公式。
完全平方公式推导
通过代数运算,展示如何 从$(a+b)^2$和$(ab)^2$推导出完全平方公 式。
完全平方公式应用
举例说明完全平方公式在 因式分解、化简求值等问 题中的应用。
立方差、立方和公式推导
THANKS
感谢观看
06
总结回顾与展望未来
关键知识点总结回顾
平方差公式的基本形式
$a^2 - b^2 = (a + b)(a - b)$,其中$a$和$b$是任意实数。
平方差公式的推导过程
利用分配律和整式的乘法法则,可以将$(a + b)(a - b)$展开为 $a^2 - ab + ab - b^2$,化简后得到$a^2 - b^2$。

八年级上册数学人教版 集体备课 14.3.2因式分解-运用平方差公式

八年级上册数学人教版 集体备课 14.3.2因式分解-运用平方差公式
教学难点
能较熟练地应用平方差公式分解因式
课 堂 教 学 设 计
教学环节
教学过程
二次备课
第一步:
交流预习
环节1:教师提问
问题1:什么叫多项式的因式分解?
问题2:下列式子从左到右哪个是因式分解?哪个整式乘法?它们有什么关系?
问题3: 能否被2016整除?
环节2:师友释疑
问题1:什么叫多项式的因式分解?
把一个多项式化成几个整式的积的形式,叫做多项式的因式分解.
师友反馈
环节1:师友检测
把下列各式分解因式:
(1) ;
(2) ;
(3) ;
(4) .
环节2:教师评价
一、本节课最佳师友是…
二、课后作业
必做:
选做:
板书设计
教学后记
初中数学集体备课活页纸
学科
初中数学
主备人
节次
第 15 周
第2 节
课题
14.3.2因式分解-运用平方差公式
课时
1
课型
新授课
教学目标
知识与技能: 1.理解平方差公式的本质:结构的不变性,字母的可变性. 2.会用平方差公式进行因式分解.3.使学生了解提公因式法是因式分解首先考虑的方法,再考虑用公式法分解.
整式乘法
特点:是a,b两数的平方差的形式。
平方差公式:
因式分解
两个数的平方差,等于这两个数的和与这两个数的差的乘积.
辨一辨:下列多项式能否用平方差公式来分解因式,为什么?
(1)
(2)
(3)
(4)
(5)
(6)
环节2:教师讲解
例1 分解因式:
(1) ;(2) .
当场编题,考考你!

人教版八年级上册14.3.2因式分解-平方差公式(教案)

人教版八年级上册14.3.2因式分解-平方差公式(教案)
同学们,今天我们将要学习的是《平方差公式》这一章节。在开始之前,我想先问大家一个问题:“你们在解数学题时是否遇到过需要分解多项式的情况?”例如,x² - 4这样的表达式。这个问题与我们将要学习的平方差公式密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平方差公式的奥秘。
(二)新课讲授(用时10分钟)
在小组讨论环节,我发现同学们的参与度很高,能够积极提出自己的观点,并尝试解决实际问题。但我也注意到,部分小组在讨论过程中可能会偏离主题,这需要我在以后的课堂上更加注意引导,确保讨论的内容紧扣教学目标。
此外,对于平方差公式与完全平方公式的混淆问题,我觉得在今后的教学中,我应该设计一些对比练习,帮助同学们明确这两个公式的区别和适用场景。通过具体的练习,让他们在实际操作中感受到这两个公式的不同。
五、教学反思
在今天的教学过程中,我发现同学们对于平方差公式的理解整体上是积极的,但也存在一些需要我进一步关注和引导的地方。在讲解平方差公式时,我注意到有些同学在推导过程中对(a + b)(a - b) = a² - b²的理解还不够深入,可能需要通过更多的实际例题来加强他们的理解。
课堂上,我尝试通过引入日常生活中的例子来激发同学们的兴趣,这种方式似乎收到了不错的效果。大家对于将数学知识应用到实际生活中的讨论非常积极,这让我感到欣慰。然而,我也意识到在接下来的课程中,需要更多地设计这样的环节,让同学们感受到数学的实用性和趣味性。
3.成展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平方差公式在实际数学题中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。

人教版八年级数学上册课件:14.3.2因式分解(公式法-平方差公式)

人教版八年级数学上册课件:14.3.2因式分解(公式法-平方差公式)
--因式分解的平方差公式
你学了什么方法进行分解因式?
把下列各式因式分解:
(1) ax - ay = a( x – y ) (2) 9a2 - 6ab+3a =3a(a-2b+1) (3) 3a(a+b)-5(a+b) =(a+b)(3a - 5) (4) ax2 - a3 =a(x2-a2) =a(x+a)(x-a) (5) 2xy2 - 50x =2x(y2-25) =2x(y+5)(y - 5)
个整体,加括号
熟记公式 a2 b2 (a b)(a b)
把下列式子分解因式
(x p)2 (x q)2
a² - b²= ( a + b)( a - b )
(1)a2-1
=( a )2-( 1 )2
(2)x4y2-4
=( x2y )2-( 2 )2
(3) 9 x2-0.01y2
49
=( 3
=(x+2)(x-2) =(3+y)(3-y)
(3) 1-a2
(4) 4x2-y2
=(1+a)(1-a) =(2x+y)(2x-y)
把下列各式分解因式
(1) 1-25x2
解: 1-25x2
=12-(5x)2
把两项写成平方的形式,
=(1+5x)(1-5x) 找出a和b。底数既有数
字还有字母,需要看成一
7
x )2-( 0.1y )2
(4)0.0001-121x2源自=( 0.01 )2-( 11x )2
因式分解:
1、 – a4 + 16 2、 4(a+2)2 - 9(a - 1)2 3、 (x+y+z)2 - (x-y-z)2

人教版八年级数学上册(教案).3.2.1运用平方差公式进行因式分解

人教版八年级数学上册(教案).3.2.1运用平方差公式进行因式分解
2.强化学生数学运算能力:使学生熟练运用平方差公式进行因式分解,培养他们在数学运算中的准确性和速度。
3.增强学生数学建模意识:通过实例演示和练习,让学生学会将实际问题转化为数学模型,提高数学建模素养。
4.激发学生数学抽象思维:引导学生从具体的数学问题中提炼出平方差公式,培养他们的数学抽象思维能力。
5.培养学生合作交流能力:在课堂讨论和练习环节,鼓励学生相互交流、探讨,提高合作解决问题的能力。
五、教学反思
在今天的教学中,我发现学生们对平方差公式的理解和应用存在一些问题。首先,他们在识别哪些多项式可以使用平方差公式进行因式分解时遇到了困难。这可能是因为我们之前的课程中,对完全平方公式和平方差公式的区别强调得不够。在今后的教学中,我需要更加明确地指出这两个公式的不同之处,并给出具体的例子进行对比。
我还注意到,在小组分享成果时,有些学生表达得不够清晰。这可能是因为他们在整理思路和表达逻辑上还存在一些问题。未来,我打算在课堂上加入一些专门的逻辑思维和表达训练,帮助学生们更好地组织和表达自己的观点。
此外,今天的总结回顾环节,我感觉到学生们对平方差公式的掌握程度参差不齐。为了确保每个学生都能跟上课程的进度,我需要设计一些针对性的复习材料和练习题,让那些掌握得不够牢固的学生能够在课后进行巩固。
另外,学生在确定a和b的值时也感到困惑。我意识到,这里需要更直观的演示和解释。或许可以通过图形的变换来帮助他们理解,如何将一个多项式拆分成两个平方项。这样,他们就能更直观地看到如何选择a和b。
在实践活动和小组讨论环节,我发现学生们对平方差公式的应用开始有了更深入的理解。他们能够将理论知识应用到解决实际问题中,这让我感到很欣慰。但同时,我也注意到,有些学生在讨论中不够积极,可能是因为他们对这个话题还不够自信。我需要在接下来的课程中,更多地鼓励这些学生,帮助他们建立自信心。

平方差公式和完全平方公式因式分解

平方差公式和完全平方公式因式分解
平方差公式和完全平方公式因式分解
平方差公式和完全平方公式是数学中常用的公式,在因式分解中起到了重要作用。

以下是这两个公式的介绍和因式分解方法:
1. 平方差公式:
平方差公式用于因式分解具有平方项的差的平方。

其公式为:a^2 - b^2 = (a + b)(a - b)。

利用此公式,我们可以将一个差的平方写成两个因数的乘积。

2. 完全平方公式:
完全平方公式用于因式分解一个二次多项式。

其公式为:a^2 + 2ab + b^2 = (a + b)^2。

利用完全平方公式,我们可以将一个二次多项式写成一个完全平方的形式。

因式分解示范:
1. 平方差公式因式分解:
假设我们要因式分解x^2 - 9。

根据平方差公式,我们有:x^2 - 9 = (x + 3)(x - 3)。

2. 完全平方公式因式分解:
假设我们要因式分解x^2 + 6x + 9。

根据完全平方公式,我们有:x^2 + 6x + 9 = (x + 3)^2。

通过使用平方差公式和完全平方公式,我们可以将一个多项式因式分解为乘积的形式。

这两个公式在代数中的应用非常广泛,帮助我们简化表达式,解决方程和证明数学性质等问题。

需要注意的是,因式分解可能会涉及到更复杂的多项式和多步操作。

理解和熟练运用这些公式,可以在数学问题求解中提高效率和准确性。

八年级数学上册整式的乘法与因式分解(平方差公式, 完全平方公式)


平方差公式 相同为a
适当交换 (a+b)(a-b)=(a)2-(b)2
合理加括号
相反为b,-b
注:这里的两数可以是两个
也可以是两个
等.
(1+x)(1-x) (-3+a)(-3-a)
(1+a)(-1+a) (0.3x-1)(1+0.3x)

1
x
-3
a
a1
0.3x 1
a2-b2 12-x2 (-3)2-a2 a2-12 ( 0.3x)2-12
3.另一项是两数积的2倍,且与两数中间的符 号相同. 4.公式中的字母a,b可以表示数,单项式和 多项式.
想一想:下面各式的计算是否正确?如果不正确, 应当怎样改正?
(1)(x+y)2=x2 +y2 (2)(x -y)2 =x2 -y2
×
(x +y)2 =x2+2xy +y2
×
(x -y)2 =x2 -2xy +y2
= 3x2-5x-10.
例3 先化简,再求值:(2x-y)(y+2x)-(2y+x)(2y -x),其中x=1,y=2.
解:原式=4x2-y2-(4y2-x2) =4x2-y2-4y2+x2 =5x2-5y2.
当x=1,y=2时,
原式=5×12-5×22=-15.
例4 对于任意的正整数n,整式(3n+1)(3n-1)- (3-n)(3+n)的值一定是10的整数倍吗?
x2 - 12 m2-22
③(2m+ 1)( 2m-1)=4m2 - 12 ④(5y + z)(5y-z)= 25y2 - z2
(2m)2 - 12 (5y)2 - z2
想一想:这些计算结果有什么特点?

人教版八年级数学上册14.3.2.1《运用平方差公式因式分解》教学设计

人教版八年级数学上册14.3.2.1《运用平方差公式因式分解》教学设计一. 教材分析1.内容概述:本节课的主要内容是运用平方差公式进行因式分解。

平方差公式是八年级数学中的一个重要知识点,掌握平方差公式对于学生后续学习代数和几何知识具有重要意义。

2.地位与作用:平方差公式是因式分解的一种基本方法,它可以帮助学生简化代数表达式,提高解题效率。

通过学习平方差公式,学生能够巩固和拓展之前学过的知识,为高中阶段的学习打下基础。

二. 学情分析1.学生特点:八年级的学生已经具备了一定的代数基础,对因式分解有一定的了解。

但部分学生在运用平方差公式进行因式分解时,容易出错。

因此,在教学过程中,需要关注学生的学习需求,针对性地进行讲解和辅导。

2.学习需求:学生需要掌握平方差公式的推导过程、记忆方法以及应用技巧。

同时,学生需要通过大量的练习,提高运用平方差公式进行因式分解的能力。

三. 教学目标1.知识与技能:使学生掌握平方差公式的推导过程、记忆方法及应用;提高学生运用平方差公式进行因式分解的能力。

2.过程与方法:通过观察、分析、归纳、推理等方法,引导学生自主探究平方差公式的推导过程,培养学生的逻辑思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学的趣味性和实用性。

四. 教学重难点平方差公式的推导过程及应用。

平方差公式的灵活运用,特别是遇到复杂表达式时的因式分解。

五. 教学方法1.情境教学法:通过生活实例引入平方差公式,激发学生的学习兴趣。

2.启发式教学法:引导学生自主探究平方差公式的推导过程,培养学生的逻辑思维能力。

3.合作学习法:学生进行小组讨论,共同解决难题,提高学生的团队合作意识。

4.反馈评价法:及时给予学生反馈,鼓励学生积极参与课堂活动,提高教学效果。

六. 教学准备1.教学课件:制作精美的教学课件,突出平方差公式的推导过程和应用实例。

2.练习题:准备一定数量的练习题,包括基础题、提高题和拓展题,以满足不同学生的学习需求。

人教版八年级数学上册: 1. 完全平方公式


人教版八年级数学上册: 1. 完全平方公式
人教版八年级数学上册: 1. 完全平方公式
例例12 运用完全平方公式计算: (1)1022; (2)1972 .
分析:把1022和1972改写成(a b)2 还是(a - b)2?
a、b怎样确定?
解:(1)102 2
(2)197 2
=(100+2) 2
= (200-3)2
人教版八年级数学上册: 1. 完全平方公式
人教版八年级数学上册: 1. 完全平方公式
观察下列计算过程,判断其是否正确,若不正确,请改正. (1)(2a-3b)2=4a2-9b2; (2)(-2m-3n)2=4m2-12mn+9n2.
人教版八年级数学上册: 1. 完全平方公式
人教版八年级数学上册: 1. 完全平方公式
证明:(a - b)2 = [a + (-b)]2 = a2 +2a (-b)+(-b)2 = a2 -2ab + b2 .
人教版八年级数学上册: 1. 完全平方公式
人教版八年级数学上册: 1. 完全平方公式
初识完全平方公式:(a - b)2 =a2 -2ab + b2 .
1.结构特征:左边是二项式(两数和或差)的平方;右边是两数的 平方和加(或减)这两数乘积的2倍.
人教版八年级数学上册: 1. 完全平方公式
3.在解题过程中要准确确定a和b,对照公式原型的两 边,做到不丢项、不弄错符号、2ab时不少乘2. 4.有时需要进行变形,使变形后的式子符合应用完 全平方公式的条件,即为“两数和(或差)的平方 ”,然后运用公式计算. 5.公式中的字母a,b可以表示数,单项式和多项式.
(3)(3x - 2)2 = __9_x_2_-_12_x_+_4___;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1). 2). 3). 4). 5). 6). 7).
2 1-25b
5 3 x -x 4 4 81x -y 2 2 (a-b)x +(b-a)y 2 ab(a+b) -ab
2 2 9(a+b) -16(a-b)
2 2 4a -(b+c)
2.把下列各式分解因式 ⑴ x2-y2 ⑵ 1-m2 ⑶ -a2+b2 ⑷ x2-y2 ⑸ -9+16x2 ⑹ x2-9y2 ⑺ 4x2-9y2 ⑻ 0.09a2-4b2 ⑼ 0.36x2-y2 ⑽ x4-y2 ⑾ x2y2-z2 (12) x2-(x-y)2 (13) 9(x-y)2-y2 (14) (x+2y)2-(2x-y)2 (15) 16(a+b)2-9(a-b)2 (16) (a2+b2)2-a2b2
3.因式分解:
1、 – a4 + 16
2、 4(a+2)2 - 9(a - 1)2 3、 (x+y+z)2 - (x-y-z)2 解:782-222 4、 (a-b)n+2 - (a-b)n 4.利用因式分解计算 2-992×25 2 2 25 × 101 提取公因式 (1)78 -22 =25×(1012-992) (2)25×1012-992×25 =25×(101+99)×(101-99) =25×200×2 用平方差公 式分解因式 =10000
(1) x2 + y2 不能,这是平方和
(2) x2 - y2
(3) -x2+y2
能, x2-y2=(x+y)(x-y) 能,-x2+y2=(y+x)(y-x)
(4) -x2 - y2 不能,这是平方和的相反数
2. 下列多项式可以用平方差公式去分解因式吗?为什么?
(1) 4x2+y2 (3) -4x2-y2
分解因式:
3a 2 a b 27 a b
2 2
2
2 2
解:原式 3a 2 a b 9b 2 2 2 3a 2 a b 3b 2 3a 2 a b 3b 2 a b 3b 2 3a 2 a 4b 2 a 2b 2 3a 2a 2b 2a b 2 12 a a 2b a b
分解因式: (1) x5-x3 (2) 2x4-32y4
解:(1) x5-x3 =x3(x2 –1) = x3 (x+1)(x-1)
结论: 1、先提出公因式, 再考虑平方差公式. 2、分解因式分解到不能分解为止.
(2)2x4-32y4=2(x4-16y4)
=2(x2+4y2)(x2-4y2)
= 2(x2+4y2)(x+2y)(x-2y)
平方差公式:
整式乘法
(a+b)(a-b) = a²- b²
整式乘法与因 式分解是互逆 的过程
两个数的平方差, 等于这两个数的和 与这两个数的差的 a²- b² = (a+b)(a-b) 积
因式分解
第十五章 因式分解 八年级 数学 1.把下列各式写成完全平方的形式:
如:36x2y4=( 6xy2) 2
; / 轰趴馆;
玖;≈111;≈10玖;想几乎都有啊,比壹般の站要稳定很多更新还快,全文字の没有广告.]"根汉说."太好了,谢谢您叶神翼."男子没想到,根汉这么容易就答应他了,让他有些喜出望外."不用这么客气,你叫什么名字?"根汉笑着问他.这个家伙有壹颗赤子之心,虽然从小被迫害,便是依旧没 有丢失自己善良の本心,这是壹个难得の好苗子.而且黑煞之火,也选择他の元灵共生,也有可能是这壹点.壹般の黑煞之火可都是有灵‘性’の,也不会随便选择什么人就‘乱’共生,必定是这人の什么东西.男子笑了笑说:"咱叫黑子,没有名字.""黑子?"根汉这家伙の脸,基本上都被黑煞之 火给毁了,现在‘挺’黑の,不过如果恢复之后,应该不会这么难他对黑子说:"这样吧,咱送你壹个名字如何?""那太好了,请叶神翼赐名."黑子很兴奋,他终于是要有名字了吗?根汉微笑着说:"你咱既然是在南沙城相遇,相遇就是缘份,不如就叫南缘吧.""南缘?""南缘."黑子喃喃自语,念叨 了好几遍,兴奋の说:"真好听,谢谢神翼,以后咱就有名字了,咱就叫南缘了."南缘,取意难得の缘份,南沙の缘份,根汉也没多想,也就随口这么壹取了."你也不要叫咱神翼了,以后叫咱叶哥吧."根汉说."那,那怎么好."南缘连忙说:"不如咱给您当个外‘门’弟子吧,您收咱为徒吧.""收你为 徒?"根汉想了想,这可是自己头壹回收徒,想了想后说:"罢了,从今天起,你就是咱根汉の徒尔了,以后跟着师父好好‘混’."认徒の过程,当真是没有半点麻烦の,根汉也没有什么讲究.只是把单雄给叫了出来,三人壹起在院里吃喝了壹顿,就当是收徒成功了.这可把单雄给羡慕の不行,这南 缘刚与根汉壹见面,就成了根汉の徒弟了,他可是羡慕の紧呀,他也想当根汉の徒弟来着呢.可是根汉不收他呀,不收他这个老家伙了.收了徒弟了,根汉仿佛也多了壹件事情了.每天不仅还是帮人越来越多の南沙城中の修行者,若是有什么‘毛’病の话,也会来找根汉帮他壹时间,根汉很快就 成了这南沙小城中の风云人物,焦点人物.时间过得飞快,转眼就又是半年时间过去了.这壹天晚上,根汉还在指导南缘教他炼‘药’の基本方法,同时在亲自教导他炼制壹味简单の丹‘药’,全骨丹.顾名思议,这是壹味可以令骨骼正位の丹‘药’.南缘试了十几回之后,终于是成功了壹次,炼 制出了好几粒淡白‘色’の‘药’丸,让他兴奋の嗷嗷大叫,赶紧叫单雄出来给展示壹番.单雄也向南缘竖起了大拇指:"好小子,不愧是大哥の徒弟,这全骨丹虽然‘挺’简单の,但是你以元古境の修为,而且还身具剧毒,就可以炼制出来了实属不易呀reads;.""谢谢单大叔,咱还会继续努力 の."南缘兴奋の说:"下回咱壹定要壹次成功,刚刚咱可是‘浪’费了好多‘药’材了,要是都没有‘浪’费の话,可以给几十个跌伤の百姓服用了.""恩,努力."单雄の心境,也有些被南缘感染了.他其实都是说の假话,要是别人の话,炼制这全骨丹估计早就好了,可能都是壹到三次就能成功 吧,因为只有两种‘药’材‘混’合壹下子就可以了.不过他觉得南缘の善良感染了他,或许这也正是根汉收他为徒の原因吧,这个南缘心系常人,是壹个很善良の苗子.这半年来,与南缘呆在壹起の时间长了,单雄都觉得自己已经不适合再修行吞噬之法了.他也在悄悄の改变自己,希望自己能 够就此收手,以后再也不去吞噬别人了,虽然无法转修别の道法了,但是不再吞噬别人,也算是壹件福事.那样就能慢慢の驱除元灵中の戾气,让自己以前积攒下来の那些副作用,慢慢の驱除,让自己也变得正常起来.也许修为道行并不是最重要の,壹个人,或者是壹个生灵,最重要の还是开心, 还是做自己喜欢做の事情,做无愧于心,无愧于天地の事情.天道并不是要你去打破,而是让你维护,让天下变得更美好,让万物生灵都能有好の生存环境,破坏只能让大家都过得不好.所以单雄也很欣赏南缘,欣赏这个修为不高,但是心怀苍生の年轻人.平时他有空,也会过来指导南缘,毕竟根 汉の时间很宝贵,也没有这个时间壹直来教导南缘,以单雄の修为要教导南缘,实在是绰绰有余了.(..)(正文贰捌叁1收徒南缘)贰捌叁贰南沙主城贰捌叁贰所以单雄也很欣赏南缘,欣赏这个修为不高,但是心怀苍生の年轻人.新.平时他有空,也会过来指导南缘,毕竟根汉の时间很宝贵,也没 有这个时间壹直来教导南缘,以单雄の修为要教导南缘,实在是绰绰有余了.南缘在翼药,炼药方面の进步,也是很明显の.本来他就是元古境の修士,比普通人要强出成千上万倍,自然学习起来也是可以の,只是和那些圣境之类の修士,当然是没办法可比の.不过南缘已经很可以了,壹些普通人 の小病小灾,他可以轻易の治好了.他体内虽有黑煞之火,但是因为根汉时不时の替他压制住,所以现在黑煞之火の痛苦暂时就没有了,这半年来是他活の最开心の半年了.这壹天晚上,根汉他们の院子外面,又来了两个不速之客.只不过这两人,明显の要强大了太多了,这是两位高阶圣境の强 者,同样是两个黑袍人,脸上戴着鬼面具."沙卫拜见叶神翼."人の气势,好像并不是衍无玄天の执法长老.根汉和单雄,以及南缘都出来了."两位是?"根汉皱眉问道.这两人の气息有些古怪,像是冥冥中の远古时代の气息,仿佛隔了相当の久了,存在太远了."在下沙六,在下沙九."两人介绍了壹 下:"咱们是南沙城の十大守卫.""奉咱主之命,前来邀请叶神翼,前往南沙城作客."两人说."南沙城作客?"根汉皱了皱眉问道:"这里不是南沙城吗?你们主人是谁?"能有这样强大の仆人,也足以证明这两个家伙の主人,肯定至少也是壹个绝强者,大概是见自己最近风头有些大吧,想请自己过 去壹叙."这里是南沙小城."沙六介绍了壹下,"并不是南沙主城,南沙主城不在这里,比这里要大上百倍.""南沙主城?"不仅是根汉,壹旁の单雄和南缘,也觉得很奇怪.不过仔细壹想,似乎这里の确全名叫南沙小城,确是有壹个南沙主城了.根汉也想到了,这两个人,应该是南沙小城背后の人の 仆人了,而且极有可能与南沙小城中间,那座小沙丘有关系,诡异の存在.他对两人说:"好吧,那就叨扰了.""大哥,这."单雄想说这也未免太危险了,万壹对方有什么陷阱等着根汉,比如对方与衍无玄天有勾结,给根汉挖了壹个坑の话,那就麻烦了.根汉杀了衍无玄天の执法长老,这事情可不是 小事情,执法长老代表の是玄天の无上威严,可不是能随便乱杀の."无妨,你们二人进咱乾坤世界呆着吧,也不用在这里住了."根汉想了想,还是要将他们二人给带上,免得这壹去比较久の话,到时留他们二人在这里の话,到时居住时限到了,又是壹件麻烦事.单雄二人也没什么好劝の,进
相关文档
最新文档