人教版八年级数学上册因式分解专题练习
八年级数学上册《第十四章 因式分解》同步训练题及答案(人教版)

八年级数学上册《第十四章因式分解》同步训练题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列等式中,从左到右的变形是因式分解的是()A.x(x−2)=x2−2x B.(x−1)2=x2−2x−1C.x2−4=(x+2)(x−2)D.x2+3x+2=x(x+3)+22.用提公因式法分解因式4x3y3+6x3y−2xy2时,应提取的公因式是()A.2x3y3B.−2x3y2C.12x3y3D.2xy3.下列四个多项式中,能用提公因式法进行因式分解的是()①16x2﹣8x;②x2+6x+9;③4x2﹣1;④3a﹣9ab.A.①和②B.③和④C.①和④D.②和③4.将多项式x−x2因式分解正确的是( )A.x(1−x)B.x(x−1)C.x(1−x2)D.x(x2−1) 5.下列多项式中,能因式分解得到(x+y)(x﹣y)的是()A.x2+y2B.x2﹣y2C.﹣x2﹣y2D.-x2+y2 6.已知a、b、c是三角形的边长,那么代数式(a−b)2−c2的值是()A.小于零B.等于零C.大于零D.大小不确定7.已知:a+b=5,a−b=1则a2−b2=()A.5 B.4 C.3 D.28.下列各式中,代数式()是x3y+4x2y2+4xy3的一个因式.A.x2y2B.x+y C.x+2y D.x﹣y二、填空题9.分解因式:36x2−4=.10.将多项式−5a2+3ab提出公因式−a后,另一个因式为.11.分解因式:(x−3)2−2x+6=.12.在实数范围内分解因式:4x2+4xy−y2=.13.已知a−b=1,ab=2则a2b−ab2的值为.三、解答题14.分解因式(1)4a3b−2a2b2(2)x2−4x+4(3)2m2−18(4)a2+7a−1815.若△ABC的三边长分别为a、b、c,且b2+2ab=c2+2ac,判断△ABC的形状.16.如果n是正整数,求证:3n+2-2n+2+3n-2n能被10整除.17.已知,长方形的周长为30cm,两相邻的边长为x cm,y cm,且x3+x2y-4xy2-4y3=0,求长方形的对角线长和面积.18.阅读下列材料:材料1:将一个形如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q因式分解成(x+m)(+n)的形式,如x2+4x+3=(x+1)(x+3);x2﹣4x﹣12=(x﹣6)(x+2)材料2:因式分解:(x+y)2+2(x+y)+1解:将“x+y”看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2,再将“A”还原,得原式=(x+y+1)2上述解题方法用到“整体思想”,“整体思想”是数学解题中常见的一种思想方法.请你解答下列问题:(1)根据材料1,把x2﹣6x+8分解因式;(2)结合材料1和材料2,完成下面小题:分解因式:(x﹣y)2+4(x﹣y)+3参考答案1.C2.D3.C4.A5.B6.A7.A8.C9.4(3x+1)(3x−1)10.5a−3b11.(x−3)(x−5)12.(2x+y+√2y)(2x+y−√2y)13.214.(1)解:4a3b−2a2b2=2a2b(2a−b)(2)解:x2−4x+4=(x−2)2(3)解:2m2−18=2(m2−9)=2(m+3)(m−3)(4)解:a2+7a−18=(a+9)(a−2)15.解:∵b2+2ab=c2+2ac∴b2−c2+2ab−2ac=(b+c)(b−c)+2a(b−c)=(b−c)(b+c+2a)=0∵△ABC的三边长分别为a、b、c∴b−c=0∴b=c∴△ABC是等腰三角形.16.证明:∵3n+2-2n+2+3n-2n=3n⋅ 32-2n⋅ 22+3n-2n=3n(32+1)-2n(22+1)=10 ⋅ 3n-10 ⋅ 2n-1=10(3n-2n-1).∴3n+2-2n+2+3n-2n能被10整除.17.∵长方形周长为30cm∴2(x+y)=30,化简得:x+y=15x3+x2y−4xy2−4y3= x2(x+y)−4y2(x+y)= (x+y)(x2−4y2)= (x+y)(x+2y)(x−2y)∵x3+x2y−4xy2−4y3=0(x+y)(x+2y)(x−2y)=0∵x>0∴(x+y)(x+2y)≠0则x−2y=0,即x=2y∵x+y=15∴3y=15,解得:y=5∴x=2y=10∴长方形的对角线长:√x2+y2=√102+52=√125=5√5(cm)长方形的面积:xy=10×5=50(cm2) .18.(1)解:∵8=(−4)×(−2),−6=(−4)+(−2)∴ x2﹣6x+8 =(x−4)(x−2)(2)解:令x−y=A∵3=1×3,4=1+3则(x﹣y)2+4(x﹣y)+3 =(A+3)(A+1)∴(x﹣y)2+4(x﹣y)+3 = (x−y+3)(x−y+1)。
人教版八年级上册数学整式乘法和因式分解计算题

人教版八年级上册数学整式乘法和因式分解1.因式分解:(1)2a b ab - (2)228x -2.因式分解(1)a 2(x +y )﹣b 2(x +y ) (2)x 4﹣8x 2+16.3.计算:(1)(x 2y )3•(﹣2xy 3)2;(2)(xny 3n )2+(x 2y 6)n ;(3)(x 2y 3)4+(﹣x )8•(y 6)2;(4)a •a 2•a 3+(﹣2a 3)2﹣(﹣a )6.4.计算: (1)()()232a a -+;(2)()()23210432563a b ab a b a ⋅--÷.5.分解因式: (1)2693x xy x -+;(2)2xy x-;6.因式分解:(1)x3y﹣xy3;(2)(x+2)(x+4)+x2﹣47.分解因式:(1)2(m﹣n)2﹣m(n﹣m);(2)(x2﹣4xy+4y2)+(﹣4x+8y)+4.8.因式分解:(1)4ab b+(2)232x x-+(3)221 4a b b-+-(4)2464a-9.计算:(1)()()2323322a a a a a ⋅⋅+-(2)()()3223a a b ⋅- 10.因式分解: (1)322369x y x y xy -+(2)()()236x x y x y x -+-11.计算:(1)分解因式:34x x - (2)计算:214?4x y x ⎛⎫- ⎪⎝⎭12.把下列各式分解因式: (1)a 3﹣a(2)16x 2y 2﹣(x 2+4y 2)2 13.因式分解: (1)32246x x x -+-; (2)222(4)16a a +-. 14.分解因式: (1)x 3y -2x 2y 2+xy 3(2) a 2(x -1)2+4a (1-x ) (3)(x 2+y 2)2-4x 2y 2 15.用乘法公式计算:(1)()()()2232349x x x -+-(2)()()33x y x y +--+ 16.分解因式(1)()()mn m n m n m --- (2)229()16()m n m n +-- 17.分解因式:(1)2a (x ﹣y )+b (y ﹣x ); (2)(x 2 +1)2﹣4x 2. 18.计算:(1)(﹣2m 2n 3)2+(3m 3n 4)•(12-mn 2)3;(2)(x +2y )2﹣(x +y )(3x ﹣y )﹣5y 2 19.因式分解: (1)2232x -(2)3223242x y x y xy ++ 20.因式分解: (1)2ax a -+ (2)214x x ++21.先化简,再求值:()()2222x y x x y y ⎡⎤---÷⎣⎦,其中1x =,2y =. 22.化简求值:[(x ﹣2y )2﹣2(x +y )(3x ﹣y )﹣6y 2]÷2x ,其中12,.2x y =-=23.先化简,再求值:2(2)(2)(2)2(2)(4)x y x y x y x x y x ⎡⎤-+-+--÷-⎣⎦,其中12x =-,1y =.24.先化简再求值:()()()22224x y x y x y x y y +-+--++()其中:112x y ==,. 25.先化简,再求值:[(x ﹣y )2+(x +y )(x ﹣y )]÷2x ,其中x =2021,y =﹣2020. 26.先化简,再求值:[(xy +2)(xy ﹣2)﹣2(xy +1)2+6]÷(xy ),其中x =10,y =﹣125. 27.先化简,再求值:2(2)2()()(23)x y y x x y y y x ---+--,其中1,33x y ==-28.(1)已知225a b +=,()29a b +=,求44a b +的值; (2)若x 满足()()9715x x --=-,求()()2297x x -+-的值.29.(1)已知4a 2﹣a ﹣4=0,求代数式(2a ﹣3)(2a +3)+(a ﹣1)2+(1+a )(2﹣a )的值;(2)已知a ,b 满足a 2+b 2﹣10a ﹣4b +29=0,且a ,b 为等腰三角形△ABC 的边长.求△ABC 的周长.30.化简并求值:当12x =-时,求代数式()()()2353535x x x +--+的值.31.先化简,再求值:[(﹣a +b )(﹣a ﹣b )+(2a ﹣b )2﹣a (a +3b )]÷2a ,其中a =3,b =2 32.计算:1| (2)322332()(2)x x x x x +--33.先化简.再求值:2(1)(4)3x x x -+--,其中14x =-.34.先化简,后求值:()()()21232322x y x y x y y ⎛⎫⎡⎤+---÷ ⎪⎣⎦⎝⎭,其中1x =,12y = 35.先化简,再求值:()()()()2233102x y x y x y y x +-+--⎤⎦÷-⎡⎣.其中x =-2022,12y =-.36.先化简,再求值:2(2)(1)(1)a a a +----,其中 a = -1.37.先化简,再求值:2()3()(2)(2)x y x x y x y x y +-+++-,其中1x =,1y =-. 38.先化简,再求值:()()()2232321x x x -+-+ ,其中12x =-. 39.因式分解:24(7)9(7)a x x +-+.40.先化简,再求值:()()()()()22233333x y x y y x x y x y ⎡⎤+----+-÷⎣⎦,其中x ,y 满足()2210x y ++-=. 41.因式分解 (1)am an ap -+ (2)214x - (3)21664x x -+(4)22(32)(23)x m n y n m -+- 42.计算题 (1)()22333a a a ⋅+-(2)2()()()x y y x y x --+-(3)()3246102a a a a -+÷(4)2(1)|2-+ 43.因式分解. (1)()69m m ++; (2)222(1)4a a +-. 44.利用乘法公式计算:(1)2197(2)(x ﹣2y +4)(x +2y ﹣4)45.已知两个实数a ,b 满足10a b +=,24ab =,且a b <;分别求值; (1)22a b +; (2)-a b ; (3)23a b +.46.先化简,再求值:2(2)(3)(2)x x x +-+-其中,13x =-47.计算:234228(2)342x x x x x ⋅--+÷.48.先化简,再求值:[(2x +y )(2x ﹣y )﹣3(2x 2﹣xy )+y 2]÷(﹣12x ),其中x =﹣12,y =23.49.按要求完成下列各小题 (1)因式分解: ①269x x - ①2288a b ab b -+;(2)先化简,再求值:()()()3222242x y x y x x y x +---÷,其中2x =-,12y -=.50.因式分解:228x y y -.51.先化简,再求值:[(x -y )2+x (2y -x )+2y 2]÷y ,其中x =12,y =1. 52.先化简,再求值:()()()()222213x x x x x -+-+++,其中12x =-. 53.分解因式 (1)236x xy -; (2)269ax ax a ++; (3)223m m --.54.先化简,再求值:()()()211(21)221x x x x x +-+---,其中2x =. 55.因式分解:()()224a x y b y x -+-56.分解因式: (1)2255x y -; (2)3269m m m ++57.若220220x x +-=,求2(23)(23)(54)(1)x x x x x +--+--的值.58.先化简,再求值:2(2)6()()(2)x y x x y x y x y --+++-,其中x ,y 满足21(2)0x y -++=.59.因式分解: (1)3244m m m -+ (2)()2242a a b -- 60.因式分解: (1)235x y y - (2)()()x x y y y x -+- 61.计算: (1)218()4xy xy ⋅-(2)2(2)4()x y x x y ---62.先化简,再求值:()()22333244y x xy y x xy ⎡⎤⎡⎤----+-⎣⎦⎣⎦,其中2x =,1y =63.计算:(1)()()()21212a a a a +--+ (2)()()()224x y x y x y ---+ 64.因式分解: (1)4x 2-8x +4; (2)(x +y )2-4y (x +y ) 65.先化简,再求值:(1)2(2)()()2x y x y x y y ⎡⎤-+--÷⎣⎦,其中2x =,4y =; (2)()2426()3()()a a a b a b a -÷--+-,其中2223a b +=. 66.(1)已知3x y +=,1xy =,求22x y +的值.(2)已知2210x x --=,求322544x x x +-+的值. (3)已知22810410x y x y +-++=,求()2021x y +的值.67.计算:(1)()272643x x x x x ⋅+⋅-(2)()()()()2511313a a a a +-+-+(3)()()22141x x x --- (4)()()2323x y x y --+- 68.分解因式: (1)2m mn m -+ (2)3212a a a -- (3)()()22413x x +-- (4)421881y y -+69.先化简,再求值:()()()()2253a b a b a a b a b +-+---,其中a =-3,32b =. 70.已知(a +b )2=17,(a ﹣b )2=13,求: (1)a 2+b 2的值; (2)ab 的值. 71.计算: (1)322x x x x ⋅+⋅(2)()()()222x y x y x y +-+- 72.因式分解: (1)()()22a m b m -+- (2)322a a a -+73.先化简,再求值:(x +3y )2+(x +2y )(x -2y )-2x 2,其中x =-2,y =-1. 74.将下列各式分解因式: (1)2x (m -n )-(n -m ) (2)4m 2﹣n 2(3)3m 2n -12mn +12n (4)2a 3b ﹣18ab 375.先化简,再求值:2(23)(2)(2)(2)x y x y x y y ⎡⎤+-+-÷-⎣⎦,其中13x =,12y =-. 76.已知()27x y +=,()25x y -=. (1)求22x y +值; (2)求xy 的值. 77.先化简,再求值:(1)()()()332x x x x +---,其中4x =.(2)()()()222a b a b a b a +-++-,其中3a =,13b =-.78.计算:(1)()()()22x y x y x y x ⎡⎤-++-÷⎣⎦(2)()()()2312x x x +--- 79.因式分解: (1)24100x -; (2)22242m mn n -+; (3)()22214a a +-.80.计算:(1)()3322m m m m ⋅+-÷;(2)2(23)(2)(2)x x x +-+-; (3)(23)(23)a b c a b c +--+.81.先化简,再求值:()()()3222484a b a b ab a b ab +-+-÷,其中a =3,b =-1.82.计算:()2482a a a a -⋅-÷. 83.因式分解: (1)29a - (2)22363x xy y ++84.先化简,再求值323()(2)(2)(2)a b ab a b a b a ÷-----+--,其中2a =,1b =-. 85.化简求值:221(2)(2)242xy xy x y xy ⎛⎫⎡⎤+--+÷- ⎪⎣⎦⎝⎭,其中x =10,y =-125. 86.先化简,再求值:()()2462a b a a b -+-,其中a =2,b =-1. 87.先化简,再求值:()()()()231124x x x x x +++--+,其中6x =.88.先化简,再求值:()()()22222a b a b a b b ⎡⎤--+-÷⎣⎦,其中1,1a b =-=.89.先化简,再求值:()()()336x x x x +---,其中=x 90.计算:423a a a a ⋅+⋅91.先化简,再求值:()()()()21233x x x x x +--+-+,其中x =-1. 92.把下列多项式因式分解:(1)()()326x y y --- (2)22344xy x y y --93.已知:2()34x y +=,2()14x y -=,分别求22x y +和xy 的值.94.两个边长分别为a 和b 的正方形如图放置(图1),其未叠合部分(阴影)面积为S 1;若再在图1中大正方形的右下角摆放一个边长为b 的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S 2.(1)用含a 、b 的代数式分别表示S 1、S 2; (2)若a +b =10,ab =23,求S 1+S 2的值;(3)当S 1+S 2=29时,求出图3中阴影部分的面积S 3.95.如图,边长为a 的正方形中有一个边长为b (b <a )的小正方形,如图2是由图1中的阴影部分拼成的一个长方形.(1)设图1阴影部分的面积为1S ,图2中阴影部分的面积为2S ,请直接用含a ,b 的式子表示1S = ,2S = ,写出上述过程中所揭示的乘法公式 ; (2)直接应用,利用这个公式计算: ①(﹣12x -y )(y -12x ); ①102×98(3)拓展应用,试利用这个公式求下面代数式的结果.(3+1)×(32+1)×(34+1)×(38+1)×(316+1)......×(31024+1)+196.两个边长分别为a 和b 的正方形如图放置(图1),其未叠合部分(阴影)面积为1S ;若再在图1中大正方形的右下角摆放一个边长为b 的小正方形(如图2),两个小正方形叠合部分(阴影)面积为2S .(1)用含a ,b 的代数式分别表示12S S 、;(2)若=1640a b ab +=,,求12S S +的值;(3)当1276S S +=时,求出图3中阴影部分的面积3S .97.数学教科书中这样写道:“我们把多项式222a ab b ++及222a ab b -+叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法,经常用来解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:()22223214(1)4x x x x x +-=++-=+-;例如求代数式2246x x +-的最小值;()2222462232(1)8x x x x x +-=+-=+-.根据阅读材料用配方法解决下列问题:(1)分解因式:265m m -+________;(2)当a ,b 为何值时,多项式2241033a b a b +-++有最小值,并求出这个最小值;(3)已知8a b -=,24200ab c c +-+=,求a b c ++的值.98.将222()2a b a ab b +=++变形,得222()2a b a b ab +=+-,()()22212⎡⎤=+-+⎣⎦ab a b a b ,请根据以上变形解答下列问题: (1)已知225a b +=,2()9a b +=,则ab =________,a -b =_______.(2)若x 满足()()7515x x --=-,求22(7)(5)x x -+-的值.(3)如图,在长方形ABFD 中,DA ①AB ,FB ①AB ,AD =AC ,BE =BC .连接CD ,CE ,若AC ·BC =10,直接写出图中阴影部分的面积.99.(1)先化简,再求值:()()()222222x y x y x y y x ⎡⎤-+--+÷⎣⎦;且x ,y 满足2(2)|3|0x y -+-=.(2)如图,某市有一块长为(2)a b +米,宽为()a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像.试用含a ,b 的代数式表示绿化的面积是多少平方米?100.阅读理解,材料1:常用的分解因式的方法有提取公因式法、公式法,但有很多的多项式只用上述方法就无法分解.如x 2﹣4y 2﹣2x +4y ,但我们细心察这个式子就会发现,前两项符合平方差公式,后两项提取公因式,前后两部分分别分解图式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了:x 2﹣4y 2﹣2x +4y=(x +2y )(x ﹣2y )﹣2(x ﹣2y )=(x ﹣2y )(x +2y ﹣2).这种分解因式的方法叫分组分解法.材料2:对于x 3﹣(n 2+1)x +n 这类特殊的代数式可以按下面的方法分解因式: x 3﹣(n 2+1)x +n=x 3﹣n 2x ﹣x +n=x (x 2﹣n 2)﹣(x ﹣n )=x (x +n )(x ﹣n )﹣(x ﹣n )=(x ﹣n )(x 2+nx ﹣1)解决问题:(1)分解因式:①a2﹣4a﹣b2+4;①x3﹣5x+2.(2)①ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断①ABC的形状.参考答案:1.(1)(1)ab a -(2)2(2)(2)x x +-2.(1)(a +b )(a ﹣b )(x +y )(2)(x +2)2(x ﹣2)2 3.(1)4x 8y 9(2)2x 2ny 6n(3)2x 8y 12(4)4a 64.(1)226a a +-(2)7422a b -5.(1)()3231x x y -+(2)()()11x y y +-6.(1)xy (x +y )(x ﹣y )(2)2(x +2)(x +1)7.(1)()()32.m n m n --(2)()222.x y -+8.(1)(41)b a +(2)(1)(2)x x -- (3)11()()22a b a b -++-(4)()()444a a +-9.(1)-6a 6(2)- 24a 5b10.(1)2(3)xy x y -(2)()(3)2x x y x --11.(1)(2)(2)x x x -+;(2)3-x y12.(1)()()11a a a +-(2)()()2222x y x y -+-13.(1)22(23)x x x --+(2)22(2)(2)a a +-14.(1)xy (x -y )2(2)a (x -1)(ax -a -4)(3)(x +y )2(x -y )2 15.(1)42167281x x -+(2)2269x y y -+-16.(1)()()1m m n n -+(2)()()77m n n m --17.(1)(2a -b )(x -y )(2)(x +1)2(x -1)218.(1)46610348m n m n -(2)222x xy -+19.(1)()()244x x +-(2)()22xy x y +20.(1)(1)(1)a x x -+- (2)21()2x21.2y -x ,322.542xy --,323.12x y +();1424.()22x y -,1225.x -y ,126.4xy -+,24527.23x xy -,4328.(1)17;(2)34 29.(1)4a 2-a -6;-2;(2)12 30.3050x +,3531.2a 72-b ,﹣132.(1)3(2)62x -33.22x -,52-34.820x y -;-235.-2x y ,2021-36.45a +;137.223x xy y ---,-3 38.410x --,-839.()()()72323x a a ++- 40.43x y -,-1141.(1)()a m n p -+(2)()()121+2x x -(3)()28x -(4)()()(32)x y x y m n -+- 42.(1)569a a +(2)222-x xy(3)2235a a -+(4)443.(1)2(3)m +;(2)22(1)(1)a a +-44.(1)38809(2)2241616x y y -++ 45.(1)52;(2)2-;(3)2646.310x +,947.69x -48.46x y -,6-49.(1)①()323x x -;①()222b a - (2)224xy y -;-350.()()222y x x -+ 51.352.45x +,353.(1)()32x x y -(2)()23a x +(3)()()31m m -+54.x 2-2x ,055.()()()22x y a b a b -+- 56.(1)()()5x y x y +-(2)()23m m +57.-405458.-9xy ;1859.(1)m (m -2)2(2)(3a -2b )(a +2b )60.(1)3()()y x y x y +-(2)2()x y -61.(1)232x y -(2)2y62.24x xy y --;-2 63.(1)4(2)254y xy -64.(1)24(1)x -(2)()(3)x y x y +-65.(1)32-x y,5-;(2)()2213-+a b ,1-. 66.(1)7;(2)7;(3)-1 67.(1)8x -(2)2734a a -+-(3)1(4)22694x x y68.(1)()1m m n -+(2)()()43a a a -+(3)()()315x x -+(4)()()2233y y +-69.2222a b --,452-70.(1)15(2)171.(1)2x 4;(2)2xy +5y 272.(1)(m -2)(a +b );(2)a (a -1)273.6xy +5y 2,17.74.(1)(m -n )(2x +1);(2)(2m +n )(2m -n );(3)3n (m -2)2;(4)2ab (a +3b )(a -3b ) 75.65x y --;1276.(1)6 (2)1277.(1)92,1x -+-(2)2,2ab -78.(1)x y -(2)97x +79.(1)4(5)(5)x x +-(2)22()m n -(3)22(1)(1)a a +-80.(1)0(2)231213x x ++(3)222496a b bc c -+- 81.22a ab -,2182.083.(1)(a +3)(a -3);(2)3(x +y )2.84.2284a b -+,-28 85.2xy ,-45.86.222b a -,7-. 87.28x -+,4-88.2b a -;389.69x -;390.52a91.-x 2+4x +10,5.92.(1)(3)(2)y x --(2)2(2)y x y --93.24,594.(1)S 1=a 2﹣b 2;S 2=2b 2﹣ab(2)31 (3)29295.(1)a 2-b 2;(a +b )(a -b );a 2-b 2=(a +b )(a -b ) (2)①14x 2-y 2;①9996 (3)2048312+ 96.(1)22212;2S a b S b ab =-=-;(2)12136S S +=;(3)338S =.97.(1)(m -1)(m ﹣5)(2)当a =2,b =﹣5时,多项式a 2+b 2﹣4a +10b +33有最小值为4.(3)298.(1)2,1或-1(2)34(3)1099.(1)32x y +,6;(2)()223a ab b ++平方米 100.(1)①()()22a b a b +---;①()()2221x x x -+-; (2)①ABC 是等腰三角形。
人教版八年级数学上册 14.3.2 用公式法进行因式分解 同步练习(含答案)

用公式法进行因式分解一、填空题(本大题共20小题,共60.0分)1.分解因式:xy2+8xy+16x= ______ .2.因式分解:4m2-36= ______ .3.因式分解:2a3-8ab2= ______ .4.将多项式mn2+2mn+m因式分解的结果是______ .5.把多项式4ax2-9ay2分解因式的结果是______ .6.因式分解:2x2-32x4= ______ .7.因式分解:a2b-4ab+4b= ______ .8.分解因式:mx2-4m= ______ .9.分解因式a2b-a的结果为______ .10.分解因式:2ax2-8a= ______ .11.分解因式:2m2-8= ______ .12.分解因式:ma2+2mab+mb2= ______ .13.分解因式:a2b-b3= ______ .14.分解因式:x(x-1)-y(y-1)= ______ .15.分解因式:ax3y-1axy= ______ .416.因式分解:3y2-12= ______ .17.因式分解:m2n-6mn+9n= ______ .18.因式分解:a2b-ab+1b= ______ .419.分解因式-a3+2a2b-ab2= ______ .20.分解因式:a2b+4ab+4b= ______ .二、计算题(本大题共30小题,共180.0分)21.分解因式(1)a2(a-b)+4b2(b-a)(2)m4-1(3)-3a+12a2-12a3.22.把下列多项式分解因式:(1)6x2y-9xy;(2)4a2-1;(3)n2(n-6)+9n.23.把下列各式因式分解(1)ap-aq+am(2)a2-4(3)a2-2a+1(4)ax2+2axy+ay2.24.分解因式:x+xy+xy2(1)14(2)(m+n)3-4(m+n)25.因式分解:(1)x(x-2)-3(2-x)(2)x2-10x+25.26.把下列各式进行因式分解:(1)a3-6a2+5a;(2)(x2+x)2-(x+1)2;(3)4x2-16xy+16y2.27.因式分解:(1)x2-y2(2)-4a2b+4ab2-b3.28.分解因式(1)x3-16x(2)8a2-8a+2.(2)b4-4ab3+4ab2.30.分解因式:(1)2x2-4x(2)a2(x-y)-9b2(x-y)(3)4ab2-4a2b-b3(4)(y2-1)2+6(1-y2)+9.31.分解因式:(1)3a2+6ab+3b2(2)9(m+n)2-(m-n)2.32.因式分解:(1)a(x-y)-b(y-x)(2)3ax2-12ay2(3)(x+y)2+4(x+y+1)33.分解因式:(1)a(x-y)-b(y-x);(2)16x2-64;(3)(x2+y2)2-4x2y2.34.分解因式(1)4x3y-xy3(2)-x2+4xy-4y2.35.分解下列因式:(1)9a2-1(2)p3-16p2+64p.36.因式分解:(1)x2-10xy+25y2(2)3a2-12ab+12b2(3)(x2+y2)2-4x2y2(4)9x4-81y4.37.将下列各式分解因式(1)16a2b2-1(2)12ab-6(a2+b2)38.把下列各式因式分解(1)4a2-16(2)(x2+4)2-16x2.39.把下列多项式因式分解:(1)x3y-2x2y+xy;(2)9a2(x-y)+4b2(y-x).40.分解因式(1)x3-xy2(2)(x+2)(x+4)+1.41.因式分解:-3a3b+6a2b2-3ab3.42.把下列各式分解因式:①4m(x-y)-n(x-y);②2t2-50;③(x2+y2)2-4x2y2.43.因式分解(1)x2-5x-6(2)2ma2-8mb2(3)a3-6a2b+9ab2.44.分解因式:2x2-12x+18.45.分解因式:(1)x3+2x2+x(2)x3y3-xy.46.因式分解:(1)ax2-2ax+a(2)24(a-b)2-8(b-a)47.因式分解:(1)4x2-16y2(2)x2-10x+25.48.分解因式(1)m(a-3)+2(3-a)(2)x2-6x+9.49.因式分解:6xy2-9x2y-y2.50.分解因式(1)x2(a+b)-a-b(2)a3b-2a2b2+ab3(3)y4-3y3-4y2(4)-(a2+2)2+6(a2+2)-9.用公式法进行因式分解答案和解析【答案】1.x(y+4)22.4(m+3)(m-3)5.a (2x +3y )(2x -3y )6.2x 2(1+4x )(1-4x )7.b (a -2)28.m (x +2)(x -2)9.a (ab -1)10.2a (x +2)(x -2)11.2(m +2)(m -2)12.m (a +b )213.b (a +b )(a -b )14.(x -y )(x +y -1)15.axy (x +12)(x -12)16.3(y +2)(y -2)17.n (m -3)218.b (a -12)219.-a (a -b )220.b (a +2)221.解:(1)原式=a 2(a -b )-4b 2(a -b )=(a -b )(a 2-4b 2)=(a -b )(a +2b )(a -2b );(2)原式=(m 2+1)(m 2-1)=(m 2+1)(m +1)(m -1);(3)原式=-3a (4a 2-4a +1)=-3a (2a -1)2.22.解:(1)原式=3xy (2x -3);(2)原式=(2a +1)(2a -1);(3)原式=n (n 2-6n +9)=n (n -3)2.23.解:(1)原式=a (p -q +m );(2)原式=(a +2)(a -2);(3)原式=(a -1)2;(4)原式=a (x 2+2xy +y 2)=a (x +y )2.24.解:(1)原式=14x (1+4y +4y 2)=14x (1+2y )2;(2)原式=(m +n )[(m +n )2-4]=(m +n )(m +n +2)(m +n -2).25.解:(1)原式=x (x -2)+3(x -2)=(x -2)(x +3);(2)原式=(x -5)2.26.解:(1)原式=a (a 2-6a +5)=a (a -1)(a -5);(2)原式=(x 2+x +x +1)(x 2+x -x -1)=(x +1)2(x +1)(x -1);(3)原式=4(x 2-4xy +4y 2)=4(x -2y )2.27.解:(1)原式=(x +y )(x -y );(2)原式=-b (4a 2-4ab +b 2)=-b (2a -b )2.28.解:(1)原式=x (x 2-16)=x (x +4)(x -4);(2)原式=2(4a 2-4a +1)=2(2a -1)2.29.解:(1)原式=3(m 4-16)=3(m 2+4)(m +2)(m -2);30.解:(1)原式=2x(x-2);(2)原式=(x-y)(a2-9b2)=(x-y)(a+3b)(a-3b);(3)原式=-b(b2-4ab+4a2)=-b(2a-b)2;(4)原式=(y2-1)2-6(y2-1)+9=(y2-4)2=(y+2)2(y-2)2.31.解:(1)原式=3(a2+2ab+b2)=3(a+b)2;(2)原式=[3(m+n)+m-n][3(m+n)-(m-n)]=(4m+2n)(2m+4n)=4(2m+n)(m+2n).32.解:(1)原式=a(x-y)+b(x-y)=(x-y)(a+b);(2)原式=3a(x2-4y2)=3a(x+2y)(x-2y);(3)原式=(x+y)2+4(x+y)+4=(x+y+2)2.33.解:(1)原式=a(x-y)+b(x-y)=(x-y)(a+b);(2)原式=16(x2-4)=16(x+2)(x-2);(3)原式=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2.34.解:(1)原式=4xy(x2-y2)=4xy(x+y)(x-y);(2)原式=-(x2-4xy+4y2)=-(x-2y)2.35.解:(1)原式=(3a+1)(3a-1);(2)原式=p(p2-16p+64)=p(p-8)2.36.解:(1)原式=(x-5y)2;(2)原式=3(a2-4ab+4b2)=3(a-2b)2;(3)原式=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2;(4)原式=9(a2+3y2)(x2-3y2).37.解:(1)原式=(4ab+1)(4ab-1);(2)原式=-6(a2-2ab+b2)=-6(a-b)2.38.解:(1)原式=4(a2-4)=4(a+2)(a-2);(2)原式=(x2+4+4x)(x2+4-4x)=(x-2)2(x+2)2.39.解:(1)原式=xy(x2-2x+1)=xy(x-1)2;(2)原式=9a2(x-y)-4b2(x-y)=(x-y)(3a+2b)(3a-2b).40.解:(1)原式=x(x2-y2)=x(x+y)(x-y);(2)原式=(x+3)2.41.解:原式=-3ab(a2-2ab+b2)=-3ab(a-b)2.42.解:①4m(x-y)-n(x-y)=(x-y)(4m-n);②2t2-50=2(t2-25)=2(t+5)(t-5);③(x2+y2)2-4x2y2=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2.43.解:(1)原式=(x-6)(x+1);(2)原式=2m(a2-4b2)=2m(a+2b)(a-2b);(3)原式=a(a2-6ab+9b2)=a(a-3b)2.44.解:原式=2(x2-6x+9)=2(x-3)2.45.解:(1)原式=x(x2+2x+1)=x(x+1)2;(2)原式=xy(x2y2-1)=xy(xy+1)(xy-1).(2)原式=24(a-b)2+8(a-b)=8(a-b)[3(a-b)+1]=8(a-b)(3a-3b+1).47.解:(1)原式=(2x+4y)(2x-4y);(2)原式=(x-5)2.48.解:(1)原式=m(a-3)-2(a-3)=(a-3)(m-2);(2)原式=(x-3)2.49.解:原式=-y(9x2-6xy+y).50.解:(1)原式=x2(a+b)-(a+b)=(a+b)(x2-1)=(a+b)(x+1)(x-1);(2)原式=ab(a2-2ab+b2)=ab(a-b)2;(3)原式=y2(y2-3y-4)=y2(y-4)(y+1);(4)原式=-[(a2+2)-3]2=-(a-1)2(a+1)2.。
人教版八年级数学上册14.3因式分解 (培优) 专练(含答案解析)

人教版八年级数学上册:14.3因式分解(培优)专练习题一.选择题(共12小题)1.已知a,b,c是正整数,a>b,且a2﹣ab﹣ac+bc=11,则a﹣c等于( )A.﹣1B.﹣1或﹣11C.1D.1或112.已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为( )A.25B.20C.15D.103.将a3b﹣ab进行因式分解,正确的是( )A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)4.已知:a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,请你巧妙的求出代数式a2+b2+c2﹣ab﹣bc﹣ca的值( )A.3B.2C.1D.05.已知a+b=3,ab=1,则多项式a2b+ab2﹣a﹣b的值为( )A.﹣1B.0C.3D.66.已知496﹣1可以被60到70之间的某两个整数整除,则这两个数是( )A.61,63B.63,65C.65,67D.63,647.对于算式20183﹣2018,下列说法错误的是( )A.能被2016整除B.能被2017整除C.能被2018整除D.能被2019整除8.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是( )A.0B.1C.2D.39.分解因式b2(x﹣3)+b(x﹣3)的正确结果是( )A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)10.多项式x2+7x﹣18因式分解的结果是( )A.(x﹣1)(x+18)B.(x+2)(x+9)C.(x﹣3)(x+6)D.(x﹣2)(x+9)11.若k为任意整数,且993﹣99能被k整除,则k不可能是( )A.50B.100C.98D.9712.任何一个正整数n都可以写成两个正整数相乘的形式,我们把两个乘数的差的绝对值最小的一种分解n=p×q(p≤q)称为正整数n的最佳分解,并定义一个新运算.例如:12=1×12=2×6=3×4,则.那么以下结论中:①;②;③若n是一个完全平方数,则F(n)=1;④若n是一个完全立方数(即n=a3,a是正整数),则.正确的个数为( )A.1个B.2个C.3个D.4个二.填空题(共6小题)13.已知a=,b=,c=,则代数式2(a2+b2+c2﹣ab﹣bc﹣ac)的值是 .14.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc= .15.已知a,b,c满足a+b+c=1,a2+b2+c2=3,a3+b3+c3=5.则a4+b4+c4的值是 .16.已知ab=3,a+b=5,则a3b+2a2b2+ab3的值 .17.已知x,y,z是△ABC的三边,且满足2xy+x2=2yz+z2,则△ABC的形状是 .18.已知a2+a﹣1=0,则a3+2a2+2019= .三.解答题(共5小题)19.因式分解:a2﹣2ab+b2﹣1.20.因式分解.(1)a2(x+y)﹣4b2(x+y)(2)p2(a﹣1)+p(1﹣a)(3).21.已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.22.观察下列各式.①4×1×2+1=(1+2)2;②4×2×3+1=(2+3)2;③4×3×4+1=(3+4)2…(1)根据你观察、归纳,发现的规律,写出4×2016×2017+1可以是哪个数的平方?(2)试猜想第n个等式,并通过计算验证它是否成立.(3)利用前面的规律,将4(x2+x)(x2+x+1)+1因式分解.23.定义:若数p可以表示成P=x2+y2﹣xy(x,y为自然数)的形式,则称P为“希尔伯特”数.例如:3=22+11﹣2×1,39=72+52﹣7×5,147=132+112﹣13×11…所以3,39,147是“希尔伯特”数.(1)请写出两个10以内的“希尔伯特”数.(2)像39,147这样的“希尔伯特”数都是可以用连续两个奇数按定义给出的运算表达出来,试说明所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)已知两个“希尔伯特”数,它们都可以用连续两个奇数按定义给出的运算表达出来,且它们的差是224,求这两个“希尔伯特”数.人教版八年级数学上册14.3因式分解培优专练习题参考答案与试题解析一.选择题(共12小题)1.已知a,b,c是正整数,a>b,且a2﹣ab﹣ac+bc=11,则a﹣c等于( )A.﹣1B.﹣1或﹣11C.1D.1或11【解答】解:a2﹣ab﹣ac+bc=11(a2﹣ab)﹣(ac﹣bc)=11a(a﹣b)﹣c(a﹣b)=11(a﹣b)(a﹣c)=11∵a>b,∴a﹣b>0,a,b,c是正整数,∴a﹣b=1或11,a﹣c=11或1.故选:D.2.已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为( )A.25B.20C.15D.10【解答】解法一:∵x2﹣2x﹣5=0,∴x2=2x+5,∴d=x4﹣2x3+x2﹣12x﹣5,=(2x+5)2﹣2x(2x+5)+x2﹣12x﹣5=4x2+20x+25﹣4x2﹣10x+x2﹣12x﹣5=x2﹣2x﹣5+25=25.解法二:∵x2﹣2x﹣5=0,∴x2﹣2x=5,∴d=x4﹣2x3+x2﹣12x﹣5=x2(x2﹣2x+1)﹣12x﹣5=6x2﹣12x﹣5=6(x2﹣2x)﹣5=6×5﹣5=25.故选:A.3.将a3b﹣ab进行因式分解,正确的是( )A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)【解答】解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1),故选:C.4.已知:a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,请你巧妙的求出代数式a2+b2+c2﹣ab﹣bc﹣ca的值( )A.3B.2C.1D.0【解答】解:∵a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,∴a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,∴a2+b2+c2﹣ab﹣bc﹣ca======3,故选:A.5.已知a+b=3,ab=1,则多项式a2b+ab2﹣a﹣b的值为( )A.﹣1B.0C.3D.6【解答】解:a2b+ab2﹣a﹣b=(a2b﹣a)+(ab2﹣b)=a(ab﹣1)+b(ab﹣1)=(ab﹣1)(a+b)将a+b=3,ab=1代入,得原式=0.故选:B.6.已知496﹣1可以被60到70之间的某两个整数整除,则这两个数是( )A.61,63B.63,65C.65,67D.63,64【解答】解:利用平方式公式进行分解该数字:496﹣1=(448+1)(448﹣1)=(448+1)(424+1)(424﹣1)=(448+1)(424+1)(412+1)(46+1)(43+1)(43﹣1)=(448+1)(424+1)(412+1)(46+1)×65×63故选:B.7.对于算式20183﹣2018,下列说法错误的是( )A.能被2016整除B.能被2017整除C.能被2018整除D.能被2019整除【解答】解:20183﹣2018=2018(20182﹣1)=2018×(2018+1)(2018﹣1)=2018×2019×20172018×2019×2017能被2017、2018、2019整除,不能被2016整除.故选:A.8.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是( )A.0B.1C.2D.3【解答】解:∵a=2018x+2018,b=2018x+2019,c=2018x+2020,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,∴a2+b2+c2﹣ab﹣ac﹣bc=====3,故选:D.9.分解因式b2(x﹣3)+b(x﹣3)的正确结果是( )A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)【解答】解:b2(x﹣3)+b(x﹣3),=b(x﹣3)(b+1).故选:B.10.多项式x2+7x﹣18因式分解的结果是( )A.(x﹣1)(x+18)B.(x+2)(x+9)C.(x﹣3)(x+6)D.(x﹣2)(x+9)【解答】解:原式=(x﹣2)(x+9).故选:D.11.若k为任意整数,且993﹣99能被k整除,则k不可能是( )A.50B.100C.98D.97【解答】解:∵993﹣99=99×(992﹣1)=99×(99+1)×(99﹣1)=99×100×98,∴k可能是99、100、98或50,故选:D.12.任何一个正整数n都可以写成两个正整数相乘的形式,我们把两个乘数的差的绝对值最小的一种分解n=p×q(p≤q)称为正整数n的最佳分解,并定义一个新运算.例如:12=1×12=2×6=3×4,则.那么以下结论中:①;②;③若n是一个完全平方数,则F(n)=1;④若n是一个完全立方数(即n=a3,a是正整数),则.正确的个数为( )A.1个B.2个C.3个D.4个【解答】解:依据新运算可得①2=1×2,则,正确;②24=1×24=2×12=3×8=4×6,则,正确;③若n是一个完全平方数,则F(n)=1,正确;④若n是一个完全立方数(即n=a3,a是正整数),如64=43=8×8,则F(n)不一定等于,故错误.故选:C.二.填空题(共6小题)13.已知a=,b=,c=,则代数式2(a2+b2+c2﹣ab﹣bc﹣ac)的值是 6 .【解答】解:a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,2(a2+b2+c2﹣ab﹣bc﹣ac)=2a2+2b2+2c2﹣2ab﹣2bc﹣2ac=(a﹣b)2+(a﹣c)2+(b﹣c)2=(﹣1)2+(﹣4)2+(﹣1)2=1+4+1=6故答案为6.14.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc= 3 .【解答】解:∵a=2005x+2006,b=2005x+2007,c=2005x+2008,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=3.故答案为:3.15.已知a,b,c满足a+b+c=1,a2+b2+c2=3,a3+b3+c3=5.则a4+b4+c4的值是 .【解答】解:∵(a+b+c)2=a2+b2+c2+2(ab+bc+ac),a+b+c=1,a2+b2+c2=3,∴1=3+2(ab+bc+ac),∴ab+bc+ac=﹣1,∵a3+b3+c3﹣3abc=(a+b+c)(a2+b2+c2﹣ab﹣bc﹣ac),a3+b3+c3=5∴5﹣3abc=3+1∴abc=,∵(ab+bc+ac)2=a2b2+b2c2+a2c2+2abc(a+b+c)∴1=a2b2+b2c2+a2c2+∴a2b2+b2c2+a2c2=∵(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2)∴9=a4+b4+c4+∴a4+b4+c4=.故答案为:.16.已知ab=3,a+b=5,则a3b+2a2b2+ab3的值 75 .【解答】解:∵a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2又已知ab=3,a+b=5,∴原式=3×52=75故答案为:75.17.已知x,y,z是△ABC的三边,且满足2xy+x2=2yz+z2,则△ABC的形状是 等腰三角形 .【解答】解:∵2xy+x2=2yz+z2,∴2xy+x2﹣2yz﹣z2=0,因式分解得:(x﹣z)(x+z+2y)=0,∵x,y,z是△ABC的三边,∴x+z+2y≠0,∴x﹣z=0,∴x=z,∴△ABC是等腰三角形;故答案为:等腰三角形.18.已知a2+a﹣1=0,则a3+2a2+2019= 2020 .【解答】解:∵a2+a﹣1=0∴a2+a=1∴a3+a2=a又∵a3+2a2+2019=a3+a2+a2+2019=a+a2+2019=1+2019=2020∴a3+2a2+2019=2020三.解答题(共5小题)19.因式分解:a2﹣2ab+b2﹣1.【解答】解:a2﹣2ab+b2﹣1,=(a﹣b)2﹣1,=(a﹣b+1)(a﹣b﹣1).20.因式分解.(1)a2(x+y)﹣4b2(x+y)(2)p2(a﹣1)+p(1﹣a)(3).【解答】解:(1)原式=(x+y)(a2﹣4b2)=(x+y)(a+2b)(a﹣2b);(2)原式=(a﹣1)(p2﹣p)=p(a﹣1)(p﹣1);(3)原式===.21.已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.【解答】解:∵a2c2﹣b2c2=a4﹣b4,∴a4﹣b4﹣a2c2+b2c2=0,∴(a4﹣b4)﹣(a2c2﹣b2c2)=0,∴(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=0,∴(a2+b2﹣c2)(a2﹣b2)=0得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,即△ABC为直角三角形或等腰三角形或等腰直角三角形.22.观察下列各式.①4×1×2+1=(1+2)2;②4×2×3+1=(2+3)2;③4×3×4+1=(3+4)2…(1)根据你观察、归纳,发现的规律,写出4×2016×2017+1可以是哪个数的平方?(2)试猜想第n个等式,并通过计算验证它是否成立.(3)利用前面的规律,将4(x2+x)(x2+x+1)+1因式分解.【解答】解:(1)根据观察、归纳、发现的规律,得到4×2016×2017+1=(2016+2017)2=40332;(2)猜想第n个等式为4n(n+1)+1=(2n+1)2,理由如下:∵左边=4n(n+1)+1=4n2+4n+1,右边=(2n+1)2=4n2+4n+1,∴左边=右边,∴4n(n+1)+1=(2n+1)2;(3)利用前面的规律,可知4(x2+x)(x2+x+1)+1=(x2+x+x2+x+1)2=(x2+2x+1)2=(x+1)4.23.定义:若数p可以表示成P=x2+y2﹣xy(x,y为自然数)的形式,则称P为“希尔伯特”数.例如:3=22+11﹣2×1,39=72+52﹣7×5,147=132+112﹣13×11…所以3,39,147是“希尔伯特”数.(1)请写出两个10以内的“希尔伯特”数.(2)像39,147这样的“希尔伯特”数都是可以用连续两个奇数按定义给出的运算表达出来,试说明所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)已知两个“希尔伯特”数,它们都可以用连续两个奇数按定义给出的运算表达出来,且它们的差是224,求这两个“希尔伯特”数.【解答】解:(1)∵0=02+02×0,1=12+02﹣1×0,3=22+11﹣2×1,4=22+02﹣2×0,7=22+32﹣2×3,9=32+02﹣3×0,∴10以内的“希尔伯特”数有0,1,3,4,7,9;(2)设“希尔伯特”数为(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1).(n为自然数)∵(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1)=4n2+3,∵4n2能被4整除,∴所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)设两个“希尔伯特”数分别为:(2m+1)2+(2m﹣1)2﹣(2m+1)(2m﹣1)和(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1).(m,n为自然数).由题意:(2m+1)2+(2m﹣1)2﹣(2m+1)(2m﹣1)﹣[(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1)]=224,∴m2﹣n2=56,∴(m+n)(m﹣n)=56,可得整数解:或,∴这两个“希尔伯特”数分别为:327和103或903和679.。
人教版八年级数学上册因式分解专项练习(含知识点)

八年级数学因式分解专项练习一、填空题:1、=-222y y x ; 2、=+-3632a a3、2x ²-4xy -2x = (x -2y -1)4、4a ³b ²-10a ²b ³ = 2a ²b ² ( )5、(1-a)mn +a -1=( )(mn -1)6、m(m -n)²-(n -m)²=( )( )7、x ²-( )+16y ² =( ) ²8、a ²-4(a -b)²=( )·( )9、16(x -y)²-9(x +y)² =( )·( ) 10、(a +b)³-(a +b)=(a +b)·( )·( ) 11、x ²+3x +2=( )( )12、已知x ²+px +12=(x -2)(x -6),则p= 13、若。
=,,则b a b b a ==+-+-0122214、若()22416-=+-x mx x ,那么m=15、如果。
,则=+=+-==+2222,7,0y x xy y x xy y x16、已知31=+a a ,则221a a +的值是 17、如果2a+3b=1,那么3-4a-6b=18、若n mx x ++2是一个完全平方式,则n m 、的关系是 19、分解因式:2212a b ab -+-=20、如果()()22122163a b a b +++-=,那么a b +的值为二、选择题:21、下列各式从左到右的变形中,是因式分解的为............( )A 、bx ax b a x -=-)(B 、222)1)(1(1y x x y x ++-=+- C 、)1)(1(12-+=-x x xD 、c b a x c bx ax ++=++)(22、一个多项式分解因式的结果是)2)(2(33b b -+,那么这个多项式是.................................................( )A 、46-bB 、64b -C 、46+bD 、46--b23、下列各式是完全平方式的是...........................( ) A 、412+-x xB 、21x +C 、1++xy xD 、122-+x x24、把多项式)2()2(2a m a m -+-分解因式等于...............( ) A 、))(2(2m m a +- B 、))(2(2m m a --C 、m(a-2)(m-1)D 、m(a-2)(m+1)25、2222)(4)(12)(9b a b a b a ++-+-因式分解的结果是.........( ) A 、2)5(b a - B 、2)5(b a + C 、)23)(23(b a b a +- D 、2)25(b a -26、下列多项式中,含有因式)1(+y 的多项式是.............( )A 、2232x xy y --B 、22)1()1(--+y yC 、)1()1(22--+y yD 、1)1(2)1(2++++y y 27、分解因式14-x 得....................................( ) A 、)1)(1(22-+x x B 、22)1()1(-+x x C 、)1)(1)(1(2++-x x x D 、3)1)(1(+-x x28、已知多项式c bx x ++22分解因式为)1)(3(2+-x x ,则c b ,的值为.................................................( ) A 、1,3-==c b B 、2,6=-=c b C 、4,6-=-=c b D 、6,4-=-=c b29、c b a 、、是△ABC 的三边,且bc ac ab c b a ++=++222,那么△ABC 的形状是.............................................( ) A 、直角三角形 B 、等腰三角形 C 、等腰直角三角形 D 、等边三角形30、()()22x a x ax a -++的计算结果是....................( )(A)、3232x ax a +-(B)、33x a -(C)、3232x a x a +-(D)、222322x ax a a ++-31、用提提公因式法分解因式5a(x -y)-10b ·(x -y),提出的公因式应当为...........................................( ) A 、5a -10b B 、5a +10b C 、5(x -y) D 、y -x32、把-8m ³+12m ²+4m 分解因式,结果是..................( ) A 、-4m(2m ²-3m) B 、-4m(2m ²+3m -1) C 、-4m(2m ²-3m -1) D 、-2m(4m ²-6m +2) 33、把16-x4分解因式,其结果是..........................( ) A 、(2-x)4 B 、(4+x ²)( 4-x ²) C 、(4+x ²)(2+x)(2-x) D 、(2+x)³(2-x)34、把a4-2a ²b ²+b4分解因式,结果是......................( ) A 、a ² (a ²-2b ²)+b4 B 、(a ²-b ²)² C 、(a -b)4 D 、(a +b)²(a -b)²35、把多项式2x ²-2x +21分解因式,其结果是..............( )A 、(2x -21)²B 、2(x -21)²C 、(x -21)²D 、21(x -1) ²36、若9a ²+6(k -3)a +1是完全平方式,则 k 的值是.........( ) A 、±4 B 、±2 C 、3 D 、4或237、-(2x -y )(2x +y)是下列哪个多项式分解因式的结果...( ) A 、4x ²-y ² B 、4x ²+y ² C 、-4x ²-y ² D 、-4x ²+y ²38、多项式x2+3x -54分解因式为........................( ) A 、(x +6)(x -9) B 、(x -6)(x +9)C 、(x +6)(x +9)D 、 (x -6)(x -9)39、若a 、b 、c 为一个三角形的三边,则代数式(a -c )²-b ²的值为.................................................( ) A 、一定为正数 B 、一定为负数 C 、可能为正数,也可能为负数 D 、可能为零40、下列分解因式正确的是..............................( )(A)32(1)x x x x -=-. (B)26(3)(2)m m m m +-=+-. (C)2(4)(4)16a a a +-=-. (D)22()()x y x y x y +=+-. 41、如图:矩形花园ABCD 中,a AB =,b AD =, 花园中建有一条矩形道路LMPQ 及一条平行 四边形道路RSTK 。
2022-2023学年人教版八年级数学上册《14-3因式分解》解答题专题提升训练(附答案)

2022-2023学年人教版八年级数学上册《14.3因式分解》解答题专题提升训练(附答案)1.分解因式:(1)5x2﹣5y2;(2)m3+6m2+9m.2.因式分解:(1)2a2b﹣a3﹣ab2;(2)9(a﹣b)2﹣(a+b)2.3.分解因式:(1)a2(b﹣2)+(2﹣b);(2)2x2+2x+.4.把下列各式因式分解:(1)﹣6x2+4xy;(2)3a2+12a+12;(3)2x(a﹣2)﹣y(2﹣a);(4)4a4﹣16a2.5.因式分解(1)a3﹣2a2b+ab2(2)4(m+n)2﹣(m﹣n)2(3)x2﹣2x﹣15(4)1﹣a2﹣4b2+4ab6.已知a+b=,ab=﹣,求代数式a3b+2a2b2+ab3的值.7.(1)因式分解:2a2(a﹣b)﹣8(a﹣b);(2)利用因式分解简化计算:2002﹣400×199+1992.8.观察下面的因式分解过程:am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b)利用这种方法解决下列问题:(1)因式分解:2a+6b﹣3am﹣9bm(2)△ABC三边a,b,c满足a2﹣ac﹣ab+bc=0,判断△ABC的形状.9.下面是某同学对多项式(x2﹣3x+4)(x2﹣3x+6)+1进行因式分解的过程.解:设x2﹣3x=m原式=(m+4)(m+6)+1(第一步)=m2+10m+25(第二步)=(m+5)2(第三步)=(x2﹣3x+5)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的.A.提取公因式;B.平方差公式;C.完全平方公式(2)请你模仿以上方法尝试对多项式(x2+2x)(x2+2x+6)+9进行因式分解.(3)因式分解:(x2﹣4x+6)(x2﹣4x+2)+4=(在横线处直接写出因式分解的结果).10.△ABC三边a、b、c满足a2+c2+2b2﹣2ab﹣2bc=0,判断△ABC的形状,并说明理由.11.常用的分解因式的方法有提取公因式法、公式法及十字相乘法.但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x ﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2﹣2xy+y2﹣16;(2)已知:x+y=7,x﹣y=5.求:x2﹣y2﹣2y+2x的值.(3)△ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.12.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=a,则原式=(a+2)(a+6)+4(第一步)=a2+8a+16(第二步)=(a+4)2(第三步)=(x2﹣4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?.(填“彻底”或“不彻底”)若彻底,直接跳到第(3)问;若不彻底,请先直接写出因式分解的最后结果:.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.13.甲、乙两个同学因式分解x2+ax+b时,甲看错了a,分解结果为(x+4)(x﹣8),乙看错了b,分解结果为(x﹣2)(x+6).求多项式x2+ax+b分解因式的正确结果.14.阅读下面材料完成分解因式.x2+(p+q)x+pq型式子的因式分解x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)=x(x+p)+q(x+p)=(x+P)(x+q)这样,我们得到x2+(p+q)x+pq=(x+p)(x+q).利用上式可以将某些二次项系数为1的二次三项式分解因式例把x2+3x+2分解因式分析:x2+3x+2中的二次项系数为1,常数项2=1×2,一次项系数3=1+2,这是一个x2+(p+q)x+pq型式子.解:x2+3x+2=x2+(1+2)x+2=(x+1)(x+2)请仿照上面的方法将下列多项式分解因式,(1)x2+10x+24;.(2)3a2﹣3ab﹣36b2.15.因为x2+2x﹣3=(x+3)(x﹣1),这说明多项式x2+2x﹣3有一个因式为x﹣1,我们把x =1代入此多项式发现x=1能使多项式x2+2x﹣3的值为0.利用上述阅读材料求解:(1)若x﹣3是多项式x2+kx+12的一个因式,求k的值;(2)若(x﹣3)和(x﹣4)是多项式x3+mx2+12x+n的两个因式,试求m,n的值.(3)在(2)的条件下,把多项式x3+mx2+12x+n因式分解.16.把下列各多项式因式分解:(1)﹣3x3y2+6x2y3﹣3xy4;(2)3x(a﹣b)﹣6y(b﹣a);(3)18b(a﹣b)2+12(b﹣a)3;(4)(x2+16y2)2﹣64x2y2;(5)(m2﹣5)2+8(m2﹣5)+16;(6)16x4﹣72x2y2+81y4.17.先阅读,再分解因式x3﹣1=x3﹣x2+x2﹣1=x2(x﹣1)+(x+1)(x﹣1)=(x﹣1)(x2+x+1)参考上述做法,将下列多项式因式分解(1)a3+1(2)a4+4.18.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,设x+y=m,则原式=m2+2m+1=(m+1)2.再将x+y=m代入,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法.请你写出下列因式分解的结果:(1)因式分解:1﹣2(x﹣y)+(x﹣y)2=;(2)因式分解:25(a﹣1)2﹣10(a﹣1)+1=;(3)因式分解:(y2﹣4y)(y2﹣4y+8)+16=.19.请先阅读下列文字与例题,再回答后面的问题:当因式分解中,无法直接运用提取公因式和乘法公式时,我们往往可以尝试将一个多项式分组后,再运用提取公因式或运用乘法公式继续分解的方法是分组分解法.例如:(1)am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b)(2)x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1)(1)根据上面的知识,我们可以将下列多项式进行分解:ax﹣ay﹣bx+by=()﹣()=()();x2﹣y2+x﹣y=()+()=()()(2)分解下列因式:①ab﹣ac+b﹣c;②﹣4b2+9a2﹣6ac+c2.20.现有足够多的甲、乙、丙三种卡片,如图1所示.(1)选用其中若干张卡片拼成一个长方形(图2).①请用两种不同的方法表示长方形(图2)的面积(用含有a,b的代数式表示).②若b=a,且长方形(图2)的面积是35,求一张乙卡片的面积.(2)若从中取若干张卡片拼成一个面积为4a2+4ab+b2的正方形,求出拼成的正方形的边长.参考答案1.解:(1)原式=5(x2﹣y2)=5(x+y)(x﹣y);(2)原式=m(m2+6m+9)=m(m+3)2.2.解:(1)2a2b﹣a3﹣ab2=﹣a(a2﹣2ab+b2)=﹣a(a﹣b)2;(2)9(a﹣b)2﹣(a+b)2=[3(a﹣b)+(a+b)][3(a﹣b)﹣(a+b)]=(3a﹣3b+a+b)(3a﹣3b﹣a﹣b)=(4a﹣2b)(2a﹣4b)=4(2a﹣b)(a﹣2b).3.解:(1)a2(b﹣2)+(2﹣b)=(b﹣2)(a2﹣1)=(b﹣2)(a+1)(a﹣1);(2)2x2+2x+=(4x2+4x+1)=(2x+1)2.4.解:(1)﹣6x2+4xy=﹣2x(3x﹣2y);(2)3a2+12a+12=3(a2+4a+4)=3(a+2)2;(3)2x(a﹣2)﹣y(2﹣a)=2x(a﹣2)+y(a﹣2)=(a﹣2)(2x+y);(4)4a4﹣16a2=4a2(a2﹣4)=4a2(a+2)(a﹣2).5.解:(1)原式=a(a2﹣2ab+b2)=a(a﹣b)2;(2)原式=[2(m+n)+(m﹣n)][2(m+n)﹣(m﹣n)]=(2m+2n+m﹣n)(2m+2n﹣m+n)=(3m+n)(m+3n);(3)原式=(x+3)(x﹣5);(4)原式=1﹣(a2﹣4ab+4b2)=1﹣(a﹣2b)2=(1+a﹣2b)(1﹣a+2b).6.解:a3b+2a2b2+ab3=a3b+a2b2+a2b2+ab3=a2b(a+b)+ab2(a+b)=(a2b+ab2)(a+b)=ab(a+b)(a+b)∵a+b=,ab=﹣,∴原式=﹣××=﹣;∴代数式a3b+2a2b2+ab3的值是﹣.7.解:(1)2a2(a﹣b)﹣8(a﹣b)=2(a﹣b)(a2﹣4)=2(a﹣b)(a+2)(a﹣2);(2)2002﹣400×199+1992=2002﹣2×200×199+1992=(200﹣199)2=1.8.解:(1)2a+6b﹣3am﹣9bm=(2a+6b)﹣(3am+9bm)=2(a+3b)﹣3m(a+3b)=(a+3b)(2﹣3m);或2a+6b﹣3am﹣9bm=(2a﹣3am)+(6b﹣9bm)=a(2﹣3m)+3b(2﹣3m)=(2﹣3m)(a+3b);(2)∵a2﹣ac﹣ab+bc=0,∴(a2﹣ac)﹣(ab﹣bc)=0,∴a(a﹣c)﹣b(a﹣c)=0,∴(a﹣c)(a﹣b)=0,∴a﹣c=0或a﹣b=0,∴a=c或a=b,∴△ABC是等腰三角形.9.解:(1)该同学第二步到第三步运用了因式分解的完全平方公式.故答案为:C;(2)设x2+2x=y,原式=y(y+6)+9=y2+6y+9=(y+3)2=(x2+2x+3)2;(3)设x2﹣4x+2=z,原式=z(z+4)+4=z2+4z+4=(z+2)2=(x2﹣4x+2+2)2=(x2﹣4x+4)2=[(x﹣2)2]2=(x﹣2)4.故答案为:(x﹣2)4.10.解:∵a2+c2+2b2﹣2ab﹣2bc=(a﹣b)2+(b﹣c)2=0,∴a=b=c,∴△ABC是等边三角形.11.解:(1)x2﹣2xy+y2﹣16=(x﹣y)2﹣42=(x﹣y+4)(x﹣y﹣4);(2)x2﹣y2﹣2y+2x=(x2﹣y2)+(2x﹣2y)=(x﹣y)(x+y+2)∵x+y=7,x﹣y=5,∴原式=(x﹣y)(x+y+2)=5×(7+2)=45;(3)∵a2﹣ab﹣ac+bc=0∴a(a﹣b)﹣c(a﹣b)=(a﹣b)(a﹣c)=0,∴a=b或a=c,∴△ABC是等腰三角形.12.解:(1)从第二步到第三步是两个数和的完全平方式,故选:C.(2)分解因式必须分解到每一个多项式都不能再分解为止,而(x2﹣4x+4)2=(x﹣2)4,故答案为:不彻底,(x﹣2)4.(3)设x2﹣2x=a,则原式=a(a+2)+1=a2+2a+1=(a+1)2=(x2﹣2x+1)2=(x﹣1)4.13.解:∵甲看错了a,分解结果为(x+2)(x+4),但b是正确的,(x+4)(x﹣8)=x2﹣4x﹣32,∴b=﹣32,∵(x﹣2)(x+6)=x2+4x﹣12,乙看错了b,但a是正确的,∴a=4,∴x2+ax+b=x2+4x﹣32=(x+8)(x﹣4).14.解:(1)x2+10x+24=(x+4)(x+6);(2)3a2﹣3ab﹣36b2=3(a2﹣ab﹣12b2)=3(a﹣4b)(a+3b).15.解:(1)∵x﹣3是多项式x2+kx+12的一个因式∴x=3时,x2+kx+12=0∴9+3k+12=0∴3k=﹣21∴k=﹣7∴k的值为﹣7.(2)(x﹣3)和(x﹣4)是多项式x3+mx2+12x+n的两个因式∴x=3和x=4时,x3+mx2+12x+n=0∴解得∴m、n的值分别为﹣7和0.(3)∵m=﹣7,n=0,∴x3+mx2+12x+n可化为:x3﹣7x2+12x ∴x3﹣7x2+12x=x(x2﹣7x+12)=x(x﹣3)(x﹣4)16.解:(1)﹣3x3y2+6x2y3﹣3xy4=﹣3xy2(x2﹣2xy+y2)=﹣3xy2(x﹣y)2;(2)3x(a﹣b)﹣6y(b﹣a)=3x(a﹣b)+6y(a﹣b)=3(a﹣b)(x+2y);(3)18b(a﹣b)2+12(b﹣a)3=18b(a﹣b)2﹣12(a﹣b)3=6(a﹣b)2[3b﹣2(a﹣b)]=6(a﹣b)2(3b﹣2a+2b)=6(a﹣b)2(5b﹣2a);(4)(x2+16y2)2﹣64x2y2;=(x2+16y2)2﹣(8xy)2=(x2+16y2+8xy)(x2+16y2﹣8xy)=(x+4y)2(x﹣4y)2;(5)(m2﹣5)2+8(m2﹣5)+16=(m2﹣5+4)2=(m2﹣1)2=[(m+1)(m﹣1)]2=(m+1)2(m﹣1)2;(6)16x4﹣72x2y2+81y4=(4x2﹣9y2)2=[(2x+3y)(2x﹣3y)]2=(2x+3y)2(2x﹣3y)2.17.解:(1)原式=a3+a2﹣a2﹣1=a2(a+1)﹣(a+1)(a﹣1)=(a+1)(a2﹣a+1);(2)原式=a4+4a2+4﹣4a2=(a2+2)2﹣(2a)2=(a2+2+2a)(a2+2﹣2a).18.解:(1)设x﹣y=a,原式=1﹣2a+a2=(1﹣a)2;将x﹣y=a代入,原式=(1﹣x+y)2;(2)设a﹣1=m,原式=25m2﹣10m+1=(5m﹣1)2;a﹣1=m代入,原式=(5a﹣6)2;(3)设y2﹣4y=a,原式=a(a+8)+16=a2+8a+16=(a+4)2,将y2﹣4y=a代入,原式=(y2﹣4y+4)2=(y﹣2)4.故答案分别为:(1﹣x+y)2;(5a﹣6)2;(y﹣2)4.19.解:(1)ax﹣ay﹣bx+by=(ax﹣ay)﹣(bx﹣by)=(a﹣b)(x﹣y);x2﹣y2+x﹣y=(x﹣y)(x+y)+x﹣y=(x+y+1)(x﹣y)故答案为:ax﹣ay;bx﹣by;(a﹣b);(x﹣y);x2﹣y2;x﹣y;(x+y+1);(x﹣y).(2)①ab﹣ac+b﹣c=a(b﹣c)+(b﹣c)=(a+1)(b﹣c);②﹣4b2+9a2﹣6ac+c2=9a2﹣6ac+c2﹣4b2=(3a﹣c)2﹣(2b)2=(3a﹣c+2b)(3a﹣c﹣2b)20.解:(1)①大长方形的长是(2a+b),宽是(a+b),面积为(2a+b)(a+b);大长方形面积等于图中6个图形的面积和为2a2+3ab+b2;②根据题意得,(2a+b)(a+b)=35,∵b=a,∴a(a+a)=35,∴a=2或﹣2(舍弃)∴b=3,∴ab=6,∴一张乙卡片的面积为6;(2)∵4a2+4ab+b2=(2a+b)2,∴拼成的正方形的边长为2a+b.。
八年级上册数学因式分解(人教版)练习题及答案

八年级上册数学因式分解(人教版)练习题及答案因式分解练题一、选择题1.已知y2+my+16是完全平方式,则m的值是()A.8B.4C.±8D.±42.下列多项式能用完全平方公式分解因式的是()A.x2-6x-9B.a2-16a+32C.x2-2xy+4y2D.4a2-4a+13.下列各式属于正确分解因式的是()A.1+4x2=(1+2x)2B.6a-9-a2=-(a-3)2C.1+4m-4m2=(1-2m)2D.x2+xy+y2=(x+y)24.把x4-2x2y2+y4分解因式,结果是()A.(x-y)4B.(x2-y2)4C.[(x+y)(x-y)]2D (x+y)2(x-y)2二、填空题5.已知9x2-6xy+k是完全平方式,则k的值是________.6.9a2+(________)+25b2=(3a-5b)2 7.-4x2+4xy+(_______)=-(_______).8.a2+14a+49=25,则a的值是_________.三、解答题9.把下列各式分化因式:①a2+10a+25②m2-12mn+36n2③xy3-2x2y2+x3y④(x2+4y2)2-16x2y2110.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.四、探究题12.你知道数学中的整体思想吗?解题中,•若把注意力和着眼点放在问题的整体上,多方位思考、XXX、探究,进行整体思考、整体变形,•从不同的方面确定解题策略,能使问题迅速获解.你能用整体的思想方法把下列式子分解因式吗?①(x+2y)2-2(x+2y)+1②(a+b)2-4(a+b-1)。
人教版八年级数学上册《14.3 因式分解》同步练习题-带有答案

人教版八年级数学上册《14.3 因式分解》同步练习题-带有答案一、选择题1.下列各式从左至右是因式分解的是()A.a2−4=(a+2)(a−2)B.x2−y2−1=(x+y)(x−y)−1C.(x+y)2=x2+xy+y2D.(x−y)2=x2+2xy+y22.a2−(b−c)2有一个因式是a+b−c,则另一个因式为()A.a−b−c B.a+b+c C.a+b−c D.a−b+c3.把(a+b)2+4(a+b)+4分解因式得()A.(a+b+1)2B.(a+b−1)2C.(a+b+2)2D.(a+b−2)24.下列各式能用完全平方公式分解因式的有();③m2n2+4−4mn;④a2−2ab+4b2;⑤x2−8x+9①4x2−4xy−y2;②−1−a−a24A.1个B.2个C.3个D.4个5.计算(−2)100+(−2)99的结果为()A.−299B.299C.2100D.-26.把x2+3x+c分解因式得(x+1)(x+2),则c的值是()A.3 B.2 C.-3 D.17.下列因式分解正确的是()A.x2−x=x(x+1)B.a2−3a−4=a(a−3)−4C.a2+b2−2ab=(a+b)2D.x2−y2=(x+y)(x−y)8.若x2-y2=100,x+y=-25,则x-y的值是()A.5 B.4 C.-4 D.以上都不对二、填空题9.2a2与4ab的公因式为.10.因式分解:2m2−4m=.11.一个多项式,把它因式分解后有一个因式为(x+1),请你写出一个符合条件的多项式:。
12.若有理数m使得二次三项式x2+mx+16能用完全平方公式因式分解,则m=.13.当a=3,a-b=1时,代数式a2-ab的值是三、解答题14.因式分解:(1)(2)15.已知,xy=3,求的值.16.生活中我们经常用到密码,例如支付宝支付时.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2可以因式分解为(x﹣1)(x+1)(x+2),当x=29时,x﹣1=28,x+1=30,x+2=31,此时可以得到数字密码283031.(1)根据上述方法,当x=15,y=5时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(2)已知一个直角三角形的周长是24,斜边长为11,其中两条直角边分别为x、y,求出一个由多项式x3y+xy3分解因式后得到的密码(只需一个即可).17.下面是某同学对多项式进行因式分解的过程.解:设,原式(第一步),(第二步)(第三步),(第四步)(1)该同学第二步到第三步运用进行因式分解;(2)该同学是否完成了将该多项式因式分解?若没有完成,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式进行因式分解.参考答案1.A2.D3.C4.B5.B6.B7.D8.C9.2a10.2m(m−2)11.x2−1(答案不唯一)12.±813.314.(1)解:;(2)解:.15.解:∵,∴原式.16.解:(1)x3﹣xy2=x(x﹣y)(x+y)当x=15,y=5时,x﹣y=10,x+y=20可得数字密码是151020;也可以是152010;101520;102015,201510,201015;(2)由题意得:{x+y=13x2+y2=121解得xy=24 而x3y+xy3=xy(x2+y2)所以可得数字密码为24121.17.(1)完全平方公式(2)否;(3)解:设则原式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解专题练习
一、填空题:
2.(a-3)(3-2a)=_______(3-a)(3-2a);
12.若m2-3m+2=(m+a)(m+b),则a=______,b=______;
15.当m=______时,x2+2(m-3)x+25是完全平方式.
二、选择题:
1.下列各式的因式分解结果中,正确的是
A.a2b+7ab-b=b(a2+7a) B.3x2y-3xy-6y=3y(x-2)(x+1)
C.8xyz-6x2y2=2xyz(4-3xy) D.-2a2+4ab-6ac=-2a(a+2b-3c) 2.多项式m(n-2)-m2(2-n)分解因式等于
A.(n-2)(m+m2) B.(n-2)(m-m2)
C.m(n-2)(m+1) D.m(n-2)(m-1)
3.在下列等式中,属于因式分解的是
A.a(x-y)+b(m+n)=ax+bm-ay+bn B.a2-2ab+b2+1=(a-b)2+1 C.-4a2+9b2=(-2a+3b)(2a+3b) D.x2-7x-8=x(x-7)-8
4.下列各式中,能用平方差公式分解因式的是
A.a2+b2 B.-a2+b2 C.-a2-b2 D.-(-a2)+b2
5.若9x2+mxy+16y2是一个完全平方式,那么m的值是
A.-12 B.±24C.12 D.±12
6.把多项式a n+4-a n+1分解得
A.a n(a4-a) B.a n-1(a3-1) C.a n+1(a-1)(a2-a+1) D.a n+1(a-1)(a2+a+1) 7.若a2+a=-1,则a4+2a3-3a2-4a+3的值为
A.8 B.7 C.10 D.12
8.已知x2+y2+2x-6y+10=0,那么x,y的值分别为
A.x=1,y=3 B.x=1,y=-3 C.x=-1,y=3 D.x=1,y=-3 9.把(m2+3m)4-8(m2+3m)2+16分解因式得
A.(m+1)4(m+2)2 B.(m-1)2(m-2)2(m2+3m-2)
C.(m+4)2(m-1)2 D.(m+1)2(m+2)2(m2+3m-2)2
10.把x2-7x-60分解因式,得
A.(x-10)(x+6);B.(x+5)(x-12);C.(x+3)(x-20) D.(x-5)(x+12)
11.把3x2-2xy-8y2分解因式,得
A.(3x+4)(x-2) B.(3x-4)(x+2)
C.(3x+4y)(x-2y) D.(3x-4y)(x+2y)
12.把a2+8ab-33b2分解因式,得
A.(a+11)(a-3) B.(a-11b)(a-3b)
C.(a+11b)(a-3b) D.(a-11b)(a+3b)
13.把x4-3x2+2分解因式,得
A.(x2-2)(x2-1); B.(x2-2)(x+1)(x-1);
C.(x2+2)(x2+1); D.(x2+2)(x+1)(x-1)
14.多项式x2-ax-bx+ab可分解因式为
A.-(x+a)(x+b) B.(x-a)(x+b)
C.(x-a)(x-b) D.(x+a)(x+b)
15.一个关于x的二次三项式,其x2项的系数是1,常数项是-12,且能分解因式,这样的二次三项式是
A.x2-11x-12或x2+11x-12 B.x2-x-12或x2+x-12
C.x2-4x-12或x2+4x-12 D.以上都可以
16.下列各式x3-x2-x+1,x2+y-xy-x,x2-2x-y2+1,(x2+3x)2-(2x+1)2中,不含有(x-1)因式的有
A.1个 B.2个C.3个D.4个
17.把9-x2+12xy-36y2分解因式为
A.(x-6y+3)(x-6x-3) B.-(x-6y+3)(x-6y-3)
C.-(x-6y+3)(x+6y-3) D.-(x-6y+3)(x-6y+3)
18.下列因式分解错误的是
A.a2-bc+ac-ab=(a-b)(a+c) B.ab-5a+3b-15=(b-5)(a+3) C.x2+3xy-2x-6y=(x+3y)(x-2)
D.x2-6xy-1+9y2=(x+3y+1)(x+3y-1)
19.已知a2x2±2x+b2是完全平方式,且a,b都不为零,则a与b的关系为A.互为倒数或互为负倒数; B.互为相反数C.相等的数; D.任意有理数20.对x4+4进行因式分解,所得的正确结论是
A.不能分解因式B.有因式x2+2x+2
C.(xy+2)(xy-8) D.(xy-2)(xy-8)
21.把a4+2a2b2+b4-a2b2分解因式为
A.(a2+b2+ab)2;B.(a2+b2+ab)(a2+b2-ab);
C.(a2-b2+ab)(a2-b2-ab); D.(a2+b2-ab)2
22.-(3x-1)(x+2y)是下列哪个多项式的分解结果
A.3x2+6xy-x-2y ; B.3x2-6xy+x-2y
C.x+2y+3x2+6xy; D.x+2y-3x2-6xy
23.64a8-b2因式分解为
A.(64a4-b)(a4+b);B.(16a2-b)(4a2+b);
C.(8a4-b)(8a4+b); D.(8a2-b)(8a4+b)
24.9(x-y)2+12(x2-y2)+4(x+y)2因式分解为
A.(5x-y)2 B.(5x+y)2 C.(3x-2y)(3x+2y) D.(5x-2y)2 25.(2y-3x)2-2(3x-2y)+1因式分解为
A.(3x-2y-1)2; B.(3x+2y+1)2;C.(3x-2y+1)2; D.(2y-3x-1)2 26.把(a+b)2-4(a2-b2)+4(a-b)2分解因式为
A.(3a-b)2B.(3b+a)2C.(3b-a)2 D.(3a+b)2
27.把a2(b+c)2-2ab(a-c)(b+c)+b2(a-c)2分解因式为
A.c(a+b)2 B.c(a-b)2C.c2(a+b)2D.c2(a-b)
28.若4xy-4x2-y2-k有一个因式为(1-2x+y),则k的值为
A.0 B.1 C.-1 D.4
29.分解因式3a2x-4b2y-3b2x+4a2y,正确的是
A.-(a2+b2)(3x+4y) B.(a-b)(a+b)(3x+4y) C.(a2+b2)(3x-4y) D.(a-b)(a+b)(3x-4y) 30.分解因式2a2+4ab+2b2-8c2,正确的是
A.2(a+b-2c) B.2(a+b+c)(a+b-c) C.(2a+b+4c)(2a+b-4c) D.2(a+b+2c)(a+b-2c)
三、因式分解:
1.m2(p-q)-p+q;2.a(ab+bc+ac)-abc;
3.x4-2y4-2x3y+xy3;4.abc(a2+b2+c2)-a3bc+2ab2c2;5.a2(b-c)+b2(c-a)+c2(a-b);6.(x2-2x)2+2x(x-2)+1;7.(x-y)2+12(y-x)z+36z2;8.x2-4ax+8ab-4b2;
9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx);
10.(1-a2)(1-b2)-(a2-1)2(b2-1)2;
11.(x+1)2-9(x-1)2;12.4a2b2-(a2+b2-c2)2;
13.ab2-ac2+4ac-4a;14.x3n+y3n;
15.(x+y)3+125;16.(3m-2n)3+(3m+2n)3;
17.x6(x2-y2)+y6(y2-x2);18.8(x+y)3+1;
19.(a+b+c)3-a3-b3-c3;20.x2+4xy+3y2;
21.x2+18x-144;22.x4+2x2-8;
23.-m4+18m2-17;24.x5-2x3-8x;
25.x8+19x5-216x2;26.(x2-7x)2+10(x2-7x)-24;27.5+7(a+1)-6(a+1)2;28.(x2+x)(x2+x-1)-2;
29.x2+y2-x2y2-4xy-1;30.(x-1)(x-2)(x-3)(x-4)-48;
31.x2-y2-x-y;32.ax2-bx2-bx+ax-3a+3b;
33.m4+m2+1;34.a2-b2+2ac+c2;
35.a3-ab2+a-b;36.625b4-(a-b)4;
37.x6-y6+3x2y4-3x4y2;38.x2+4xy+4y2-2x-4y-35;
39.m2-a2+4ab-4b2;40.5m-5n-m2+2mn-n2.
四、证明(求值):
1.已知a+b=0,求a3-2b3+a2b-2ab2的值.
2.求证:四个连续自然数的积再加上1,一定是一个完全平方数.
3.证明:(ac-bd)2+(bc+ad)2=(a2+b2)(c2+d2).
4.已知a=k+3,b=2k+2,c=3k-1,求a2+b2+c2+2ab-2bc-2ac的值.
5.若x2+mx+n=(x-3)(x+4),求(m+n)2的值.
6.当a为何值时,多项式x2+7xy+ay2-5x+43y-24可以分解为两个一次因式的乘积.
7.若x,y为任意有理数,比较6xy与x2+9y2的大小.
8.两个连续偶数的平方差是4的倍数.。