关于函数y=x(a—x)极值问题的深度剖析与2010高考链接
2010高考全国Ⅰ数学试题与答案

2010年普通高等学校招生全国统一考试文科数学(必修+选修> 解读版参考公式:如果事件互斥,那么球的表面积公式如果事件相互独立,那么其中R表示球的半径球的体积公式如果事件A在一次实验中发生的概率是,那么次独立重复实验中事件恰好发生次的概率其中R表示球的半径一、选择题(1>(A> (B>- (C> (D>1.C【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识【解读】(2>设全集,集合,,则A.B.C. D.2.C 【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识【解读】,,则=(3>若变量满足约束条件则的最大值为(A>4 (B>3 (C>2 (D>13.B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力.【解读】画出可行域<如右图),,由图可知,当直线经过点A(1,-1>时,z最大,且最大值为.<4)已知各项均为正数的等比数列{},=5,=10,则(A>(B> 7 (C> 6 (D>A4.A【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.mmVxZudVti【解读】由等比数列的性质知,10,所以,所以(5>的展开式的系数是(A>-6 (B>-3 (C>0 (D>35.A. 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.mmVxZudVti【解读】的系数是 -12+6=-6(6>直三棱柱中,若,,则异面直线与所成的角等于(A>30° (B>45°(C>60° (D>90°6.C【命题意图】本小题主要考查直三棱柱的性质、异面直线所成的角、异面直线所成的角的求法.【解读】延长CA到D,使得,则为平行四边形,就是异面直线与所成的角,又三角形为等边三角形,(7>已知函数.若且,,则的取值范围是(A> (B>(C> (D>7.C【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a的取值范围,而利用均值不等式求得a+b=,从而错选D,这也是命题者的用苦良心之处.mmVxZudVti【解读1】因为 f(a>=f(b>,所以|lga|=|lgb|,所以a=b(舍去>,或,所以a+b=又0<a<b,所以0<a<1<b,令由“对勾”函数的性质知函数在(0,1>上为减函数,所以f(a>>f(1>=1+1=2,即a+b的取值范围是(2,+∞>.mmVxZudVti【解读2】由0<a<b,且f(a>=f(b>得:,利用线性规划得:,化为求的取值范围问题,,过点时z最小为2,∴(C> mmVxZudVti<8)已知、为双曲线C:的左、右焦点,点P在C上,∠=,则A BC DA 1B 1C 1D 1O(A>2 (B>4 (C> 6 (D> 88.B 【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.mmVxZudVti 【解读1】.由余弦定理得cos ∠P =4【解读2】由焦点三角形面积公式得:4<9)正方体-中,与平面所成角的余弦值为 <A )<B )<C ) <D )9.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 的距离是解决本题的关键所在,这也是转化思想的具体体现.mmVxZudVti 【解读1】因为BB1//DD1,所以B 与平面AC 所成角和DD1与平面AC 所成角相等,设DO⊥平面AC,由等体积法得,即.设DD1=a,mmVxZudVti则,.所以,记DD1与平面AC所成角为,则,所以.【解读2】设上下底面的中心分别为;与平面AC所成角就是B与平面AC所成角,<10)设则<A)<B) (C> (D>10.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用.mmVxZudVti【解读1】 a=2=, b=In2=,而,所以a<b,c==,而,所以c<a,综上c<a<b.【解读2】a=2=,b=ln2=, ,; c=,∴c<a<b<11)已知圆的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么的最小值为(A> (B> (C> (D>11.D【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力.mmVxZudVti 【解读1】如图所示:设PA=PB=,∠APO=,则∠APB=,PO=,,===,令,则,即,由是实数,所以,,解得或.故.此时.【解读2】设,换元:,【解读3】建系:园的方程为,设,<12)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为mmVxZudVti(A> (B> (C> (D>12.B【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.mmVxZudVti【解读】过CD作平面PCD,使AB⊥平面PCD,交AB与P,设点P到CD的距离为,则有,当直径通过AB与CD的中点时,,故.mmVxZudVti第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫M黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
2025高中数学八大核心知识函数指数型函数取对数问题--2024高考数学压轴大题秒杀(解析版)

指数型函数取对数问题考情分析函数与导数一直是高考中的热点与难点, 在导数解答题中有些指数型函数,直接求导运算非常复杂或不可解,这时常通过取对数把指数型函数转化对数型函数求解,特别是涉及到形如a f x 的函数取对数可以起到化繁为简的作用,此外有时取对数还可以改变式子结构,便于发现解题思路,故取对数的方法在解高考导数题中有时能大显身手.解题秘籍(一)等式两边同时取对数把乘法运算转化为对数运算,再构造函数通过两边取对数可把乘方运算转化为乘法运算,这种运算法则的改变或能简化运算,或能改变运算式子的结构,从而有利于我们寻找解题思路,因此两边取对数成为处理乘方运算时常用的一种方法.有时对数运算比指数运算来得方便,对一个等式两边取对数是解决含有指数式问题的常用的有效方法.1(2024届辽宁省大连市高三上学期期初考试)已知函数f x =ln x+1 ax.(1)讨论f x 的单调性;(2)若ex1x2=ex2x1(e是自然对数的底数),且x1>0,x2>0,x1≠x2,证明:x21+x22>2.2025高中数学八大核心知识函数指数型函数取对数问题--2024高考数学压轴大题秒杀(解析版)(二)等式或不等式两边同时取对数把乘积运算运算转化为加法运算,形如f a g b =h c f a >0,g b >0,f c >0 或f a g b >h c 的等式或不等式通过两边取对数,可以把乘积运算,转化为加法运算,使运算降级.2(2024届辽宁省名校联盟高三上学期联考)已知a >0,b ∈R ,函数f x =ax ln x 和g x =b ln x +1 的图像共有三个不同的交点,且f x 有极大值1.(1)求a 的值以及b 的取值范围;(2)若曲线y =f x 与y =g x 的交点的横坐标分别记为x 1,x 2,x 3,且x 1<x 2<x 3.证明:x 23x 1x 2<e 2b -2.(三)把比较a,b a>0,b>0转化为比较ln a,ln b的大小比较两个指数式的大小,有时可以通过取对数,利用对数函数的单调性比较大小,如比较n n+1,n+1nn∈N∗,n>2的大小,可通过取对数转化为比较n+1ln n,n ln n+1的大小,再转化为比较ln n n,ln n+1n+1的大小,然后可以构造函数f x =ln xx,利用f x 的单调性比较大小.3一天,小锤同学为了比较ln1.1与110的大小,他首先画出了y=ln x的函数图像,然后取了离1.1很近的数字1,计算出了y=ln x在x=1处的切线方程,利用函数y=ln x与切线的图像关系进行比较. (1)请利用小锤的思路比較ln1.1与110大小(2)现提供以下两种类型的曲线y=ax2+b,y=kx+t,试利用小锤同学的思路选择合适的曲线,比较πe, e3的大小.三、典例展示1(2021全国甲卷高考试题)已知a>0且a≠1,函数f(x)=x aa x(x>0).(1)当a=2时,求f x 的单调区间;(2)若曲线y=f x 与直线y=1有且仅有两个交点,求a的取值范围.2(2023届新疆高三第三次适应性检测)已知函数f(x)=ax2+(a+1)x ln x-1,g(x)=f(x) x.(1)讨论g x 的单调性;(2)若方程f(x)=x2e x+x ln x-1有两个不相等的实根x1,x2,求实数a的取值范围,并证明e x1+x2>e2x1x2.(1)求f x 的极值;(2)若f x 有两个零点a,b,且a<b,求证:e b+1b<2e m.4设函数f x =-ln x.(1)设λ1、λ2≥0且λ1+λ2=1,求证:对任意的x1、x2>0,总有xλ11xλ22≤λ1x1+λ2x2成立;(2)设x i>0,λi>0i=1,2,⋅⋅⋅,n,且ni=1λi=1,求证:xλ11xλ22⋅⋅⋅xλn n≤λ1x1+λ2x2+⋅⋅⋅+λn x n.(1)讨论g(x)的单调性;(2)若f x +2x≥g x +x a,对任意x∈(1,+∞)恒成立,求a的最大值;6已知函数f(x)=x ln x.(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且a b=b a,证明:2e <1a+1b<1.跟踪检测1已知函数f (x )=x ln x +a ,(a ∈R ).(1)求函数f x 的单调区间;(2)当0<a <1e时,证明:函数f x 有两个零点;(3)若函数g (x )=f (x )-ax 2-x 有两个不同的极值点x 1,x 2(其中x 1<x 2),证明:x 1⋅x 22>e 3.2形如y =f (x )g (x )的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边取对数得ln y =ln f (x )g (x )=g (x )ln f (x ),两边对x 求导数,得y y =g (x )ln f (x )+g (x )f x f x,于是y =f (x )g (x )g (x )ln f (x )+g (x )f x f x.已知f (x )=2e x ln x ,g (x )=x 2+1.(1)求曲线y =f (x )在x =1处的切线方程;(2)若h (x )=f (x ),求h (x )的单调区间;(3)求证:∀x ∈(0,+∞),f (x )≥g (x )恒成立.3已知函数f(x)=e x2ln x(x>0).(1)求f(x)的极值点.(2)若有且仅有两个不相等的实数x1,x20<x1<x2满足f x1=f x2=e k.(i)求k的取值范围(ⅱ)证明x e2-2e2≤e-e21x1.4已知f(x)=ln x-x,g(x)=mx+m.(1)记F(x)=f(x)+g(x),讨论F(x)的单调区间;(2)记G(x)=f(x)+m,若G(x)有两个零点a,b,且a<b.请在①②中选择一个完成.①求证:2e m-1>1b+b;②求证:2e m-1<1a+a5已知a∈R,f(x)=x⋅e-ax,(其中e为自然对数的底数).(1)求函数y=f(x)的单调区间;(2)若a>0,函数y=f(x)-a有两个零点x,x2,求证:x21+x22>2e.6已知函数f x =axe-x a≠0存在极大值1 e.(1)求实数a的值;(2)若函数F x =f x -m有两个零点x1,x2x1≠x2,求实数m的取值范围,并证明:x1+x2>2.7已知函数f(x)=x(e2x-a),g(x)=bx+ln x.(1)若y=2x是曲线y=f(x)的切线,求a的值;(2)若g(x)有两不同的零点,求b的取值范围;(3)若b=1,且f(x)-g(x)≥1恒成立,求a的取值范围.8已知函数f(x)=ax ln x,a∈R.(1)当a=1时,①求f(x)的极值;②若对任意的x≥e都有f(x)≥mxe m x,m>0,求m的最大值;(2)若函数g(x)=f(x)+x2有且只有两个不同的零点x1,x2,求证:x1x2>e2.9已知函数f(x)=x ln x-ax2-x,g(x)=f(x)x,a∈R.(1)讨论g(x)的单调性;(2)设f(x)有两个极值点x1,x2x1<x2,证明:x41x2>e3.(e=2.71828⋯为自然对数的底数)10已知函数f x =e x-a ln xx-a(e为自然对数的底数)有两个零点.(1)若a=1,求f x 在x=1处的切线方程;(2)若f x 的两个零点分别为x1,x2,证明:e2-x1-x2-x1x2<0.11已知函数h x =x-a ln x a∈R.(1)若h x 有两个零点,a的取值范围;(2)若方程xe x-a ln x+x=0有两个实根x1、x2,且x1≠x2,证明:e x1+x2>e2 x1x2.12已知函数f x =e x-2t-ln x+2(1)若x=1是f x 的极值点,求t的值,并讨论f x 的单调性;(2)当t≤1时,证明:f x >2.指数型函数取对数问题考情分析函数与导数一直是高考中的热点与难点, 在导数解答题中有些指数型函数,直接求导运算非常复杂或不可解,这时常通过取对数把指数型函数转化对数型函数求解,特别是涉及到形如a f x 的函数取对数可以起到化繁为简的作用,此外有时取对数还可以改变式子结构,便于发现解题思路,故取对数的方法在解高考导数题中有时能大显身手.解题秘籍(一)等式两边同时取对数把乘法运算转化为对数运算,再构造函数通过两边取对数可把乘方运算转化为乘法运算,这种运算法则的改变或能简化运算,或能改变运算式子的结构,从而有利于我们寻找解题思路,因此两边取对数成为处理乘方运算时常用的一种方法.有时对数运算比指数运算来得方便,对一个等式两边取对数是解决含有指数式问题的常用的有效方法.1(2024届辽宁省大连市高三上学期期初考试)已知函数f x =ln x+1 ax.(1)讨论f x 的单调性;(2)若ex1x2=ex2x1(e是自然对数的底数),且x1>0,x2>0,x1≠x2,证明:x21+x22>2.【解析】(1)函数f(x)=ln x+1ax的定义域为(0,+∞),求导得则f(x)=-ln xax2,由f (x)=0得x=1,若a<0,当0<x<1时,f (x)<0,则f(x)单调递减,当x>1时,f (x)>0,则f(x)单调递增,若a>0,当0<x<1时,f (x)>0,则f(x)单调递增,当x>1时,f (x)<0,则f(x)单调递减;所以当a<0时,函数f(x)在(0,1)上单调递减,在(1,+∞)上单调递增;当a>0时,函数f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.(2)由ex1x2=ex2x1,两边取对数得x2ln x1+1=x1ln x2+1,即ln x1+1x1=ln x2+1x2,由(1)知,当a=1时,函数f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,f(x)max=f(1)=1,而f1e=0,x>1时,f(x)>0恒成立,因此当a=1时,存在x1,x2且0<x1<1<x2,满足f x1=f x2,若x2∈[2,+∞),则x21+x22>x22≥4>2成立;若x2∈(1,2),则2-x2∈(0,1),记g(x)=f(x)-f(2-x),x∈(1,2),则g (x)=f (x)+f (2-x)=-ln xx2-ln(2-x)(2-x)2>-ln xx2-ln(2-x)x2=-ln[-(x-1)2+1]x2>0,即有函数g(x)在(1,2)上单调递增,g(x)>g(1)=0,即f(x)>f(2-x),于是f x1=f x2>f2-x2,而x2∈(1,2),2-x2∈(0,1),x1∈(0,1),函数f(x)在(0,1)上单调递增,因此x1>2-x2,即x1+x2>2,又x 21+1>2x 21=2x 1,x 22+1>2x 22=2x 2,则有x 21+1+x 22+1>2x 1+x 2 >4,则x 21+x 22>2,所以x 21+x 22>2.(二)等式或不等式两边同时取对数把乘积运算运算转化为加法运算,形如f a g b =h c f a >0,g b >0,f c >0 或f a g b >h c 的等式或不等式通过两边取对数,可以把乘积运算,转化为加法运算,使运算降级.2(2024届辽宁省名校联盟高三上学期联考)已知a >0,b ∈R ,函数f x =ax ln x 和g x =b ln x +1 的图像共有三个不同的交点,且f x 有极大值1.(1)求a 的值以及b 的取值范围;(2)若曲线y =f x 与y =g x 的交点的横坐标分别记为x 1,x 2,x 3,且x 1<x 2<x 3.证明:x 23x 1x 2<e 2b -2.【解析】(1)因为a >0,x ∈0,+∞ ,所以当x ≥1时,f x =ax ln x ,f x =a ln x +a >0,所以f x 在1,+∞ 上单调递增,无极大值;当x ∈0,1 时,f x =-ax ln x ,f x =-a ln x +1 ,所以当x ∈0,1e时,f x >0,f x 单调递增,当x ∈1e ,1时,f 'x <0,f x 单调递减,所以x =1e为极大值点,所以f 1e=-a ⋅1e ⋅ln 1e=1,解得a =e .因为f x ,g x 图像共有三个不同的交点,所以方程ex ln x =b ln x +1 有三个不等正实根.设t =ln x +1,则x =e t -1,且当x >0时,t 与x 一一对应,所以问题转化为关于t 的方程e t t -1 =b t 有三个不等实根.又0不满足方程e t t -1 =b t ,所以方程b =t -1te t有三个实根.设h t =t -1te t ,则函数h t =t -1t e t与函数y =b 的图像有三个交点,当t ≥1或t <0时,h t =t -1te t,∴h t =t 2-t +1t2e t>0,所以h t 在-∞,0 ,1,+∞ 上单调递增;当0<t <1时,h t =-t -1 ett,ht =-t 2-t +1t 2e t<0,所以h t 在0,1 上单调递减.当t ≠0,t ≠1时,h t >0,而h 1 =0;当t →-∞时,h t =1-1te t→0,无论t >0还是t <0,当t →0时,都有h t =1-1te t→+∞,当t →+∞时,h t =1-1te t→+∞.根据以上信息,画出函数h t 的大致图像如下图所示,所以当b >0时,函数h t =t -1te t与函数y =b 的图像有三个交点,故b 的取值范围为0,+∞ .(2)证明:要证x 23x 1x 2<e 2b -2,只需证2ln x 3-ln x 2+ln x 1<2b -2,只需证2ln x 3+1 -ln x 2+1 +ln x 1+1 <2b .设(1)中方程的b =t -1te t三个根分别为t 1,t 2,t 3,且t 1<t 2<t 3,t i =ln x i +1,i =1,2,3,从而只需证明2t 3-t 2+t 1<2b .又由(1)的讨论知t 1<0,0<t 2<1,t 3>1.下面先证明e x ≥x +1,设φx =e x -x -1,则φ x =e x -1.当x >0时,φ x >0,φx 在0,+∞ 上单调递增,当x <0时,φ x <0,φx 在-∞,0 上单调递增,所以φx ≥φ0 =0,所以当x ≠0时,e x >x +1,从而当t ≠0,t ≠1时,h t =t -1te t >t -1tt +1 .又由(1)知h t 在-∞,0 ,1,+∞ 上单调递增,h t 在0,1 上单调递减.所以当t>1时,h t >t2-1t=t-1t,令b=t-1t,解得t=b+b2+42,由h t3=b<hb+b2+42得t3<b+b2+42;当0<t<1时,h t >1t-t,令b=1t-t,解得t=-b+b2+42,由h t2=b<h-b+b2+42得t2>-b+b2+42;当t<0时,h t >t-1t,令b=t-1t,解得t=b-b2+42,由h t1=b<hb-b2+42得t1<b-b2+42.综上,2t3-t2+t1<b+b2+4--b+b2+42+b-b2+42=2b,得证.(三)把比较a,b a>0,b>0转化为比较ln a,ln b的大小比较两个指数式的大小,有时可以通过取对数,利用对数函数的单调性比较大小,如比较n n+1,n+1nn∈N∗,n>2的大小,可通过取对数转化为比较n+1ln n,n ln n+1的大小,再转化为比较ln n n,ln n+1n+1的大小,然后可以构造函数f x =ln xx,利用f x 的单调性比较大小.3一天,小锤同学为了比较ln1.1与110的大小,他首先画出了y=ln x的函数图像,然后取了离1.1很近的数字1,计算出了y=ln x在x=1处的切线方程,利用函数y=ln x与切线的图像关系进行比较. (1)请利用小锤的思路比較ln1.1与110大小(2)现提供以下两种类型的曲线y=ax2+b,y=kx+t,试利用小锤同学的思路选择合适的曲线,比较πe, e3的大小.【解析】(1)构造函数f(x)=ln x-x+1,由f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,得f(x)≤f(1)=0,即ln x≤x-1,取x=1,得ln1.1<0.1(2)通过取对数,把比较πe,e3的大小转化为比较e lnπ与3的大小,即比较lnπ与3e大小选y=ax2+b,令y=ln x与y=ax2+b公切于e则有ln e=ae2+b1e=-2ae3⇒a=-e22,b=32,∴y=-e22x2+3 2记g (x )=ln x +e 22x 2-32,g (x )=1x -e 2x 3=x 2-e 2x 3,∴g (x )在(0,e )上单调递减,在(e ,+∞)上单调递增,∴g (x )≥g (e )=0,∴ln x ≥-e 22x 2+32∴lnπ>-e 22π2+32,下证:32-e 22π2>3e 只需证3e +e 22π2<32∵3e +e 22π2<32.7+(2.72)22×(3.1)2=109+(2.72)22×(3.1)2只需证 2.723.1 2<79∵2.723.1<0.88,(0.88)2=0.7744而79=0.777>0.7744,∴lnπ>3e,即πe >e 3选y =kx +t ,通过取对数,把比较πe ,e 3的大小转化为比较e lnπ与3的大小,即比较lnπ与3e大小,即较ln1π与-3e大小令y =ln x 与y =kx +t 切于1e,则有ln 1e =k 1e +t e =k⇒k =e ,t =-2,∴y =ex -2令g (x )=ln x -ex +2,g (x )=1x -e =1-ex x∴g (x )在0,1e上单调递增,在1e ,+∞ 上单调递减,∴g (x )≤g 1e =0,∴ln x ≤ex -2,当x =1e取等∴ln 1π≤e π-2下证e π-2<-3e ,只需证e π+3e<2∵e π+3e <2.723.1+32.7<0.88+109,∵2-109=89=0.8 >0.88,∴ln 1π<-3e ,∴lnπ>3e,∴πe >e 3.三、典例展示1(2021全国甲卷高考试题)已知a >0且a ≠1,函数f (x )=x aa x (x >0).(1)当a =2时,求f x 的单调区间;(2)若曲线y =f x 与直线y =1有且仅有两个交点,求a 的取值范围.【解析】(1)当a =2时,f x =x 22x ,f x =2x ⋅2x -x 2⋅2x ln22x 2=x ⋅2x 2-x ln2 4x ,令f 'x =0得x =2ln2,当0<x <2ln2时,f x >0,当x >2ln2时,f x <0,∴函数f x 在0,2ln2上单调递增;2ln2,+∞ 上单调递减;(2)f x =x a a x=1⇔a x =x a⇔x ln a =a ln x ⇔ln x x =ln a a ,设函数g x=ln x x ,则g x =1-ln xx2,令g x =0,得x =e ,在0,e 内g x >0,g x 单调递增;在e ,+∞ 上g x <0,g x 单调递减;∴g x max =g e =1e,又g 1 =0,当x 趋近于+∞时,g x 趋近于0,所以曲线y =f x 与直线y =1有且仅有两个交点,即曲线y =g x 与直线y =aln a有两个交点的充分必要条件是0<ln a a <1e,这即是0<g a <g e ,所以a 的取值范围是1,e ∪e ,+∞ .2(2023届新疆高三第三次适应性检测)已知函数f (x )=ax 2+(a +1)x ln x -1,g (x )=f (x )x.(1)讨论g x 的单调性;(2)若方程f (x )=x 2e x +x ln x -1有两个不相等的实根x 1,x 2,求实数a 的取值范围,并证明e x 1+x 2>e 2x 1x 2.【解析】(1)因为g (x )=ax +(a +1)ln x -1x,所以g x =a +a +1x +1x 2=(x +1)(ax +1)x 2(x >0),当a ≥0时,g x >0,所以g (x )在区间(0,+∞)上单调递增,当a <0时,令g x >0,得0<x <-1a ;令g x <0,得x >-1a,所以g (x )在区间0,-1a上单调递增,在区间-1a ,+∞ 上单调递减,综上当a ≥0时,g (x )在区间(0,+∞)上单调递增,当a <0时,g (x )在区间0,-1a上单调递增,在区间-1a ,+∞ 上单调递减.(2)方程f (x )=x 2e x +x ln x -1,即ax +a ln x =xe x ,等价于a ln xe x =xe x ,令t =xe x >0,其中x >0,则a ln t =t ,显然t ≠1,令h t =tln t,则ht =ln t-1ln2t,所以h t 在区间0,1上单调递减,且由x→0时h t <0可得在区间0,1上h(t)<0,h t 在区间(1,e)上单调递减,在区间(e,+∞)上单调递增,所以h(t)极小值=h(e)=e,因为方程f(x)=x2e x+x ln x-1有两个实根x1,x2,所以关于t的方程a=tln t有两个实根t1,t2,且t1=x1e x1,t2=x2e x2,所以a∈(e,+∞),要证e x1+x2>e2x1x2,即证x1e x1⋅x2e x2>e2,即证t1t2>e2,只需证ln t1+ln t2>2,因为t1=a ln t1t2=a ln t2,所以t1-t2=a ln t1-ln t2t1+t2=a ln t1+ln t2,整理可得t1+t2t1-t2=ln t1+ln t2ln t1-ln t2,不妨设t1>t2>0,则只需证ln t1+ln t2=t1+t2t1-t2lnt1t2>2,即ln t1t2>2t1-t2t1+t2=2t1t2-1t1t2+1,令s=t1t2>1,p(s)=ln s-2(s-1)s+1,其中s>1,因为p s =1s-4(s+1)2=(s-1)2s(s+1)2>0,所以p s 在区间(1,+∞)上单调递增,所以h(s)>h(1)=0,故e x1+x2>e2x1x2.3已知函数,f x =ln x-x+m,m∈R.(1)求f x 的极值;(2)若f x 有两个零点a,b,且a<b,求证:e b+1b<2e m.【解析】(1)函数f x 的定义域为0,+∞,f x =1x-1.当0<x<1时,f x >0,则f x 在0,1上单调递增;当x>1时,f x <0,则f x 在1,+∞上单调递减,所以函数f x 的极大值为f1 =m-1,无极小值.(2)令f x =0,则m=x-ln x.设h x =x-ln x x>0,则h'x =1-1x=x-1x,易知函数h x 在0,1上单调递减,在1,+∞上单调递增.又h1 =1,所以h x ≥1,又f x 有两个零点,所以m >1.因为a <b ,所以0<a <1<b .要证e b +1b <2e m ,即证2e m -1>b +1b,即证ln2+m -1>lnb 2+1b=ln b 2+1 -ln b .又f b =0,则m =b -ln b ,故即证ln2+b -ln b -1>ln b 2+1 -ln b ,即证ln2-1>ln b 2+1 -b .设t b =ln b 2+1 -b ,b >1,则t 'b =2b b 2+1-1=-b -1 2b 2+1<0,所以t b 在1,+∞ 上单调递减,所以t b <t 1 =ln2-1,故e b +1b<2e m 得证.4设函数f x =-ln x .(1)设λ1、λ2≥0且λ1+λ2=1,求证:对任意的x 1、x 2>0,总有x λ11x λ22≤λ1x 1+λ2x 2成立;(2)设x i >0,λi >0i =1,2,⋅⋅⋅,n ,且ni =1λi =1 ,求证:x λ11x λ22⋅⋅⋅x λn n ≤λ1x 1+λ2x 2+⋅⋅⋅+λn x n .【解析】(1)证明:x λ11x λ22≤λ1x 1+λ2x 2⇔ln x λ11x λ22 ≤ln λ1x 1+λ2x 2 ⇔λ1ln x 1+λ2ln x 2≤ln λ1x 1+λ2x 2 ⇔f λ1x 1+λ2x 2 ≤λ1f x 1 +λ2f x 2 .不妨设0<x 1≤x 2,令g x =λ1f x +λ2f x 2 -f λ1x +λ2x 2 =ln λ1x +λ2x 2 -λ1ln x -λ2ln x 2,其中0<x ≤x 2,则g x =λ1λ1x +λ2x 2-λ1x =λ1x -λ1λ1x +λ2x 2 λ1x +λ2x 2 x =λ1x -λ1x -λ2x 2 λ1x +λ2x 2 x =λ1λ2x -x 2 λ1x +λ2x 2 x≤0,所以,函数g x 在区间0,x 2 上单调递减,因为x 1∈0,x 2 ,则g x 1 ≥g x 2 =ln x 2-ln x 2=0,所以,g x 1 =ln λ1x 1+λ2x 2 -λ1ln x 1-λ2ln x 2≥0,即λ1ln x 1+λ2ln x 2≤ln λ1x 1+λ2x 2 ,所以,当λ1、λ2≥0且λ1+λ2=1,对任意的x 1、x 2>0,总有x λ11x λ22≤λ1x 1+λ2x 2成立.(2)证明:x i >0,λi >0i =1,2,⋅⋅⋅,n ,且ni =1λi =1 ,要证x λ11x λ22⋅⋅⋅x λnn ≤λ1x 1+λ2x 2+⋅⋅⋅+λn x n .即证λ1ln x 1+λ2ln x 2+⋯+λn ln x n ≤ln λx 1+λ2x 2+⋯+λn x n ,即f λ1x 1+λ2x 2+⋅⋅⋅+λn x n ≤λ1f x 1 +λ2f x 2 +⋅⋅⋅+λn f x n ,当n=2时,由(1)可知,不等式成立,假设当n=k k≥2,k∈N∗时不等式成立,即fλ1x1+λ2x2+⋅⋅⋅+λk x k≤λ1f x1+λ2f x2+⋅⋅⋅+λk f x k,则当n=k+1时,设x k=λkλk+λk+1x k+λk+1λk+λk+1x k+1,由(1)可得f x k≤λkλk+λk+1f x k+λk+1λk+λk+1f x k+1,则fλ1x1+λ2x2+⋅⋅⋅+λk x k+λk+1x k+1=fλ1x1+λ2x2+⋅⋅⋅+λk-1x k-1+λk+λk+1x k≤λ1f x1+⋅⋅⋅+λk-1f x k-1+λk+λk+1f x k≤λ1f x1+⋅⋅⋅+λk f x k+λk+1f x k+1,这说明当n=k+1时,结论也成立,故对任意的n∈N∗,fλ1x1+λ2x2+⋅⋅⋅+λk x n≤λ1f x1+λ2f x2+⋅⋅⋅+λn f x n,所以,-lnλ1x1+λ2x2+⋅⋅⋅+λn x n≤-λ1ln x1-λ2ln x2-⋯-λn ln x n,因此,λ1ln x1+λ2ln x2+⋯+λn ln x n≤lnλx1+λ2x2+⋯+λn x n,故当x i>0,λi>0i=1,2,⋅⋅⋅,n,且ni=1λi=1时,xλ11xλ22⋅⋅⋅xλn n≤λ1x1+λ2x2+⋅⋅⋅+λn x n.5已知函数f(x)=e x,g(x)=x+a ln x,a∈R(1)讨论g(x)的单调性;(2)若f x +2x≥g x +x a,对任意x∈(1,+∞)恒成立,求a的最大值;【解析】(1)g (x)=1+ax=x+ax(x>0),当a≥0时,g′(x)>0,g(x)在(0,+∞)上单调递增;当a<0时,令g′(x)>0,解得x>-a,令g′(x)<0,解得0<x<-a,∴g(x)在(0,-a)上单调递减,在(-a,+∞)上单调递增;综上,当a≥0时,g(x)在(0,+∞)上单调递增;当a<0时,g(x)在(0,-a)上单调递减,在(-a,+∞)上单调递增;(2)f(x)+2x≥g(x)+x a即为e x+x≥a ln x+x a,即e x+ln e x≥ln x a+x a,设h(x)=ln x+x(x>0),则h (x)=1x+1=x+1x,易知函数h(x)在(0,+∞)上单调递增,而h(e x)≥h(x a),所以e x≥x a(两边取对数),即x≥a ln x,当x>1时,即为a≤xln x,设φ(x)=xln x(x>1),则φ (x)=ln x-1ln2x,易知函数φ(x)在(0,e)上单调递减,在(e,+∞)上单调递增,∴φ(x)≥φ(e)=e,∴a≤e,即a的最大值为e.6已知函数f (x )=x ln x .(1)讨论f (x )的单调性;(2)设a ,b 为两个不相等的正数,且a b =b a ,证明:2e <1a +1b <1.【解析】 (1)f (x )=ln x +1,定义域为(0,+∞),由f (x )=0,解得x =1e ,由f (x )>0,解得x >1e,由f (x )<0,解得0<x <1e,所以f (x )的单调递增区间为1e ,+∞,单调递减区间为0,1e.(2)∵a ,b 为两个不相等的正数,且a b =b a ,∴b ln a =a ln b ,即1a ln 1a =1b ln 1b,由(1)可知f (x )min =f 1e =-1e,且f (1)=0,x →0时,f (x )→0,则令x 1=1a ,x 2=1b,则x 1,x 2为f (x )=k 的两根,且k ∈-1e ,0 ,不妨设x 1∈0,1e ,x 2∈1e ,1 ,则2e -x 1>1e,先证2e <x 1+x 2,即证x 2>2e -x 1,即证f x 2 =f x 1 >f 2e-x 1 ,令h (x )=f (x )-f 2e -x,即证在x ∈0,1e上,h (x )>0,则h (x )=f (x )-f 2e -x =ln x +ln 2e -x +2=ln -x 2+2ex +2,h (x )在0,1e上单调递增,即h (x )<h 1e =0,∴h (x )<0在0,1e上恒成立,即h (x )在0,1e 上单调递减,h (x )>h 1e =0,∴f (x )>f 2e -x,即可得x 2>2e-x 1;再证x 1+x 2<1,即证1e<x 2<1-x 1,由(1)f (x )单调性可得证f x 2 =f x 1 <f 1-x 1 ,令φ(x )=f (x )-f (1-x ),x ∈0,1e,φ (x )=ln x +ln (1-x )+2=ln -x 2+x +2,φ (x )在0,1e上单调递增,∴φ (x)=φ 1e>0,且当x→0,φ (x)<0,所以存在x0使得φ x0=0,即当x∈0,x0时,φ (x)<0,φ(x)单调递减,当x∈x0,1 e时,φ (x)>0,φ(x)单调递增,又有x→0,φ(x)<0,且φ1e=f1e -f1-1e<0,所以φ(x)<0恒成立,∴x 1+x2<1,则2e<1a+1b<1,即可证得.四、跟踪检测1已知函数f(x)=x ln x+a,(a∈R).(1)求函数f x 的单调区间;(2)当0<a<1e时,证明:函数f x 有两个零点;(3)若函数g(x)=f(x)-ax2-x有两个不同的极值点x1,x2(其中x1<x2),证明:x1⋅x22>e3.【解析】(1)f x =ln x+1,x>0,当0<x<1e时,fx <0,当x>1e时,fx >0,所以函数f x 在0,1 e上递减,在1e,+∞上递增,所以函数f x 的单调区间为0,1 e和1e,+∞;(2)证明:由(1)知f x min=f1e=-1e+a,因为0<a<1e,所以f1e<0,又当x→0+时,f x >0,f e =e+a>0,所以函数在0,1 e上存在一个零点,在1e,e上存在一个零点,所以函数f x 有两个零点;(3)证明:g(x)=f(x)-ax2-x=x ln x--ax2-x+a,(x>0),则g x =ln x-2ax,因为函数g(x)有两个不同的极值点x1,x2(其中x1<x2),所以ln x1=2ax1,ln x2=2ax2,要证x 1⋅x 22>e 3等价于证ln x 1⋅x 22 >ln e 3,即证ln x 1+2ln x 2>3,所以3<ln x 1+2ln x 2=2ax 1+4ax 2=2a x 1+2x 2 ,因为0<x 1<x 2,所以2a >3x 1+2x 2,又ln x 1=2ax 1,ln x 2=2ax 2,作差得ln x 1x 2=a x 1-x 2 ,所以a =ln x1x 2x 1-x 2,所以原不等式等价于要证明2ln x1x 2x 1-x 2>3x 1+2x 2,即2ln x 1x 2<3x 1-x 2 x 1+2x 2,令t =x 1x 2,t ∈0,1 ,则上不等式等价于要证:2ln t <3t -1t +2,t ∈0,1 ,令h t =2ln t -3t -1t +2,t ∈0,1 ,则ht =2t -9t +2 2=2t 2-t +8t t +2 2>0,t ∈0,1 ,所以函数h t 在0,1 上递增,所以h t <h 1 =0,所以2ln t <3t -1t +2,t ∈0,1 ,所以x 1⋅x 22>e 3.2形如y =f (x )g (x )的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边取对数得ln y =ln f (x )g (x )=g (x )ln f (x ),两边对x 求导数,得y y =g(x )ln f (x )+g (x )f x f x,于是y =f (x )g (x )g(x )ln f (x )+g (x )f x f x.已知f (x )=2e x ln x ,g (x )=x 2+1.(1)求曲线y =f (x )在x =1处的切线方程;(2)若h (x )=f (x ),求h (x )的单调区间;(3)求证:∀x ∈(0,+∞),f (x )≥g (x )恒成立.【解析】(1)由幂指函数导数公式得f (x )=2e x ln x (ln x +1),所以f (1)=2,又f (1)=2,所以,曲线y =f (x )在x =1处的切线方程为y =2x .(2)h (x )=f (x )=2e x ln x (ln x +1),x ∈(0,+∞),则h (x )=2e x ln x (ln x +1)+2e x ln x (ln x +1) =2e x ln x (ln x +1) (ln x +1)+2e x ln x ⋅1x=2e x ln x (ln x +1)2+1x>0,所以h (x )的单调增区间为(0,+∞),无单调减区间.(3)构造F (x )=f (x )-g (x ),x ∈(0,+∞),则F (x )=f (x )-g (x )=2e x ln x (ln x +1)-2x ,令H (x )=F (x )=2e x ln x (ln x +1)-2x ,x ∈(0,+∞),所以H (x )=2e x ln x (ln x +1)2+e(x -1)ln x-1 ,因为x -1与ln x 同号,所以(x -1)ln x ≥0,所以e (x -1)ln x-1≥0,又e x ln x (ln x +1)2≥0,所以H (x )≥0,所以H (x )即F (x )为(0,+∞)上增函数,又因为F (1)=0,所以,当x ∈(0,1)时,F (x )<F (1)=0;当x ∈(1,+∞)时,F (x )>F (1)=0.所以,F (x )为(0,1)上减函数,为(1,+∞)上增函数,所以,F (x )min =F (1)=0,即F (x )=f (x )-g (x )≥0,因此,∀x ∈(0,+∞),f (x )≥g (x )恒成立,即证.3已知函数f (x )=e x 2ln x (x >0).(1)求f (x )的极值点.(2)若有且仅有两个不相等的实数x 1,x 20<x 1<x 2 满足f x 1 =f x 2 =e k .(i )求k 的取值范围(ⅱ)证明x e 2-2e2≤e-e 21x 1.【解析】(1)函数f (x )=e x 2ln x (x >0)的导函数为f (x )=xe x 2ln x (2ln x +1).当x ∈0,e -12时,f(x )<0,所以函数f (x )单调递减;当x ∈e -12,+∞ 时,f (x )>0,所以函数f (x )单调递增.所以x =e-12为f (x )的极值点.(2)因为有且仅有两个不相等的实数x 1,x 20<x 1<x 2 满足f x 1 =f x 2 =e k ,所以x 12ln x 1=x 22ln x 2=k .(i )问题转化为m (x )=x 2ln x -k 在(0,+∞)内有两个零点,则m x =x 1+2ln x .当x∈0,e-1 2时, m x <0,m(x)单调递减;当x∈e-12,+∞时, m x >0,m(x)单调递增.若m(x)有两个零点,则必有m e-1 2<0,解得:k>-12e.若k≥0,当0<x<e-12时,m x =x2ln x-k≤x2ln x<0,无法保证m(x)有两个零点;若-12e<k<0,又m e1k>0,m e-12<0,m1 =-k>0,故存在x1∈e 1 k,e-12使得m x1 =0,存在x2∈e-12,1使得m x2 =0.综上可知, k∈-12e ,0.(ⅱ)设t=x2x1则t∈(1,+∞).将t=x2x1代入x12ln x1=x22ln x2,可得ln x1=t2ln t1-t2,ln x2=ln t1-t2(*).欲证:x e2-2e2≤e-e21x1,需证ln xe2-2e2≤ln e-e2x1即证ln x1+(e2-2e)ln x2≤-e2,将(*)代入,则有(t2+e2-2e)ln t1-t2≤-e2,则只需要证明:(x+e2-2e)ln x1-x≤-e(x>1),即ln x≥e x-1x+e2-2e(x>1).构造φ(x)=x-1ln x-xe-e+2,则φ (x)=ln x-x-1xln2x-1e,φ(x)=(x+1)2(x-1)x+1-ln xx2ln3x(x>1).令ω(x)=2(x-1)x+1-ln x(x>1),则ω (x)=-(x-1)2x(x+1)2<0.所以ω(x)<ω(1)=0,则φ (x)<0,所以φ(x)在1,+∞内单减.又φ (e)=0,所以当x∈(1,e)时,有φ (x)>0,φ(x)单调递增;当x∈(e,+∞)时,有φ (x)<0,φ(x)单调递减;所以φ(x)≤φ(e)=0,因此x-1ln x-xe≤e-2,即ln x≤e x-1x+e2-2e(x>1).综上所述,命题得证.4已知f(x)=ln x-x,g(x)=mx+m.(1)记F(x)=f(x)+g(x),讨论F(x)的单调区间;(2)记G(x)=f(x)+m,若G(x)有两个零点a,b,且a<b.请在①②中选择一个完成.①求证:2e m-1>1b+b;②求证:2e m-1<1a+a【解析】(1)函数的定义域为(0,+∞),F (x)=1x+m-1,当m≥1时,F (x)>0,F(x)在(0,+∞)单调递增;当m<1时,令F (x)<0,解得x>11-m,令F(x)>0,解得0<x<11-m,∴F (x )在0,11-m单调递增,在11-m ,+∞ 单调递减; 综上,当m ≥1时,f (x )的单调递增区间为(0,+∞);当m <1时,f (x )的单调递增区间为0,11-m ,单调递减区间为11-m,+∞ (2)证明:因为G (x )=ln x -x +m ,令G (x )=0,则m =x -ln x ,设t (x )=x -ln x (x >0),则t (x )=1-1x =x -1x,函数t (x )在(0,1)单调递减,在(1,+∞)单调递增,且x →0时,t (x )→+∞,当x →+∞时,t (x )→+∞,t (x )min =t (1)=1,∴m >1,又a <b ,则0<a <1<b ,若证①所证不等式,即2e m -1>b +1b,即证ln2+m -1>lnb 2+1b=ln b 2+1 -ln b ,又G (b )=0,则m =b -ln b ,故即证ln2+b -ln b -1>ln b 2+1 -ln b ,即证ln2-1>ln b 2+1 -b ,设h (b )=ln b 2+1 -b ,b >1,则h(b )=2b b 2+1-1=-(b -1)2b 2+1<0,∴h (b )在(1,+∞)上单调递减,∴h (b )<h (1)=ln2-1,即2e m -1>1b+b 得证;若证②所证不等式,即2em -1<a +1a ,即证ln2+m -1<ln a 2+1a,即证ln2+m -1<ln a 2+1 -ln a ,又G (a )=0,即m =a -ln a ,故即证ln2+a -ln a -1<ln a 2+1 -ln a ,即证ln2-1<ln a 2+1 -a ,设φ(a )=ln a 2+1 -a ,0<a <1,则φ(a )=2aa 2+1-1=-(a -1)2a 2+1<0,∴φ(a )在(0,1)单调递减,故φa >φ1 =ln2-1,即2e m -1<1a+a 得证.5已知a ∈R ,f (x )=x ⋅e -ax ,(其中e 为自然对数的底数).(1)求函数y =f (x )的单调区间;(2)若a >0,函数y =f (x )-a 有两个零点x ,x 2,求证:x 21+x 22>2e .【解析】(1)解:f ′(x )=e -ax -ax ⋅e -ax =e -ax (1-ax )∵a ∈R ,∴a <0时,f ′(x )=e -ax (1-ax )>0⇒x >1a ,f ′(x )=e -ax (1-ax )<0⇒x <1a∴a <0时,增区间为:1a ,+∞,减区间为:-∞,1a;a =0时,f ′(x )=e -ax (1-ax )=1>0,∴a =0时,增区间为:(-∞,+∞);a >0时,f ′(x )=e -ax (1-ax )>0⇒x <1a ,f ′(x )=e -ax (1-ax )<0⇒x >1a,∴a >0时,增区间为:-∞,1a ,减区间为:1a,+∞ ;(2)因为a >0时,函数y =f (x )-a 有两个零点x 1,x 2,则两个零点必为正实数,f (x )-a =0⇔xe -ax =a 两边取对数ln x -ax =ln a故问题转化为ln x -ax =ln a 有两个正实数解;令g (x )=ln x -ax -ln a (x >0)则g ′(x )=1x -a (x >0),g (x )在0,1a 单调递增,在1a ,+∞ 单调递减,且0<x 1<1a<x 2令G (x )=g (x )-g 2a -x ,x ∈1a,+∞ ,则G ′(x )=1x -a +12a -x -a =2x (2-ax )-2a >21a-2a =0所以G (x )在1a ,+∞ 单调递增,G (x )>G 1a=0又x 2>1a ,故g x 2 >g 2a -x 2 ,x 2∈1a,+∞ 又g x 1 =g x 2 ,所以g x 1 >g 2a-x 2 ,又0<x 1<1a <x 2,所以x 1,2a -x 2∈0,1a ,又g (x )在0,1a 单调递增,所以x 1+x 2>2a所以x 21+x 22>x 1+x 222>2a 2>2e .6已知函数f x =axe -x a ≠0 存在极大值1e.(1)求实数a 的值;(2)若函数F x =f x -m 有两个零点x 1,x 2x 1≠x 2 ,求实数m 的取值范围,并证明:x 1+x 2>2.【解析】(1)f x =a ⋅xe xx ∈R ,f x =a 1-x ex,令f x =0⇒x =1,f 1 =a e =1e ⇒a =1,此时f x =1-xex ,f x 在-∞,1 上f x >0,f x 递增;在1,+∞ 上f x <0,f x 递减,所以当x =1时,f x 取得极大值为f 1 =1e符合题意,所以a =1.(2)由(1)知:f x 在-∞,1 上递增,在1,+∞ 上递减,极大值为f 1 =1e.f x =x e x,f 0 =0,当x <0时,f x <0;当x >0时,f x >0;当x →+∞时,f x →0.由于函数F x =f x -m 有两个零点x 1,x 2x 1≠x 2 ,所以0<m <1e.因为x 1,x 2x 1≠x 2 是F x 的两个零点,则x 1>0,x 2>0.所以F x 1 =F x 2 ,x 1e x 1=x 2ex 2,e x 2e x 1=x 2x 1,e x 2-x 1=x 2x 1,两边取对数得x 2-x 1=ln x 2x 1,要证x 1+x 2>2,只需证明x 2-x 1x 2+x 1<12ln x2x 1,即证x 2x 1-1x 2x 1+1<12ln x 2x 1,不妨设x 1<x 2,令x 2x 1=t ,则t ∈1,+∞ ,即证t -1t +1<12ln t 对t ∈1,+∞ 恒成立.令g t =12ln t -t -1t +1,g t =12t -2t +12=t -1 22t t +1 2>0,所以g t 在1,+∞ 上递增,所以g t >g 1 =0,即12ln t -t -1t +1>0,所以t -1t +1<12ln t .从而x 1+x 2>2成立.7已知函数f (x )=x (e 2x -a ),g (x )=bx +ln x .(1)若y =2x 是曲线y =f (x )的切线,求a 的值;(2)若g (x )有两不同的零点,求b 的取值范围;(3)若b =1,且f (x )-g (x )≥1恒成立,求a 的取值范围.【解析】(1)依题意,设切点为(x 0,2x 0),则2x 0=x 0(e 2x 0-a ),f (x )=e 2x -a +x ⋅2e 2x ,于是得e 2x 0(2x 0+1)-a =2,则有x 0=0且a =-1,x 0≠0时,e 2x 0=a +2,(a +2)(2x 0+1)=a +2无解,所以a =-1;(2)由g (x )=0得-b =ln x x ,令h (x )=ln xx,x >0,则有h (x )=1-ln xx2,0<x <e 时h (x )>0,x >e 时h (x )<0,h (x )在(0,e )上递增,在(e ,+∞)上递减,h (x )max =h (e )=1e,又x >e 时,h (x )>0恒成立,于是得g (x )有两个不同的零点,等价于直线y =-b 与函数h (x )=ln xx,x >0图象有两个不同的公共点,即0<-b <1e ,-1e <b <0,所以g (x )有两不同的零点,b 的取值范围是-1e<b <0;(3)b =1,g (x )=x +ln x ,x >0,∀x >0,f (x )-g (x )≥1⇔x (e 2x -a )≥1+x +ln x ⇔a +1≤e 2x -1+ln xx,令φ(x )=e 2x-1+ln x x (x >0),φ (x )=2e 2x+ln x x 2=2x 2e 2x +ln x x 2,令F (x )=2x 2e 2x +ln x ,F (x )=(4x 2+4x )e 2x +1x>0,即F (x )在(0,+∞)上递增,而F 14=e 8-ln4<0,F (1)=2e 2>0,即∃t ∈(0,1),使得F (t )=0,0<x <t 时F (x )<0,φ (x )<0,x >t 时,F (x )>0,φ (x )>0,φ(x )在(0,t )上递减,在(t ,+∞)上递增,从而有φ(x )min =e 2t -1+ln tt,而F (t )=0,即2t 2e 2t +ln t =0,令t 2e 2t =p ,两边取对数得2t +2ln t =ln p ,则2p +ln t =0=2t +2ln t -ln p ,即有2p +ln p =2t +ln t ,显然函数y =2x +ln x 在(0,+∞)上单调递增,从而得p =t ,于是得t 2e 2t =t ⇔e 2t =1t 两边取对数 2t =-ln t ⇔ln t t=-2,φ(x )min =e 2t -1+ln t t =1t -1t -ln t t=2,所以a +1≤2,a ≤1.8已知函数f (x )=ax ln x ,a ∈R .(1)当a =1时,①求f (x )的极值;②若对任意的x ≥e 都有f (x )≥m xe mx ,m >0,求m 的最大值;(2)若函数g (x )=f (x )+x 2有且只有两个不同的零点x 1,x 2,求证:x 1x 2>e 2.【解析】(1)①a =1时,f (x )=x ln x ,则f ′(x )=ln x +1(x >0),令f ′(x )>0,解得:x >1e ,令f ′(x )<0,解得:0<x <1e,∴f (x )在0,1e递减,在1e ,+∞ 递增,故f (x )的极小值是f 1e =-1e ,没有极大值;②对任意x ≥e 都有f (x )≥m x e m x =e m x ln e m x,即f (x )≥f e mx 恒成立,由m >0,有mx>0,故e mx >1,由①知,f (x )在1e ,+∞ 单调递增,故x ≥e mx ,可得ln x ≥mx,即x ln x ≥m ,当x ≥e 时,f (x )的最小值是f (e )=e ,故m 的最大值是e ;(2)证明:要证x 1x 2>e 2,只需证明ln (x 1x 2)>2即可,由题意,x 1、x 2是方程ax ln x +x 2=0的两个不相等的实数根,又x >1,∴a ln x1+x1=0a ln x2+x2=0,消去a,整理得:ln(x1x2)=x1x2+1x1x 2-1⋅lnx1x2,不妨设x1>x2,令t=x1x2,则t>1,故只需证明当t>1时,t+1t-1⋅ln t>2,即证明ln t>2(t-1)t+1,设h(t)=ln t-2(t-1)t+1,则h′(t)=1t-2⋅t+1-(t-1)(t+1)2=(t-1)2t(t+1)2>0,∴h(t)在(1,+∞)单调递增,从而h(t)>h(1)=0,故ln t>2(t-1)t+1,即x1x2>e2得证.9已知函数f(x)=x ln x-ax2-x,g(x)=f(x)x,a∈R.(1)讨论g(x)的单调性;(2)设f(x)有两个极值点x1,x2x1<x2,证明:x41x2>e3.(e=2.71828⋯为自然对数的底数)【解析】(1)g(x)=f(x)x=ln x-ax-1,g (x)=1x-a,①当a≤0时,g (x)>0,g(x)在(0,+∞)单调递增;②当a>0时,令g (x)=0解得x=1a,x∈0,1a时,g (x)>0,g(x)单调递增;x∈1a ,+∞时,g (x)<0,f(x)单调递减.综上,当a≤0时,g(x)在(0,+∞)单调递增;当a>0时,g(x)在0,1 a上单调递增,在1a,+∞上单调递减,(2)由题意知,f (x)=ln x-2ax,x1,x2是f (x)的两根,即ln x1-2ax1=0,ln x2-2ax2=0,解得2a=ln x1-ln x2x1-x2(*),要证x41x2>e3,即证4ln x1+ln x2>3,即4⋅2ax1+2ax2>3,把(*)式代入得ln x1-ln x2x1-x24x1+x2>3x1<x2,所以应证ln x1x2<3x1-x24x1+x2=3x1x2-14x1x2+1,令t=x1x2,0<t<1,即证h(t)=ln t-3(t-1)4t+1<0(0<t<1)成立,而h (t)=1t-15(4t+1)2=16t2-7t+1t(4t+1)2=16t-7322+1564t(4t+1)2>0,所以h(t)在(0,1)上单调递增,所以h(t)<h(1)=0,所以命题得证.10已知函数f x =e x -a ln xx-a (e 为自然对数的底数)有两个零点.(1)若a =1,求f x 在x =1处的切线方程;(2)若f x 的两个零点分别为x 1,x 2,证明:e 2-x 1-x 2-x 1x 2<0.【解析】(1)当a =1时,f x =e x -ln x x -1,f x =e x -1-ln xx 2,又f 1 =e -1,所以切点坐标为1,e -1 ,切线的斜率为k =f 1 =e -1.所以切线方程为y -e -1 =e -1 x -1 ,即y =e -1 x (2)由已知得f x =xe x -a ln x +xx=0有两个不等的正实跟.所以方程xe x -a ln x +x =0有两个不等的正实根,即xe x -a ln xe x =0有两个不等的正实根,a ln xe x =xe x ①要证x 1x 2>e 2ex 1+x 2,只需证x 1e x 1 ⋅x 2e x 2 >e 2,即证ln x 1e x 1 +ln x 2e x 2>2,令t 1=x 1e x 1,t 2=x 2e x 2,所以只需证ln t 1+ln t 2>2,由①得a ln t 1=t 1,a ln t 2=t 2,所以a ln t 2-ln t 1 =t 2-t 1,a ln t 2+ln t 1 =t 2+t 1,消去a 得ln t 2+ln t 1=t 2+t 1t 2-t 1ln t 2-ln t 1 =t 2t 1+1ln t2t 1t 2t 1-1,只需证t 2t 1+1ln t2t 1t 2t 1-1>2,设0<t 1<t 2,令t =t 2t 1,则t >1,则t +1 ln tt -1>2,即证ln t +4t +1-2>0构建h t =ln t +4t +1-2>0则h t =1t -4t +12=t -1 2t t +1 2>0,所以h t 在1,+∞ 上单调递增,则h t >h 1 =0,即当t >1时,ln t +4t +1-2>0成立,所以ln t 1+ln t 2>2,即x 1e x 1⋅x 2e x 2>e 2,即x 1x 2>e 2ex 1+x 2,所以e2-x 1-x 2-x 1x 2<0,证毕.11已知函数h x =x -a ln x a ∈R .(1)若h x 有两个零点,a 的取值范围;(2)若方程xe x-a ln x +x =0有两个实根x 1、x 2,且x 1≠x 2,证明:e x 1+x 2>e 2x 1x 2.【解析】(1)函数h x 的定义域为0,+∞ .。
高考数学中的函数极值问题详解

高考数学中的函数极值问题详解函数极值是高考数学考试中必考的一个知识点,也是数学经典中的基础概念之一。
对于几乎所有的数学应用问题,都可以抽象出一个函数模型,因此函数极值的研究具有很高的实用性和理论意义。
本文将详细解析高考数学中的函数极值问题,包括一元函数和多元函数两种情况。
一、一元函数1. 什么是函数极值在一元函数的定义域内,若存在一点x0,使得它的函数值f(x0)不小于(或不大于)其它点的函数值,那么称f(x0)为函数的一个极大值(或极小值),x0称为极值点。
如下图所示,函数f(x)在x=a处达到极大值,x=b处达到极小值。
(图片来源于B站UP主@水良之家)2. 极值的判定方法(1)导数法对于一元函数f(x),其导数f'(x)能够反映函数的增减性和变化趋势,因此使用导数来判断函数的极值是一种比较常见的方法。
具体来说,求出函数的导数,并令导数为0,求解其值即可得到原函数的极值点。
若导数为0的点是可导的,则它一定是极值点。
若导数为0的点不可导,则需要用单侧极限来进行讨论。
下面是一个例题:已知函数f(x)=x³-3x在区间[-2,2]上的驻点和极值点,试求f(x)的极值。
解:首先求导,得到f'(x)=3x²-3,令其为0,则得到x=±1又由于f(x)在-2,1,2处是可导的,因此极值点分别为x=-1,x=1。
在x=-2处不是极值点,它是函数f(x)的最小值点。
(2)二阶导数法在一元函数的定义域内,若f'(x0)=0且f''(x0)>0,说明在x0处函数的单调性发生了变化,由单调减变为单调增,因此x0就是函数的一个极小值点。
反之若f'(x0)=0且f''(x0)<0,则x0为函数的一个极大值点。
在使用这种方法时需要注意,函数的二阶导数f''(x)在某些情况下可能不存在,此时不能使用该方法来判定函数的极值。
2010年安徽省高考数学试卷(理科)答案与解析

2010年安徽省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2010•安徽)i是虚数单位,=()A.﹣i B.i C.D.【考点】复数代数形式的乘除运算.【分析】通常分子与分母同时乘以分母的共轭复数,然后利用复数的代数运算,结合i2=﹣1得结论.【解答】解:===+,故选B.【点评】本题考查复数的分式形式的化简问题,主要是乘除运算,是基础题.2.(5分)(2010•安徽)若集合A={x|x≥},则∁R A=()A.(﹣∞,0]∪(,+∞)B.(,+∞)C.(﹣∞,0]∪[,+∞)D.[,+∞)【考点】补集及其运算;对数函数的单调性与特殊点.【专题】计算题.【分析】欲求A的补集,必须先求集合A,利用对数的单调性求集合A,然后得结论,【解答】解:∵x≥,∴x≥,∴0<x,∴∁R A=(﹣∞,0]∪(,+∞).故选A.【点评】本题主要考查补集及其运算,这里要注意对数中真数的范围,否则容易出错.3.(5分)(2010•安徽)设向量,则下列结论中正确的是() A.B.C.与垂直D.【考点】向量的模;数量积判断两个平面向量的垂直关系.【专题】计算题.【分析】本题考查的知识点是向量的模,及用数量积判断两个平面向量的垂直关系,由,我们易求出向量的模,结合平面向量的数量坐标运算,对四个答案逐一进行判断,即可得到答案.【解答】解:∵,∴=1,=,故不正确,即A错误∵•=≠,故B错误;∵﹣=(,﹣),∴(﹣)•=0,∴与垂直,故C正确;∵,易得不成立,故D错误.故选C【点评】判断两个向量的关系(平行或垂直)或是已知两个向量的关系求未知参数的值,要熟练掌握向量平行(共线)及垂直的坐标运算法则,即“两个向量若平行,交叉相乘差为0,两个向量若垂直,对应相乘和为0".4.(5分)(2010•安徽)若f(x)是R上周期为5的奇函数,且满足f(1)=1,f(2)=2,则f (3)﹣f(4)=()A.1 B.2 C.﹣2 D.﹣1【考点】函数奇偶性的性质;函数的周期性.【专题】计算题.【分析】利用函数奇偶性以及周期性,将3或4的函数值问题转化为1或2的函数值问题求解即可.【解答】解:∵若f(x)是R上周期为5的奇函数∴f(﹣x)=﹣f(x),f(x+5)=f(x),∴f(3)=f(﹣2)=﹣f(2)=﹣2,f(4)=f(﹣1)=﹣f(1)=﹣1,∴f(3)﹣f(4)=﹣2﹣(﹣1)=﹣1.故选D.【点评】本题考查函数奇偶性的应用,奇(偶)函数的定义:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(﹣x)=﹣f(x))(或f(﹣x)=f(x)),那么函数f(x)是奇(偶)函数.5.(5分)(2010•安徽)双曲线方程为x2﹣2y2=1,则它的右焦点坐标为()A.B.C.D.【考点】双曲线的简单性质.【专题】计算题.【分析】把双曲线方程化为标准方程可分别求得a和b,进而根据c=求得c,焦点坐标可得.【解答】解:双曲线的,,,∴右焦点为.故选C【点评】本题考查双曲线的焦点,把双曲线方程先转化为标准方程,然后利用c2=a2+b2求出c即可得出交点坐标.但因方程不是标准形式,很多学生会误认为b2=1或b2=2,从而得出错误结论.6.(5分)(2010•安徽)设abc>0,二次函数f(x)=ax2+bx+c的图象可能是()A.B.C.D.【考点】函数的图象.【专题】综合题;分类讨论.【分析】当a>0时,二次函数开口向上,判断C、D中c的符号,再确定b的符号,判断C、D的正误,当a<0时,同样的方法判断A、B的正误.【解答】解:当a>0时,因为abc>0,所以b、c同号,由(C)(D)两图中可知c<0,故b<0,∴,即函数对称轴在y轴右侧,C不正确,选项(D)符合题意.显然a<0时,开口向下,因为abc>0,所以b、c异号,对于A、由图象可知c<0,则b>0,对称轴,A不正确;对于B,c>0,对称轴,B选项不正确.故选D.【点评】根据二次函数图象开口向上或向下,分a>0或a<0两种情况分类考虑.另外还要注意c值是抛物线与y轴交点的纵坐标,还要注意对称轴的位置或定点坐标的位置等.是常考题.7.(5分)(2010•安徽)设曲线C的参数方程为(θ为参数),直线l的方程为x﹣3y+2=0,则曲线C上到直线l距离为的点的个数为()A.1 B.2 C.3 D.4【考点】圆的参数方程.【专题】计算题;压轴题.【分析】由题意将圆C和直线l先化为一般方程坐标,然后再计算曲线C上到直线l距离为的点的个数.【解答】解:化曲线C的参数方程为普通方程:(x﹣2)2+(y+1)2=9,圆心(2,﹣1)到直线x﹣3y+2=0的距离,直线和圆相交,过圆心和l平行的直线和圆的2个交点符合要求,又,在直线l的另外一侧没有圆上的点符合要求,故选B.【点评】解决这类问题首先把曲线C的参数方程为普通方程,然后利用圆心到直线的距离判断直线与圆的位置关系,这就是曲线C上到直线l距离为,然后再判断知,进而得出结论.8.(5分)(2010•安徽)一个几何体的三视图如图,该几何体的表面积是()A.372 B.360 C.292 D.280【考点】由三视图求面积、体积.【专题】计算题;压轴题.【分析】三视图很容易知道是两个长方体的组合体,得出各个棱的长度.即可求出组合体的表面积.【解答】解:该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和.S=2(10×8+10×2+8×2)+2(6×8+8×2)=360.故选B.【点评】把三视图转化为直观图是解决问题的关键.又三视图很容易知道是两个长方体的组合体,得出各个棱的长度.把几何体的表面积转化为下面长方体的全面积加上面长方体的4个侧面积之和.9.(5分)(2010•安徽)动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是,则当0≤t≤12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是()A.[0,1] B.[1,7]C.[7,12]D.[0,1]和[7,12]【考点】函数单调性的判断与证明.【专题】压轴题.【分析】由动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,可知与三角函数的定义类似,由12秒旋转一周能求每秒钟所转的弧度,画出单位圆,很容易看出,当t在[0,12]变化时,点A的纵坐标y关于t(单位:秒)的函数的单调性的变化,从而得单调递增区间.【解答】解:设动点A与x轴正方向夹角为α,则t=0时,每秒钟旋转,在t∈[0,1]上,在[7,12]上,动点A的纵坐标y关于t都是单调递增的.故选D.【点评】本题主要考查通过观察函数的图象确定函数单调性的问题.10.(5分)(2010•安徽)设{a n}是任意等比数列,它的前n项和,前2n项和与前3n项和分别为X,Y,Z,则下列等式中恒成立的是()A.X+Z=2Y B.Y(Y﹣X)=Z(Z﹣X) C.Y2=XZ D.Y(Y﹣X)=X(Z﹣X)【考点】等比数列.【专题】压轴题.【分析】取一个具体的等比数列验证即可.【解答】解:取等比数列1,2,4,令n=1得X=1,Y=3,Z=7代入验算,只有选项D满足.故选D【点评】对于含有较多字母的客观题,可以取满足条件的数字代替字母,代入验证,若能排除3个选项,剩下唯一正确的就一定正确;若不能完全排除,可以取其他数字验证继续排除.二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2010•安徽)命题“对任何x∈R,使得|x﹣2|+|x﹣4|>3”的否定是存在x∈R,使得|x﹣2|+|x﹣4|≤3.【考点】命题的否定.【专题】阅读型.【分析】全称命题的否定是特称命题,只须将全称量词“任何"改为存在量词“存在",并同时把“|x﹣2|+|x﹣4|>3"否定.【解答】解:全称命题的否定是特称命题,∴命题“对任何x∈R,使得|x﹣2|+|x﹣4|>3”的否定是:存在x∈R,使得|x﹣2|+|x﹣4|≤3.故填:存在x∈R,使得|x﹣2|+|x﹣4|≤3.【点评】本题主要考查了命题的否定,属于基础题之列.这类问题常见错误是,没有把全称量词改为存在量词,或者对于“>“的否定改成了”<“,而不是“≤”.12.(5分)(2010•安徽)(﹣)6展开式中,x3的系数等于15.【考点】二项式系数的性质.【专题】计算题.【分析】根据题意,易得其二项展开式,分析可得,当r=2时,有C62•()4•(﹣)2=15x3,即可得答案.【解答】解:根据题意,易得其二项展开式的通项为T r+1=C6r•()6﹣r•(﹣)r,当r=2时,有C62•()4•(﹣)2=15x3,则x3的系数等于15,故答案为15.【点评】本题考查二项式定理的应用,注意二项式的展开式的形式,特别要区分某一项的系数与二项式系数.13.(5分)(2010•安徽)设x,y满足约束条件,若目标函数z=abx+y(a>0,b>0)的最大值为8,则a+b的最小值为4.【考点】简单线性规划的应用.【专题】压轴题.【分析】本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件,画出满足约束条件的可行域,再根据目标函数z=abx+y(a>0,b>0)的最大值为8,求出a,b的关系式,再利用基本不等式求出a+b的最小值.【解答】解:满足约束条件的区域是一个四边形,如下图4个顶点是(0,0),(0,2),(,0),(1,4),由图易得目标函数在(1,4)取最大值8,即8=ab+4,∴ab=4,∴a+b≥2=4,在a=b=2时是等号成立,∴a+b的最小值为4.故答案为:4【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.14.(5分)(2010•安徽)如图所示,程序框图(算法流程图)的输出值x为12【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的x的值,当x=12时满足条件x>8,退出循环,输出x的值为12.【解答】解:模拟执行程序框图,可得x=1满足条件x是奇数,x=2不满足条件x是奇数,x=4,不满足条件x>8,x=5满足条件x是奇数,x=6,不满足条件x>8,x=7满足条件x是奇数,x=8,不满足条件x>8,x=9满足条件x是奇数,x=10,不满足条件x是奇数,x=12,满足条件x>8,退出循环,输出x的值为12.【点评】本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的x的值是解题的关键,属于基础题.15.(5分)(2010•安徽)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是②④(写出所有正确结论的编号).①;②;③事件B与事件A1相互独立;④A1,A2,A3是两两互斥的事件;⑤P(B)的值不能确定,因为它与A1,A2,A3中哪一个发生有关.【考点】互斥事件的概率加法公式.【专题】压轴题.【分析】本题是概率的综合问题,掌握基本概念,及条件概率的基本运算是解决问题的关键.本题在A1,A2,A3是两两互斥的事件,把事件B的概率进行转化P(B)=P(B|•A1)+P(B•A2)+P(B•A3),可知事件B的概率是确定的.【解答】解:易见A1,A2,A3是两两互斥的事件,.故答案为:②④【点评】概率的综合问题,需要对基本概念和基本运算能够熟练掌握.三、解答题(共6小题,满分75分)16.(12分)(2010•安徽)设△ABC是锐角三角形,a,b,c分别是内角A,B,C所对边长,并且.(Ⅰ)求角A的值;(Ⅱ)若,求b,c(其中b<c).【考点】余弦定理的应用;两角和与差的正弦函数.【专题】计算题.【分析】(1)先根据两角和与差的正弦公式展开得到角A的正弦值,再由角A的范围确定角A的值.(2)先根据向量数量积的运算和角A的值得到cb=24,再由a=2和余弦定理可求出b,c 的值.【解答】解:(1)因为sin2A=(()+sin2B==所以sinA=±.又A为锐角,所以A=(2)由可得,cbcosA=12 ①由(1)知A=,所以cb=24 ②由余弦定理知a2=b2+c2﹣2bccosA,将a=2及①代入可得c2+b2=52③③+②×2,得(c+b)2=100,所以c+b=10因此,c,b是一元二次方程t2﹣10t+24=0的两根解此方程并由c>b知c=6,b=4【点评】本题主要考查两角和与差的正弦公式和余弦定理的应用.属基础题.17.(12分)(2010•安徽)设a为实数,函数f(x)=e x﹣2x+2a,x∈R.(Ⅰ)求f(x)的单调区间与极值;(Ⅱ)求证:当a>ln2﹣1且x>0时,e x>x2﹣2ax+1.【考点】利用导数研究函数的极值;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【专题】导数的综合应用.【分析】(Ⅰ)由f(x)=e x﹣2x+2a,x∈R,知f′(x)=e x﹣2,x∈R.令f′(x)=0,得x=ln2.列表讨论能求出f(x)的单调区间区间及极值.(Ⅱ)设g(x)=e x﹣x2+2ax﹣1,x∈R,于是g′(x)=e x﹣2x+2a,x∈R.由(1)知当a>ln2﹣1时,g′(x)最小值为g′(ln2)=2(1﹣ln2+a)>0.于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.由此能够证明e x>x2﹣2ax+1.【解答】(Ⅰ)解:∵f(x)=e x﹣2x+2a,x∈R,∴f′(x)=e x﹣2,x∈R.令f′(x)=0,得x=ln2.于是当x变化时,f′(x),f(x)的变化情况如下表:x (﹣∞,ln2)ln2 (ln2,+∞)f′(x)﹣0 +f(x)单调递减2(1﹣ln2+a)单调递增故f(x)的单调递减区间是(﹣∞,ln2),单调递增区间是(ln2,+∞),f(x)在x=ln2处取得极小值,极小值为f(ln2)=e ln2﹣2ln2+2a=2(1﹣ln2+a),无极大值.(Ⅱ)证明:设g(x)=e x﹣x2+2ax﹣1,x∈R,于是g′(x)=e x﹣2x+2a,x∈R.由(1)知当a>ln2﹣1时,g′(x)最小值为g′(ln2)=2(1﹣ln2+a)>0.于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.于是当a>ln2﹣1时,对任意x∈(0,+∞),都有g(x)>g(0).而g(0)=0,从而对任意x∈(0,+∞),g(x)>0.即e x﹣x2+2ax﹣1>0,故当a>ln2﹣1且x>0时,e x>x2﹣2ax+1.【点评】本题考查函数的单调区间及极值的求法和不等式的证明,具体涉及到导数的性质、函数增减区间的判断、极值的计算和不等式性质的应用.解题时要认真审题,仔细解答.18.(12分)(2010•安徽)如图,在多面体ABCDEF中,四边形ABCD是正方形,EF∥AB,EF⊥FB,AB=2EF,∠BFC=90°,BF=FC,H为BC的中点.(1)求证:FH∥平面EDB;(2)求证:AC⊥平面EDB;(3)求二面角B﹣DE﹣C的大小.【考点】直线与平面平行的判定;直线与平面垂直的判定;与二面角有关的立体几何综合题.【专题】综合题.【分析】(1)设AC于BD交于点G,则G为AC的中点,连接EG,GH,又H为BC的中点,可得四边形EFHG为平行四边形,然后利用直线与平面平行判断定理进行证明;(2)因为四边形ABCD为正方形,有AB⊥BC,又EF∥AB,可得EF⊥BC,要证FH⊥平面ABCD,FH⊥平面ABCD,从而求解.(3)在平面CDEF内过点F作FK⊥DE交DE的延长线与k,可知∠FKB为二面角B﹣DE ﹣C的一个平面角,然后设EF=1,在直角三角形中进行求证.【解答】证明:(1)设AC于BD交于点G,则G为AC的中点,连接EG,GH,又H为BC 的中点,∴GH∥AB且GH=AB,又EF∥AB且EF=AB,∴EF∥GH且EF=GH,∴四边形EFHG为平行四边形∴EG∥FH,而EG⊂平面EDB,∴FH∥平面EDB.(2)由四边形ABCD为正方形,有AB⊥BC,又EF∥AB,∴EF⊥BC而EF⊥FB,∴EF⊥平面BFC,∴EF⊥FH,∴AB⊥FH,又BF=FC,H为BC的中点,∴FH⊥BC∴FH⊥平面ABCD,∴FH⊥BC,FH⊥AC,又FH∥EG,∴AC⊥EG又AC⊥BD,EG∩BD=G,∴AC⊥平面EDB,(3)EF⊥FB,∠BFC=90°,∴BF⊥平面CDEF,在平面CDEF内过点F作FK⊥DE交DE的延长线与k,则∠FKB为二面角B﹣DE﹣C的一个平面角,设EF=1,则AB=2,FC=,DE=,又EF∥DC,∴∠KEF=∠EDC,∴sin∠EDC=sin∠KEF=,∴FK=EFsin∠KEF=,tan∠FKB==,∴∠FKB=60°,∴二面角B﹣DE﹣C为60°.【点评】此题考查直线与平面平行的判断及平面与平面垂直的判断,此类问题一般先证明两个面平行,再证直线和面平行,这种做题思想要记住,此类立体几何题是每年高考必考的一道大题,同学们要课下要多练习.19.(13分)(2010•安徽)已知椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率.(1)求椭圆E的方程;(2)求∠F1AF2的平分线所在直线l的方程;(3)在椭圆E上是否存在关于直线l对称的相异两点?若存在,请找出;若不存在,说明理由.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【专题】综合题;圆锥曲线的定义、性质与方程.【分析】(1)设出椭圆方程,根据椭圆E经过点A(2,3),离心率,建立方程组,求得几何量,即可得到椭圆E的方程;(2)求得AF1方程、AF2方程,利用角平分线性质,即可求得∠F1AF2的平分线所在直线l 的方程;(3)假设存在B(x1,y1)C(x2,y2)两点关于直线l对称,设出直线BC方程代入,求得BC中点代入直线2x﹣y﹣1=0上,即可得到结论.【解答】解:(1)设椭圆方程为∵椭圆E经过点A(2,3),离心率∴,∴a2=16,b2=12∴椭圆方程E为:;(2)F1(﹣2,0),F2(2,0),∵A(2,3),∴AF1方程为:3x﹣4y+6=0,AF2方程为:x=2设角平分线上任意一点为P(x,y),则.得2x﹣y﹣1=0或x+2y﹣8=0∵斜率为正,∴直线方程为2x﹣y﹣1=0;(3)假设存在B(x1,y1)C(x2,y2)两点关于直线l对称,∴∴直线BC方程为代入得x2﹣mx+m2﹣12=0,∴BC中点为代入直线2x﹣y﹣1=0上,得m=4.∴BC中点为(2,3)与A重合,不成立,所以不存在满足题设条件的相异的两点.【点评】本题考查椭圆的标准方程,考查直线方程,考查对称性,考查学生分析解决问题的能力,属于中档题.20.(13分)(2010•安徽)设数列a1,a2,…,a n,…中的每一项都不为0.证明:{a n}为等差数列的充分必要条件是:对任何n∈N,都有++…+=.【考点】等差数列的性质;必要条件、充分条件与充要条件的判断;数学归纳法.【专题】证明题;压轴题.【分析】先证必要性;设数列a n的公差为d,若d=0,则所述等式显然成立.若d≠0,则==.再用数学归纲法证明充分性:对任何n∈N,都有++…+=,{a n}是公差为d的等差数列.【解答】证明:先证必要性设数列a n的公差为d,若d=0,则所述等式显然成立.若d≠0,则===.再证充分性:用数学归纳法证明:①设所述的等式对一切n∈N都成立,首先在等式①两端同时乘a1a2a3,即得a1+a3=2a2,所以a1,a2,a3成等差数列,记公差为d,则a2=a1+d.②假设a k=a1+(k﹣1)d,当n=k+1时,观察如下二等式=②,=,将②代入③得,在该式两端同时乘a1a k a k+1,得(k﹣1)a k+1+a1=ka k,把a k=a1+(k﹣1)d代入后,整理得a k+1=a1+kd.由数学归纳法原理知对任何n∈N,都有++…+=.所以,{a n}是公差为d的等差数列.【点评】本题考查等差数列、数学归纳法与充要条件等有关知识,考查推理论证、运算求解能力.21.(13分)(2010•安徽)品酒师需定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出n瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这n瓶酒,并重新按品质优劣为它们排序,这称为一轮测试.根据一轮测试中的两次排序的偏离程度的高低为其评分.现设n=4,分别以a1,a2,a3,a4表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令X=|1﹣a1|+|2﹣a2|+|3﹣a3|+|4﹣a4|,则X是对两次排序的偏离程度的一种描述.(Ⅰ)写出X的可能值集合;(Ⅱ)假设a1,a2,a3,a4等可能地为1,2,3,4的各种排列,求X的分布列;(Ⅲ)某品酒师在相继进行的三轮测试中,都有X≤2,①试按(Ⅱ)中的结果,计算出现这种现象的概率(假定各轮测试相互独立);②你认为该品酒师的酒味鉴别功能如何?说明理由.【考点】离散型随机变量及其分布列;分布列对于刻画随机现象的重要性.【专题】压轴题.【分析】(1)X的可能取值集合为{0、2、4、6、8},在1、2、3、4中奇数与偶数各有两个,a2,a4中的奇数个数等于a1,a3中的偶数个数,得到|1﹣a1|+|3﹣a3|与|2﹣a2|+|4﹣a4|的奇偶性相同,得到结论.(2)可以用列表或者树状图列出1、2、3、4的一共24种排列,计算每种排列下的X的值,算出概率,写出分布列.(3)做出三轮测试都有X≤2的概率,记做P,做出概率的值和已知量进行比较,得到结论, 【解答】解:(1)X的可能取值集合为{0、2、4、6、8}∵在1、2、3、4中奇数与偶数各有两个,∴a2,a4中的奇数个数等于a1,a3中的偶数个数,∴|1﹣a1|+|3﹣a3|与|2﹣a2|+|4﹣a4|的奇偶性相同,∴X=(|1﹣a1|+|3﹣a3|)+(|2﹣a2|+|4﹣a4|)必为偶数,X的值非负,且易知其值不大于8,∴X的可能取值集合为{0、2、4、6、8}(2)可以用列表或者树状图列出1、2、3、4的一共24种排列,计算每种排列下的X的值,在等可能的假定下,得到P(X=0)=P(X=2)=P(X=4)=P(X=6)=P(X=8)=(3)①首先P(X≤2)=P(X=0)+P(X=2)==将三轮测试都有X≤2的概率记做P,有上述结果和独立性假设得P==,②由于P=<是一个很小的概率,这表明仅凭随机猜测得到三轮测试都有X≤2的结果的可能性很小,∴我们认为该品酒师确实有良好的鉴别功能,不是靠随机猜测.【点评】本题主要考查分布列和期望的简单应用,求离散型随机变量的分布列和期望是近年来理科高考必出的一个问题,题目做起来不难,运算量也不大,只要注意解题格式就问题不大.。
2010年安徽省高考数学试卷(理科)及解析

2010年安徽省高考数学试卷(理科)及解析第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)是虚数单位,i =+ii 33(A )(B )(C )(D )12341-i 12341-i 6321+i 6321-(2)若集合,则}21log |{21≥=x x A =A C R (A )(B )⎪⎪⎭⎫⎝⎛+∞⋃-∞,22]0,(⎪⎪⎭⎫⎝⎛+∞,22(C )(D )⎪⎪⎭⎫⎢⎣⎡+∞⋃-∞,22]0,(⎪⎪⎭⎫⎢⎣⎡+∞,22(3)设向量,则下列结论中正确的是)21,21(),0,1(==b a (A )(B )(C )垂直(D )||||b a =22=⋅b a b b a 与-ba //(4)若是R 上周期为5的奇函数,且满足则=)(x f ,2)2(,1)1(==f f )4()3(f f -(A )-1(B )1(C )-2(D )2(5)双曲线方程为,则它的右焦点坐标为1222=-y x (A )(B )(C )(D ))0,22()0,25()0,26()0,3((6)设,二次函数的图象可能是0>abc c bx ax x f ++=2)((7)设曲线C 的参数方程为(为参数),直线的方程为⎩⎨+-=θsin 31y θl ,则曲线C 到直线的距离为的点的个数为023=+-y x l 10107(A )1(B )2(C )3(D )4(8)一个几何全体的三视图如图,该几何体的表面积为(A )280(B )292(C )360(D )372(9)动点在圆上绕坐标原点沿逆时针方向匀速旋转,),(y x A 122=+y x 12秒旋转一周.已知定时t=0时,点A 的坐标是,则当)23,21(时,动点A 的纵坐标y 关于t (单位:秒)的函数的单调递120≤≤t 增区间是(A )[0,1](B )[1,7](C )[7,12](D )[0,1]和[7,12]、(10)设是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,}{n a 则下列等式中恒成立的是(A )(B )Y Z X 2=+)()(X Z Z X Y Y -=-(C )(D )XZY=2)()(X Z X X Y Y -=-第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.(11)命题“对任何”的否定是.3|4||2|,>-+-∈x x R x (12)的展开式中,的系数等于 .6⎪⎪⎭⎫ ⎝⎛-x y y x 3x(13)设满足约束条件若目标函数的最大y x ,⎪⎩⎪⎨≥≥≤--,0,0,048y x y x )0,0(>>+=b a y abx z 值为8,则的最小值为 .b a +(14)如图所示,程序框图(算法流程图)的输出值.=x (15)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球,先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是 (写出所有正确结论的编号).①;52)(1=B P ②;115)|(1=A B P ③事件B 与事件A 1相互独立;④A 1,A 2,A 3是两两互斥的事件;⑤的值不能确定,因为它与A 1,A 2,A 3中究竟哪一个发生有关.)(B P 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤,解答写在答题卡上的指定区域内.(16)(本小题满分12分)设是锐角三角形,分别是内角A ,B ,C 所对边长,并且ABC ∆c b a ,,.sin )3sin()3sin(sin 22B B B A +-+=ππ(Ⅰ)求角A 的值;(Ⅱ)若(其中).12,AB AC a ⋅==c b ,c b <(17)(本小题满分12分)设a 为实数,函数.,22)(R x a x e x f x∈+-= (I )求的单调区间与极值;)(x f (II )求证:当时,012ln >->x a 且.122+->ax x e x(18)(本小题满分13分)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF//AB ,EF ⊥FB ,AB=2EF ,BF=FC ,H 为BC 的中点.,90︒=∠BFC (I )求证:FH//平面EDB ; (II )求证:AC ⊥平面EDB ;(III )求二面角B —DE —C 的大小.(19)(本小题满分13分)已知椭圆E 经过点A (2,3),对称轴为坐标轴,焦点F 1,F 2在x 轴上,离心率.21=e (I )求椭圆E 的方程;(II )求的角平分线所在直线的方程;21AF F ∠l (III )在椭圆E 上是否存在关于直线对称的相异两点?若存在,l 请找出;若不存在,说明理由.(20)(本小题满分12分)设数列中的每一项都不为0.,,,21 a a ,n a 证明,为等差数列的充分必要条件是:}{n a 对任何,都有N n ∈.1111113221++=+++n n n a a na aa a a a ABCDEFH(21)(本小题满分13分)品酒师需要定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出n 瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序,经过一段时间,等其记忆淡忘之后,再让其品尝这n 瓶酒,并重新按品质优劣为它们排序,这称为一轮测试.根据一轮测试中的两次排序的偏离程度的高低为其评分.现设n=4,分别以表示第一次排序时被排为1,2,3,4的四种酒在4321,,,a a a a 第二次排序时的序号,并令则X 是对两.|4||3||2||1|4321a a a a X -+-+-+-=次排序的偏离程度的一种描述. (I )写出X 的可能值集合;(II )假设等可能地为1,2,3,4的各种排列,求X 的分布列;4321,,,a a a a (III )某品酒师在相继进行的三轮测试中,都有,2≤X (i )试按(II )中的结果,计算出现这种现象的概率(假定各轮测试相互独立); (ii )你认为该品酒师的酒味鉴别功能如何?说明理由.2010年高考安徽卷理科数学参考答案一、选择题:本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
课件(人教A版数学理)第二章-第二节函数的单调性与最值全篇

【规范解答】(1)选D.解x<g(x)=x2-2得x2-x-2>0,
则x<-1或x>2.因此x≥g(x)=x2-2的解为:-1≤x≤2.
于是f(x)=
x2 x2, x2 x2,
x<1或x>2, 1x2,
当x<-1或x>2时,f(x)=(x1)2 7>2.
24
当-1≤x≤2时,f(x)= (x 1)2 9,
3.函数的最值
前提
设函数y=f(x)的定义域为I,如果存在M∈R
满足 条件
①对于任意的x∈I,都有 _f_(_x_)_≤__M_ ②存在x0∈I,使得f_(_x_0_)_=_M_
①对于任意的x∈I,都有 _f_(_x_)_≥__M_ ②存在x0∈I,使得_f_(_x_0)_=_M_
结论 M是f(x)的_最__大__值
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2024/10/202024/10/202024/10/202024/10/2010/20/2024
▪ 14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2024年10月20日星期日2024/10/202024/10/202024/10/20
(5)导数法:先求导,然后求出在给定区间上的极值,最后结合端点 值,求出最值. 【提醒】在求函数的值域或最值时,应先确定函数的定义域.
第二节 函数的单调性与最值
1.增函数、减函数
一般地,设函数f(x)的定义域为I,区间D⊆I,如果对于任意x1, x2∈D,且x1<x2,则有: (1)f(x)在区间D上是增函数⇔_f_(_x_1)_<_f_(_x_2_)_; (2)f(x)在区间D上是减函数⇔_f_(_x_1)_>_f_(_x_2_)_. 2.单调性、单调区间 若函数y=f(x)在区间D上是_增__函__数__或_减__函__数__,则称函数y=f(x) 在这一区间具有(严格的)单调性,_区__间__D_叫做y=f(x)的单调区间.
2010年重庆市高考数学试卷(理科)答案与解析
2010年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2010•重庆)在等比数列{a n}中,a2010=8a2007,则公比q的值为()A.2 B.3 C.4 D.8【考点】等比数列的性质.【专题】计算题.【分析】利用等比数列的通项公式,分别表示出a2010和a2007,两式相除即可求得q3,进而求得q.【解答】解:∴q=2故选A【点评】本题主要考查了等比数列的性质.属基础题.2.(5分)(2010•重庆)已知向量,满足•=0,||=1,||=2,则|2﹣|=()A.0 B. C.4 D.8【考点】向量的模.【专题】计算题.【分析】利用题中条件,把所求|2|平方再开方即可【解答】解:∵=0,||=1,||=2,∴|2|====2故选B.【点评】本题考查向量模的求法,考查计算能力,是基础题.3.(5分)(2010•重庆)=()A.﹣1 B.﹣C.D.1【考点】极限及其运算.【专题】计算题.【分析】先进行通分,然后消除零因子,可以把简化为,由此可得答案.【解答】解:===﹣,故选B.【点评】本题考查函数的极限,解题时要注意消除零因子.4.(5分)(2010•重庆)设变量x,y满足约束条件,则z=2x+y的最大值为()A.﹣2 B.4 C.6 D.8【考点】简单线性规划的应用.【专题】计算题.【分析】先根据约束条件画出可行域,利用几何意义求最值,只需求出直线z=2x+y过点B时,z最大值即可.【解答】解:不等式组表示的平面区域如图所示,设z=2x+y,∵直线z=2x+y过可行域内B(3,0)的时候z最大,最大值为6,故选C.【点评】本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.5.(5分)(2010•重庆)函数的图象()A.关于原点对称 B.关于直线y=x对称C.关于x轴对称 D.关于y轴对称【考点】奇偶函数图象的对称性.【专题】计算题.【分析】题设条件用意不明显,本题解题方法应从选项中突破,由于四个选项中有两个选项是与奇偶性有关的,故先验证奇偶性较好,【解答】解:,∴f(x)是偶函数,图象关于y轴对称故选D.【点评】考查函数的对称性,宜从奇偶性入手研究.6.(5分)(2010•重庆)已知函数y=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则()A.ω=1,φ= B.ω=1,φ=﹣C.ω=2,φ= D.ω=2,φ=﹣【考点】y=Asin(ωx+φ)中参数的物理意义;由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】计算题;综合题.【分析】通过图象求出函数的周期,再求出ω,由(,1)确定φ,推出选项.【解答】解:由图象可知:T==π,∴ω=2;(,1)在图象上,所以2×+φ=,φ=﹣.故选D.【点评】本题考查y=Asin(ωx+φ)中参数的物理意义,由y=Asin(ωx+φ)的部分图象确定其解析式,考查视图能力,逻辑推理能力.7.(5分)(2010•重庆)已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是()A.3 B.4 C.D.【考点】基本不等式.【专题】计算题.【分析】首先分析题目由已知x>0,y>0,x+2y+2xy=8,求x+2y的最小值,猜想到基本不等式的用法,利用代入已知条件,化简为函数求最值.【解答】解:考察基本不等式,整理得(x+2y)2+4(x+2y)﹣32≥0即(x+2y﹣4)(x+2y+8)≥0,又x+2y>0,所以x+2y≥4故选B.【点评】此题主要考查基本不等式的用法,对于不等式在求最大值最小值的问题中应用非常广泛,需要同学们多加注意.8.(5分)(2010•重庆)直线y=与圆心为D的圆(θ∈[0,2π))交与A、B两点,则直线AD与BD的倾斜角之和为()A. B. C. D.【考点】圆的参数方程;直线的倾斜角;直线和圆的方程的应用.【专题】计算题.【分析】根据题目条件画出圆的图象与直线的图象,再利用圆的性质建立两个倾斜角的等量关系,化简整理即可求出.【解答】解:数形结合,∠1=α﹣30°,∠2=30°+π﹣β,由圆的性质可知∠1=∠2,∴α﹣30°=30°+π﹣β,故α+β=,故选C.【点评】本题主要考查了圆的参数方程,以及直线的倾斜角和直线和圆的方程的应用,属于基础题.9.(5分)(2010•重庆)某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有()A.504种B.960种C.1008种D.1108种【考点】排列及排列数公式;排列、组合的实际应用.【专题】压轴题.【分析】本题的要求比较多,有三个限制条件,甲、乙排在相邻两天可以把甲和乙看做一个元素,注意两者之间有一个排列,丙不排在10月1日,丁不排在10月7日,则可以甲乙排1、2号或6、7号,或是甲乙排中间,丙排7号或不排7号,根据分类原理得到结果.【解答】解:分两类:第一类:甲乙相邻排1、2号或6、7号,这时先排甲和乙,有2×种,然后排丁,有种,剩下其他四个人全排列有种,因此共有2×A22A41A44=384种方法第二类:甲乙相邻排中间,若丙排7号,先排甲和乙,因为相邻且在中间,则有4×种,然后丙在7号,剩下四个人全排列有种,若丙不排7号,先排甲和乙,因为相邻且在中间,则有4×种,然后排丙,丙不再1号和7号,有种,接着排丁,丁不排在10月7日,有种,剩下3个人全排列,有种,因此共有(4A22A44+4A22A31A31A33)=624种方法,故共有1008种不同的排法故选C.【点评】本题主要考查分类计数原理,分类要做到“不重不漏”.分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.本题限制条件比较多,容易出错,解题时要注意.10.(5分)(2010•重庆)到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是()A.直线 B.椭圆 C.抛物线D.双曲线【考点】抛物线的定义;双曲线的标准方程.【专题】计算题;压轴题;分类讨论.【分析】先做出两条异面直线的公垂线,以其中一条直线为x轴,公垂线与x轴交点为原点,公垂线所在直线为z轴,过x且垂直于公垂线的平面为xoy平面,建立空间直角坐标系,则两条异面直线的方程可得,设空间内任意点设它的坐标是(x,y,z)根据它到两条异面直线的距离相等,求得z的表达式,把z=0和z=a代入即可求得x和y的关系,根据其方程判断轨迹.【解答】解:先做出两条异面直线的公垂线,以其中一条直线为x轴,公垂线与x轴交点为原点,公垂线所在直线为z轴,过x且垂直于公垂线的平面为xoy平面,建立空间直角坐标系,则两条异面直线的方程就分别是y=0,z=0 和x=0,z=a(a是两异面直线公垂线长度,是个常数)空间内任意点设它的坐标是(x,y,z)那么由已知,它到两条异面直线的距离相等,即=两边平方,化简可得z=(y2﹣x2+a2)过一条直线且平行于另一条直线的平面是z=0和z=a分别代入所得式子z=0时代入可以得到y2﹣x2=﹣a2,图形是个双曲线z=a时代入可以得到y2﹣x2=a2,图形也是个双曲线故选D【点评】本题主要考查了双曲线的方程.考查了学生分析归纳和推理的能力.二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2010•重庆)已知复数z=1+i,则= ﹣2i .【考点】复数代数形式的乘除运算.【专题】计算题.【分析】把复数z=1+I代入要求的式子,应用复数相除的法则化简得到结果.【解答】解:=,故答案为﹣2i.【点评】本题考查复数代数形式的运算法则.12.(5分)(2010•重庆)设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m= ﹣3 .【考点】补集及其运算.【专题】计算题.【分析】由题意分析,得到A={0,3},后由根与系数直接间的关系求出m的值【解答】解;∵U={0,1,2,3}、∁U A={1,2},∴A={0,3},∴0、3是方程x2+mx=0的两个根,∴0+3=﹣m,∴m=﹣3,故答案为:﹣3.【点评】本题考查集合的运算即补集的运算及根与系数之间的关系,关键是由题意得出集合A.13.(5分)(2010•重庆)某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为,则该队员每次罚球的命中率为.【考点】互斥事件的概率加法公式.【分析】在两次罚球中至多命中一次的对立事件是两次都命中,设出命中的概率P,由对立事件的概率公式列出方程,求出命中一次的概率.【解答】解:设罚球的命中的概率为P,由两次罚球中至多命中一次的概率为,得∴,故答案为:.【点评】对立事件公式的应用经常在概率计算中出现,从正面做包含的事件较多,可以从反面来解决,注意区分互斥事件和对立事件之间的关系.14.(5分)(2010•重庆)已知以F为焦点的抛物线y2=4x上的两点A、B满足=3,则弦AB的中点到准线的距离为.【考点】抛物线的简单性质;点到直线的距离公式;抛物线的定义.【专题】计算题;压轴题.【分析】设BF=m,由抛物线的定义知AA1和BB1,进而可推断出AC和AB,及直线AB的斜率,则直线AB 的方程可得,与抛物线方程联立消去y,进而跟韦达定理求得x1+x2的值,则根据抛物线的定义求得弦AB的中点到准线的距离.【解答】解:设BF=m,由抛物线的定义知AA1=3m,BB1=m∴△ABC中,AC=2m,AB=4m,直线AB方程为与抛物线方程联立消y得3x2﹣10x+3=0所以AB中点到准线距离为故答案为【点评】本题主要考查了抛物线的简单性质.考查了直线与抛物线的关系及焦点弦的问题.常需要利用抛物线的定义来解决.15.(5分)(2010•重庆)已知函数f(x)满足:,4f(x)f(y)=f(x+y)+f(x﹣y)(x,y∈R),则f(2010)= .【考点】抽象函数及其应用;函数的周期性.【专题】计算题;压轴题.【分析】由于题目问的是f(2010),项数较大,故马上判断函数势必是周期函数,所以集中精力找周期即可;周期的寻找方法可以是不完全归纳推理出,也可以是演绎推理得出.【解答】解:取x=1,y=0得法一:根据已知知取x=1,y=1得f(2)=﹣取x=2,y=1得f(3)=﹣取x=2,y=2得f(4)=﹣取x=3,y=2得f(5)=取x=3,y=3得f(6)=猜想得周期为6法二:取x=1,y=0得取x=n,y=1,有f(n)=f(n+1)+f(n﹣1),同理f(n+1)=f(n+2)+f(n)联立得f(n+2)=﹣f(n﹣1)所以f(n)=﹣f(n+3)=f(n+6)所以函数是周期函数,周期T=6,故f(2010)=f(0)=故答案为:.【点评】准确找出周期是此类问题(项数很大)的关键,分别可以用归纳法和演绎法得出周期,解题时根据自己熟悉的方法得出即可.三、解答题(共6小题,满分75分)16.(13分)(2010•重庆)设函数f(x)=cos(x+π)+2cos2,x∈R.(1)求f(x)的值域;(2)记△ABC内角A、B、C的对边长分别为a,b,c,若f(B)=1,b=1,c=,求a的值.【考点】正弦函数的定义域和值域;正弦定理;余弦定理.【专题】计算题.【分析】(I)将f(x)=cos(x+π)+2化简,变形后可以用三角函数的有界性求值域.(II)由f(B)=1 求出∠B,利用余弦定理建立关于a的方程求出a.【解答】解:(I)f(x)=cos(x+π)+2=cosxcosπ﹣sinxsinπ+cosx+1=﹣cosx﹣sinx+cosx+1=cosx﹣sinx+1=sin(x+)+1因此函数f(x)的值域为[0,2](II)由f(B)=1 得sin(B+)+1=1,即sin(B+)=0,即B+=0或π,B=或﹣又B是三角形的内角,所以B=由余弦定理得b2=a2+c2﹣2accosB即1=a2+3﹣3a,整理a2﹣3a+2=0解得a=1或a=2答:(I)函数f(x)的值域为[0,2](II)a=1或a=2【点评】考查利用三角函数的有界性求值域与利用余弦定理解三角形,属基本题型,用来训练答题者熟练三角恒等变形公式与余弦定理.17.(13分)(2010•重庆)在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起.若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,…,6),求:(Ⅰ)甲、乙两单位的演出序号均为偶数的概率;(Ⅱ)甲、乙两单位的演出序号不相邻的概率.【考点】等可能事件的概率;排列、组合及简单计数问题.【专题】计算题.【分析】(1)考虑甲和乙两个单位的排列,甲、乙两个单位可能排列在6个位置中的任两个,有A62=30种等可能的结果,满足条件的事件是甲和乙的演出序号都是偶数,根据等可能事件的概率公式得到结果.(2)考虑甲和乙两个单位的排列,甲、乙两个单位可能排列在6个位置中的任两个,有A62=30种等可能的结果,甲和乙两个单位的演出序号不相邻,的对立事件是甲和乙两个单位的演出序号相邻,根据对立事件的概率公式得到结果.【解答】解:(1)考虑甲和乙两个单位的排列,甲、乙两个单位可能排列在6个位置中的任两个,有A62=30种等可能的结果,设A表示甲和乙的演出序号都是偶数,共有A32=6种结果,∴所求的概率P(A)==(2)考虑甲和乙两个单位的排列,甲、乙两个单位可能排列在6个位置中的任两个,有A62=30种等可能的结果,设B表示甲和乙两个单位的演出序号不相邻,则表示甲和乙两个单位的演出序号相邻,共有5A22=10种结果∴P(B)=1﹣P()=1﹣=.【点评】本题主要考查古典概型和对立事件,正难则反是解题时要时刻注意的,我们尽量用简单的方法来解题,这样可以避免一些繁琐的运算,使得题目看起来更加容易.18.(13分)(2010•重庆)已知函数,其中实数a≠1.(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.【考点】利用导数研究函数的单调性;导数的几何意义.【分析】首先求出函数的导数及在点f(0)处的值,然后求出在该点的切线方程,第二问根据函数的导数与极值的关系求出a的值,然后根据函数的导数与单调性的关系讨论函数的单调性.【解答】解:(1)=,当a=2时,f′(0)=,而f(0)=﹣,所以曲线在点(0,f(0))处的切线方程为:y﹣(﹣)=(x﹣0),即7x﹣4y﹣2=0.(2)因为a≠1,由(1)可知=;又因为f(x)在x=1处取得极值,所以,解得a=﹣3;此时,定义域(﹣1,3)∪(3,+∞);=,由f′(x)=0得x1=1,x2=7,当﹣1<x<1或x>7时f′(x)>0;当1<x<7且x≠3时f′(x)<0;由上讨论可知f(x)在(﹣1,1],[7,+∞)时是增函数,在[1,3),(3,7]上是减函数.【点评】掌握函数的导数与极值和单调性的关系.19.(12分)(2010•重庆)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB=,点E是棱PB的中点.(1)求直线AD与平面PBC的距离;(2)若AD=,求二面角A﹣EC﹣D的平面角的余弦值.【考点】点、线、面间的距离计算;与二面角有关的立体几何综合题.【专题】计算题;综合题;空间角.【分析】(1)先根据AD∥BC,推断出AD∥平面PBC,进而可知直线AD与平面PBC的距离为点A到平面PBC 的距离,根据PA⊥底面ABCD,判断出PA⊥AB,知△PAB为等腰直角三角形,又点E是棱PB的中点,进而可知AE⊥PB,又在矩形ABCD中,BC⊥AB,而AB是PB的底面ABCD内的射影,由三垂线定理得BC⊥PB,从而BC⊥平面PAB,故BC⊥AE,从而AE⊥平面PBC,进而可推断出AE之长即为直线AD与平面PBC的距离.Rt△PAB中,根据PA和AB求得AE.(2)过点D作DF⊥CE,过点F做FG⊥CE,交AC于G,则∠DFG为所求的二面角的平面角.由(1)知BC⊥平面PAB,又AD∥BC,得AD⊥平面PAB,故AD⊥AE,从而求得DE在Rt△CBE中,利用勾股定理求得CE,进而可知CE=CD推断出△CDE为等边三角形,求得DF,因为AE⊥平面PBC,故AE⊥CE,又FG⊥CE,知FG 平行且等于AE的一半,从而求得FG,且G点为AC的中点,连接DG,则在Rt△ADC中,求得DG,最后利用余弦定理求得答案.【解答】解:(1)在矩形ABCD中,AD∥BC,从而AD∥平面PBC,故直线AD与平面PBC的距离为点A到平面PBC的距离,因PA⊥底面ABCD,故PA⊥AB,知△PAB为等腰直角三角形,又点E是棱PB的中点,故AE⊥PB,又在矩形ABCD中,BC⊥AB,而AB是PB的底面ABCD内的射影,由三垂线定理得BC⊥PB,从而BC⊥平面PAB,故BC⊥AE,从而AE⊥平面PBC,故AE之长即为直线AD与平面PBC的距离,在Rt△PAB中,PA=AB=,所以AE=PB==(2)过点D作DF⊥CE于F,过点F做FG⊥CE,交AC于G,则∠DFG为所求的二面角的平面角.由(1)知BC⊥平面PAB,又AD∥BC,得AD⊥平面PAB,故AD⊥AE,从而DE==在Rt△CBE中,CE==,由CD=,所以△CDE为等边三角形,故F为CE的中点,且DF=CD•s in=因为AE⊥平面PBC,故AE⊥CE,又FG⊥CE,知FG∥AE.且FG=AE,从而FG=,且G点为AC的中点,连接DG,则在Rt△ADC中,DG==,所以cos∠DFG==【点评】本题主要考查了点,线,面的距离计算.在求两面角问题时关键是找到两个面的平面角.20.(12分)(2010•重庆)已知以原点O为中心,为右焦点的双曲线C的离心率.(1)求双曲线C的标准方程及其渐近线方程;(2)如图,已知过点M(x1,y1)的直线l1:x1x+4y1y=4与过点N(x2,y2)(其中x2≠x1)的直线l2:x2x+4y2y=4的交点E在双曲线C上,直线MN与两条渐近线分别交与G、H两点,求△OGH的面积.【考点】直线与圆锥曲线的综合问题;双曲线的标准方程;双曲线的简单性质.【专题】计算题;压轴题.【分析】(1)设C的标准方程为(a>0,b>0),由题意知a=2,b=1,由此可求出C的标准方程和渐近线方程.(2)由题意知,点E(x E,y E)在直线l1:x1x+4y1y=4和l2:x2x+4y2y=4上,因此直线MN的方程为x E x+4y E y=4.设G,H分别是直线MN与渐近线x﹣2y=0及x+2y=0的交点,则,设MN 与x轴的交战为Q,则,由此可求△OGH的面积.【解答】解:(1)设C的标准方程为(a>0,b>0),则由题意知,,∴a=2,b=1,∴C的标准方程为.∴C的渐近线方程为,即x﹣2y=0和x+2y=0.(2)由题意知,点E(x E,y E)在直线l1:x1x+4y1y=4和l2:x2x+4y2y=4上,因此有x E x+4y E y=4上,因此直线MN的方程为x E x+4y E y=4.设G,H分别是直线MN与渐近线x﹣2y=0及x+2y=0的交点,由方程组及,解得,设MN与x轴的交点为Q,则在直线x E x+4y E y=4k,令y=0得,∵x E2﹣4y E2=4,∴==.【点评】本题考查圆锥曲线的性质和应用,难度较大,解题时要认真审题,注意挖掘隐含条件,仔细解答.21.(12分)(2010•重庆)在数列{a n}中,a1=1,a n+1=ca n+c n+1(2n+1)(n∈N*),其中实数c≠0.(1)求{a n}的通项公式;(2)若对一切k∈N*有a2k>a zk﹣1,求c的取值范围.【考点】数列递推式;数学归纳法.【专题】计算题;压轴题;探究型;归纳法.【分析】(1)根据a1,a2和a3猜测a n=(n2﹣1)c n+c n﹣1,进而用数学归纳法证明.(2)把(1)中求得的a n代入a2k>a zk﹣1,整理得(4k2﹣1)c2﹣(4k2﹣4k﹣1)c﹣1>0,分别表示c k和又c k',根据c k<<1求得c≥1,再根据c k'<0,判断出单调递增知c k'≥c1'求得<﹣,最后综合答案可得.【解答】解:(1)由a1=1,a2=ca1+c23=(22﹣1)c2+ca3=ca2+c3•5=(32﹣1)c3+c2,猜测a n=(n2﹣1)c n+c n﹣1,下面用数学归纳法证明,当n=1是,等式成立假设当n=k,等式成立即a k=(k2﹣1)c k+c k﹣1,则当n=k+1时a k+1=ca k+c k+1(2k+1)=(k2+2k)c k+1+c k=[(k+1)2﹣1]c k+1+c k,综上a n=(n2﹣1)c n+c n﹣1,对任意n∈N都成立.(2)由a2k>a zk﹣1得[(2k)2﹣1]c2k+c2k﹣1>[(2k﹣1)2﹣1]c2k﹣1+c2k﹣2,因c2k﹣2>0,所以(4k2﹣1)c2﹣(4k2﹣4k﹣1)c﹣1>0解此不等式得c>c k,或c<c k',其中c k=c k'=易知c k=1又由<=4k2+1,知c k<<1因此由c>c k对一切k∈N成立得c≥1又c k'=<0,可知单调递增,故c k'≥c1'对一切k∈N*成立,因此由c<c k'对一切k∈N*成立得c<﹣从而c的取值范围是(﹣∞,﹣)∪[1,+∞]【点评】本题主要考查了数列的递推式.考查了学生综合运用所学知识和实际的运算能力.。
高考数学 热点题型和提分秘籍 专题05 函数的单调性与最值 理(含解析)新人教A版-新人教A版高三全
2016年高考数学 热点题型和提分秘籍 专题05 函数的单调性与最值理(含解析)新人教A 版【高频考点解读】1.理解函数的单调性、最大值、最小值及其几何意义.2.会运用函数的图象理解和研究函数的性质. 【热点题型】题型一 函数单调性的判断例1、(1)下列函数f (x )中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)[f (x 1)-f (x 2)]<0”的是( )A .f (x )=2xB .f (x )=|x -1|C .f (x )=1x-x D .f (x )=ln(x +1)(2)函数y =x +2x +1在(-1,+∞)上是________(填“增函数”或“减函数”). 【答案】 (1)C(2)减函数 【解析】【提分秘籍】(1)图象法作图象→看升降→归纳单调性区间(2)转化法(3)导数法求导→判断f′x正、负→单调性区间(4)定义法取值→作差→变形→定号→单调性区间求函数的单调区间,一定要注意定义域优先原则.【举一反三】下列函数中,在区间(0,+∞)上为增函数的是( ) A.y=x+1B.y=(x-1)2C.y=2-x D.y=log0.5(x+1)【答案】A【解析】题型二求函数的单调区间例2、求下列函数的单调区间:(1)y=-x2+2|x|+1;(2)y=log1(x2-3x+2).2解析(1)由于y=⎩⎪⎨⎪⎧-x 2+2x +1x ≥0,-x 2-2x +1x <0,即y =⎩⎪⎨⎪⎧-x -12+2x ≥0,-x +12+2x <0.画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).【提分秘籍】(1)求函数的单调区间与确定单调性的方法一致.常用的方法有:①利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间. ②定义法:先求定义域,再利用单调性定义确定单调区间.③图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的直观性写出它的单调区间.④导数法:利用导数取值的正负确定函数的单调区间.(2)若函数f (x )的定义域上(或某一区间上)是增函数,则f (x 1)<f (x 2)⇔x 1<x 2.利用上式,可以去掉抽象函数的符号,将函数不等式(或方程)的求解化为一般不等式(或方程)的求解,但无论如何都必须在定义域内或给定的X 围内进行.【举一反三】求下列函数的单调区间,并指出其增减性. (1)y =(a >0且a ≠1);(2)y =log 12(4x -x 2).题型三函数单调性的应用例3、已知函数f (x )满足f (x )=f (π-x ),且当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,f (x )=e x+sin x ,则( )A .f (1)<f (2)<f (3)B .f (2)<f (3)<f (1)C .f (3)<f (2)<f (1)D .f (3)<f (1)<f (2) 【答案】D【解析】由f (x )=f (π-x ),得函数f (x )的图象关于直线x =π2对称,又当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,f ′(x )=e x +cos x >0恒成立,所以f (x )在⎝ ⎛⎭⎪⎫-π2,π2上为增函数,f (2)=f (π-2),f (3)=f (π-3),且0<π-3<1<π-2<π2,所以f (π-3)<f (1)<f (π-2),即f (3)<f (1)<f (2).【提分秘籍】1.高考对函数单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题中的某一问中.2.高考对函数单调性的考查主要有以下几个命题角度: (1)利用函数的单调性比较大小.(2)利用函数的单调性解决与抽象函数有关的不等式问题. (3)利用函数的单调性求参数.(4)利用函数的单调性求解最值(或恒成立)问题.【方法规律】(1)含“f ”号不等式的解法首先根据函数的性质把不等式转化为f (g (x ))>f (h (x ))的形式,然后根据函数的单调性去掉“f ”号,转化为具体的不等式(组),此时要注意g (x )与h (x )的取值应在外层函数的定义域内.(2)分段函数单调性解法为了保证函数在整个定义域内是单调的,除了要分别保证各段表达式在对应区间上的单调性一致外,还要注意两段连接点的衔接.【举一反三】已知函数f (x )的定义域是(0,+∞),且满足f (xy )=f (x )+f (y ),f ⎝ ⎛⎭⎪⎫12=1,如果对于0<x <y ,都有f (x )>f (y ).(1)求f (1)的值;(2)解不等式f (-x )+f (3-x )≥-2.则⎩⎪⎨⎪⎧x <0,-x 2·3-x 2≤1,解得-1≤x <0.∴不等式的解集为{x |-1≤x <0}. 【变式探究】已知f (x )=⎩⎪⎨⎪⎧3-a x -a x <1log a x x ≥1是(-∞,+∞)上的增函数,则a 的取值X 围是( ) A .(1,+∞) B .(1,3) C.⎣⎢⎡⎭⎪⎫32,3D.⎝ ⎛⎭⎪⎫1,32【答案】⎣⎢⎡⎭⎪⎫32,3 【解析】【高考风向标】【2015高考某某,理6】已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则( )A .sgn[()]sgn g x x =B .sgn[()]sgn g x x =-C .sgn[()]sgn[()]g x f x =D .sgn[()]sgn[()]g x f x =- 【答案】B【解析】因为()f x 是R 上的增函数,令x x f =)(,所以x a x g )1()(-=,因为1>a ,所以)(x g 是R 上的减函数,由符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩知,1,0sgn[()]0,0sgn 1,0x g x x x x ->⎧⎪===-⎨⎪<⎩.【2015高考某某,理15】设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是.(写出所有正确条件的编号)①3,3a b =-=-;②3,2a b =-=;③3,2a b =->;④0,2a b ==;⑤1,2a b ==. 【答案】①③④⑤ 【解析】(2014·卷)下列函数中,在区间(0,+∞)上为增函数的是( )A .y =x +1B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1) 【答案】A【解析】由基本初等函数的性质得,选项B 中的函数在(0,1)上递减,选项C ,D 中的函数在(0,+∞)上为减函数,所以排除B ,C ,D ,选A.(2014·某某卷)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞) 【答案】D【解析】由函数f (x )的解析式知,f (1)=2,f (-1)=cos(-1)=cos 1,f (1)≠f (-1),则f (x )不是偶函数;当x >0时,令f (x )=x 2+1,则f (x )在区间(0,+∞)上是增函数,且函数值f (x )>1; 当x ≤0时,f (x )=cos x ,则f (x )在区间(-∞,0]上不是单调函数,且函数值f (x )∈[-1,1];∴函数f (x )不是单调函数,也不是周期函数,其值域为[-1,+∞).(2014·某某卷)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝ ⎛⎭⎪⎫32=________.【答案】1【解析】由题意可知,f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫2-12=f ⎝ ⎛⎭⎪⎫-12=-4⎝ ⎛⎭⎪⎫-122+2=1. (2014·某某卷)以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R,∃a ∈D ,f (a )=b ”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B;④若函数f(x)=a ln(x+2)+xx2+1(x>-2,a∈R)有最大值,则f(x)∈B.其中的真命题有________.(写出所有真命题的序号)【答案】①③④【解析】(2014·某某卷)已知函数f(x)=e x-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值X围.【解析】(2)设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知,f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1. 同理g (x )在区间(x 0,1)内存在零点x 2. 故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )],x 2∈(ln(2a ),1),必有g (0)=1-b >0,g (1)=e -2a -b >0.由f (1)=0得a +b =e -1<2, 则g (0)=a -e +2>0,g (1)=1-a >0, 解得e -2<a <1.当e -2<a <1时,g (x )在区间[0,1]内有最小值g (ln(2a )). 若g (ln(2a ))≥0,则g (x )≥0(x ∈[0,1]),从而f (x )在区间[0,1]内单调递增,这与f (0)=f (1)=0矛盾,所以g (ln(2a ))<0. 又g (0)=a -e +2>0,g (1)=1-a >0.故此时g (x )在(0,ln(2a ))和(ln(2a ),1)内各只有一个零点x 1和x 2.由此可知f (x )在[0,x 1]上单调递增,在(x 1,x 2)上单调递减,在[x 2,1]上单调递增. 所以f (x 1)>f (0)=0,f (x 2)<f (1)=0, 故f (x )在(x 1,x 2)内有零点.综上可知,a 的取值X 围是(e -2,1).(2013·某某卷)已知函数f(x)=⎩⎪⎨⎪⎧x 2+2x +a ,x<0,lnx ,x>0,其中a 是实数.设A(x 1,f(x 1)),B(x 2,f(x 2))为该函数图像上的两点,且x 1<x 2. (1)指出函数f(x)的单调区间;(2)若函数f(x)的图像在点A ,B 处的切线互相垂直,且x 2<0,求x 2-x 1的最小值; (3)若函数f(x)的图像在点A ,B 处的切线重合,求a 的取值X 围. 【解析】所以,函数f(x)的图像在点A,B处的切线互相垂直时,x2-x1的最小值为1.(2013·某某卷)设函数f(x)=e x+x-a(a∈R,e为自然对数的底数).若曲线y=sinx上存在(x0,y0)使得f(f(y0))=y0,则a的取值X围是( )A.[1,e] B.[e-1-1,1]C.[1,e+1] D.[e-1-1,e+1]【答案】A【解析】因为y0=sin x0∈[-1,1],且f(x)在[-1,1]上(有意义时)是增函数,对于y 0∈[-1,1],如果f(y 0)=c >y 0,则f(f(y 0))=f(c)>f(y 0)=c >y 0,不可能有f(f(y 0))=y 0.同理,当f(y 0)=d <y 0时,则f(f(y 0))=f(d)<f(y 0)=d <y 0,也不可能有f(f(y 0))=y 0,因此必有f(y 0)=y 0,即方程f(x)=x 在[-1,1]上有解,即e x+x -a =x 在[-1,1]上有解.显然,当x <0时,方程无解,即需要e x+x -a =x 在[0,1]上有解.当x≥0时,两边平方得e x+x -a =x 2,故a =e x-x 2+x.记g(x)=e x-x 2+x ,则g′(x)=e x-2x +1.当x∈⎣⎢⎡⎦⎥⎤0,12时,e x>0,-2x +1≥0,故g′(x)>0,当x∈⎝ ⎛⎦⎥⎤12,1时,e x>e >1,0>-2x +1≥-1,故g′(x)>0.综上,g′(x)在x∈[0,1]上恒大于0,所以g(x)在[0,1]上为增函数,值域为[1,e],从而a 的取值X 围是[1,e].(2013·某某卷)函数y =x33x -1的图像大致是( )【答案】C【解析】函数的定义域是{x∈R|x≠0},排除选项A ;当x<0时,x 3<0,3x-1<0,故y>0,排除选项B ;当x→+∞时,y>0且y→0,故为选项C 中的图像.(2013·新课标全国卷Ⅱ] 已知函数f(x)=x 3+ax 2+bx +c ,下列结论中错误的是( ) A .x 0∈R,f(x 0)=0B .函数y =f(x)的图像是中心对称图形C .若x 0是f(x)的极小值点,则f(x)在区间(-∞,x 0)单调递减D .若x 0是f(x)的极值点,则f′(x 0)=0 【答案】C【解析】【高考押题】1.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A. k >12 B. k <12C. k >-12D. k <-12【答案】D【解析】使y =(2k +1)x +b 在(-∞,+∞)上是减函数,则2k +1<0,即k <-12.2.下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( ) A. y =x 3B. y =|x |+1C. y =-x 2+1 D. y =2-|x |【答案】B 【解析】3.已知奇函数f (x )对任意的正实数x 1,x 2(x 1≠x 2),恒有(x 1-x 2)(f (x 1)-f (x 2))>0,则一定正确的是( )A. f (4)>f (-6)B. f (-4)<f (-6)C. f (-4)>f (-6)D. f (4)<f (-6) 【答案】C【解析】由(x 1-x 2)(f (x 1)-f (x 2))>0知f (x )在(0,+∞)上递增,∴f (4)<f (6)⇔f (-4)>f (-6).4. 函数y =(12)2x 2-3x +1的递减区间为( )A. (1,+∞)B. (-∞,34)C. (12,+∞)D. [34,+∞)【答案】D【解析】设t =2x 2-3x +1,其递增区间为[34,+∞),∴复合函数递减区间为[34,+∞),选D 项.5. 函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是( ) A. (-∞,0)∪(12,2] B. (-∞,2]C. (-∞,12)∪[2,+∞) D. (0,+∞)【答案】A【解析】∵x ∈(-∞,1)∪[2,5),y =2x -1在(-∞,1)上为减函数,在[2,5)上也为减函数,则x -1∈(-∞,0)∪[1,4). ∴2x -1∈(-∞,0)∪(12,2]. 6. 设函数g (x )=x 2-2(x ∈R),f (x )=⎩⎪⎨⎪⎧gx +x +4,x <g x ,g x -x ,x ≥g x .则f (x )的值域是( )A. [-94,0]∪(1,+∞)B. [0,+∞)C. [-94,+∞)D. [-94,0]∪(2,+∞)【答案】D 【解析】7. 函数f (x )=x 2-2x -3的单调增区间为________. 【答案】[3,+∞)【解析】定义域x 2-2x -3≥0,∴x ≤-1或x ≥3,函数的递增区间为[3,+∞). 8. 函数y =xx +a在(-2,+∞)上为增函数,则a 的取值X 围是________.【答案】a ≥2 【解析】y =xx +a=1-ax +a,依题意,得函数的单调增区间为(-∞,-a )、(-a ,+∞),要使函数在(-2,+∞)上为增函数,只要-2≥-a ,即a ≥2.9.设函数f (x )的图象关于y 轴对称,又已知f (x )在(0,+∞)上为减函数,且f (1)=0,则不等式f -x +f xx<0的解集为________.【答案】(-1,0)∪(1,+∞) 【解析】10.已知函数f (x )是定义在(0,+∞)上的减函数,且满足f (xy )=f (x )+f (y ),f (13)=1.(1)求f (1);(2)若f (x )+f (2-x )<2,求x 的取值X 围.解:(1)令x =y =1,则f (1)=f (1)+f (1),∴f (1)=0. (2)∵2=1+1=f (13)+f (13)=f (19),∴原不等式等价于f [x (2-x )]<f (19),由f (x )为(0,+∞)上的减函数,得⎩⎪⎨⎪⎧x >0,2-x >0,x 2-x >19,⇒⎩⎪⎨⎪⎧x >0,2-x >0,1-223<x <1+223,⇒1-223<x <1+223,即x 的取值X 围为(1-223,1+223).11. 已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值X 围.12.已知函数g (x )=x +1,h (x )=1x +3,x ∈(-3,a ],其中a 为常数且a >0,令函数f (x )=g (x )·h (x ).(1)求函数f (x )的表达式,并求其定义域; (2)当a =14时,求函数f (x )的值域.解:(1)f (x )=x +1x +3,x ∈[0,a ],(a >0). (2)函数f (x )的定义域为[0,14],令x +1=t ,则x =(t -1)2,t ∈[1,32],f (x )=F (t )=tt 2-2t +4=1t +4t-2, ∵t =4t 时,t =±2∉[1,32],又t ∈[1,32]时,t +4t 单调递减,F (t )单调递增,F (t )∈[13,613]. 即函数f (x )的值域为[13,613].。
新教材高中数学5-3-2函数的极值与最大小值第一课时函数的极值课件新人教A版选择性必修第二册
无极值 .
当 a>0 时,令 f′(x)=0,得 ex=a,即 x=ln a,
当 x∈(-∞,ln a)时,f′(x) <0; 当 x∈(ln a,+∞)时,f′(x) >0, 所以 f(x)在(-∞,ln a)上 单调递减 ,在(ln a,+∞)上 单调递增 , 故 f(x)在 x=ln a 处取得极小值且极小值为 f(ln a)=ln a ,无极大值. 综上, 当 a≤0 时,函数 f(x)无极值 ; 当___a_>__0_时__,__f_(_x_)在___x_=__l_n_a__处__取__得__极__小__值__l_n_a_,__无__极__大__值__.
∴f(x)在R上为增函数,无极值,故舍去. 当a=2,b=9时, f′(x)=3x2+12x+9=3(x+1)(x+3). 当x∈(-∞,-3)时,f(x)为增函数; 当x∈(-3,-1)时,f(x)为减函数; 当x∈(-1,+∞)时,f(x)为增函数. ∴f(x)在x=-1时取得极小值,∴a=2,b=9.
2.已知函数极值求参数时的注意点 (1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法 求解. (2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数 法求解后必须验证充分性.
[对点练清] 1.[已知极值求参数范围]若函数f(x)=x3+x2-ax-4在区间(-1,1)上恰有一个
[对点练清] [多选]已知函数 y=xf′(x)的图象如图所示,则下列说法正确的是 A.函数 f(x)在区间(1,+∞)上是增函数 B.函数 f(x)在区间(-1,1)上无单调性 C.函数 f(x)在 x=-12处取得极大值 D.函数 f(x)在 x=1 处取得极小值
5.3.2 函数的极值与最大(小)值 【新人教A版数学】选择性必修第二册
2.求函数y=f(x)极值的方法 一般地,可按如下方法求函数y=f(x)的极值: 解方程f'(x)=0,当f'(x0)=0时: (1)如果在x0附近的左侧f'(x)>0,右侧f'(x)<0,那么f(x0)是⑦ 极大值 ; (2)如果在x0附近的左侧f'(x)<0,右侧f'(x)>0,那么f(x0)是⑧ 极小值 .
3.函数的极大值是否一定大于函数的极小值? 提示:一个函数的极大值未必大于极小值,如图所示,x1是极大值点,x4是极小值点, 但f(x1)<f(x4),因此函数的极大值与极小值之间无确定的大小关系.
1.求可导函数f(x)的极值的步骤 (1)确定函数的定义域; (2)求函数的导数f'(x); (3)由f'(x)=0,求出全部的根; (4)列表:方程的根将整个定义域划分成若干个区间(如果根中含有参数,则需根据 参数的范围分类划分区间),把x, f'(x), f(x)在每个区间内的变化情况列在一个表格 内; (5)判断得结论:若导数在根x0附近左正右负,则函数在x0处取得极大值;若左负右 正,则取得极小值.
1|利用导数解决函数的极值问题
情境 “横看成岭侧成峰,远近高低各不同,”说的是庐山的高低起伏,错落有致. 在群山之中,各个山峰的顶端,虽然不一定是群山的最高处,但它却是其附近的最 高点.那么,在数学上,这种现象如何来刻画呢?
问题 1.函数的极大(小)值是不是函数在定义域中的最大(小)值呢? 提示:极值是一个局部概念,由定义知极值只是某个点的函数值与它附近点的函 数值比较是大或小,并不意味着它在函数的整个定义域内最大或最小. 2.函数的极大(小)值是不是唯一的? 提示:函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小 值可以不止一个.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图1
等 为轴左右对称. 所以当 z=
V c=
可 =
.
要 时, 取到 Y 最大值
口
() 2 平抛运动过程
2
=V , =告 , eh t
联 立以上各式解 得
=
YE
・
13 定和 求积 原理 .
24( 一 H L—h) h. 时
,
在 高中代数不等式部分 有这 样一个 结论 :
1 1 配 方 法 .
要 求运动 员从 高为 H的平 台上A点 由静止 出发 , 沿着动摩擦
因数 为 的 滑 道 向 下 运 动 到 B 点后 水 平 滑 出,最 后 落 在 水 池
Y= x( )=一X a— 。+仳
2
= 一
中. 滑道 的水 平距 离为 L。 设 B 点 的高度h可 由运动 员 自由调 节 ( g= 1 s) 求: 取 0m/2 . () 1 运动 员到达 B点的速度
量 , 0≤ ≤ 口 由方程可 以看 出 , 且 . Y将随着 的变化而 变 化 : ”从 0增大到 1时,口一 将从 。减小到 0 则 “ ” 当“ 2 “ ” , z
当 =号 时,取 最大 = Y 到 值 一 鲁.
运用 以上三种数学方法得出了一个共同的结论 : 对 函数 Y=z( 一X ( > 0 0 2 1 )1 2 , ≤ ≤ 口 , X =a 2 )当 [
1my ;
止 开始摆 动 , 此时绳与竖直方 向夹角 a=5 ’绳的悬挂点 O 3。
距 水面的高度为 H =3n. 1不考虑空 气阻力和 绳的质 量 , 浮
台露出水 面的 高度 不计 , 水足 够深 . 重力加 速 度 g = 1 取 0
中学物理
Vo.9 12 No 1 .7
21年 9 01 月
・
物理 与数 学 ・
关 于 函 数 Y= ( 一 ) 值 问 题 极
的 深 度 剖 析 与 2 0 高 考 链 接 01
黄君 明 徐 立海
( 玉环 楚 门中学 浙江 玉环 3 7o ) 1 ̄5
每年 的高考都 很重视对学 生运 用数学知 识解 决物理 问
2
查 了同一个极 值问题 : Y=z a ) 函数 ( — 的极值 问题 . 下面 ,
本文就对这一 问题 展开分析 .
1 深 度 剖 析
对于具 体的物理问题 , 方程 Y= ( ) n— 中的每个量都 有一定的物理含义 , 一个 常量 , 口> 0 Y与 X都是 变 口是 且 ,
[ 一 +( + 号)] 厶Fra bibliotek 2
= 一
( 一厶 z 号)+- r ,
—.
.
2
图 2
所以 =号 时,取到 大 j =鲁. 当 Y 最 值, 一
12 图象法 .
与 高度 h 的 关 系;
() 2 运动 员要达到 最大水平运动距 离, 点的 高度 h应 B
V 12 N 1 o.9 o 7
.
中学 物理
例 2 (0 0年江 苏物理 卷 ) 21 在 游 乐节 日中, 选手 需要 借 助 悬挂 在 高处 的 绳飞越 到 水 面的 浮 台上 , 小
明和 小 阳观看 后对 此 进行 了讨论 . 如 图3所示 . 他们将选手 简化 为质 量 m =6 g 0k 的质点 , 选手抓住 绳由静
2
时,取 最 值 一 =鲁. Y 到 大
2 高考链接 例 1 (0 0年浙江理综卷) 2i 在一次 国际城市运动会 中,
与“ ”的乘 积 Y的变化应是先增 大后减小 , 以在其 变 1 2一 所 化 过程中存在着一个最 大值 . 么 , X取多大时 , 那 当 Y取到 最 大值呢? 面就分 别运 用配方 法 、 下 图象 法 和“ 和求 积原 理” 定 三种数学方法 , 这一极值 问题进行深度 剖析 . 对
题 的能力 的考查 , 这一 点在 2 1 全国各省 市高考 中尤 为 0 0年 突出 , 试题 涉及到 了数学 中的一 次线性 函数 、 一元 二次方程 、
“
上述结论也可写成 以下形 式 : 若 , R。, Y∈ 则 ≤ ( 生 ) ( 当且仅 当 = Y时取
=
三角函数 、 圆周 的几何 知识 、 数列与数学归 纳法 、 函数 的极 值 问题等等 . 中 , 值 得注 意的一点 是 , 其 很 在今年 高考 中 , 江 浙 理综第 2 题 、 2 江苏 物理第 1 题 和重 庆理综第 2 题都 分另 考 4 4 Ⅱ
调 为多大? 应的最大水平距 离 s 为多少? 对 ~ 解析 ( ) A 运动到B过程 1由
画出方程 y= x( 一 ) 2 1 的函数 图象 , 图 1 如 所示 . 由图可知 , 函数 该 图线是 一条开 口向下抛 物线 , 以直 线
X =
( h 一z ・ H— ) tg L=告 m 一, 0
D
( )若选手摆到 最低点 时松手 , 3 小明认为绳越长 。 浮台 在 上的落点距岸边越远 ; 小阳认为绳越 短 , 落点距岸边越远 。 请 通过推算说明你的观点 .
m /
l
飞
H I
解析 () 3 从静止开始摆到最低点 的过程 , 由机械能 守 恒定律得
图3
mg ( l 1一os ) oa
”. ) 继而 , 利用均值不等式可以导出“ 定和求 积原理 ” : 若 X, Y∈R。, x 令 y= sX+Y=口, 、 如果 n是定值 , 那
么 当且仅当 = 时 , 的值最大 . s
对于函数 Y z( )0 z≤ a , 口一 ( ≤ ) 由于两项之 和 x + ( — )= 口是定值 , 所以根据定和求积原理 即可得出 :
又 因为( 一 H
一h 十h= H 一 是定值 , )
有最大值 ,
若 , ∈ R , 笠 ≥ ’则
“
( 当且仅 当 z = Y时取
所 以当 h : 旦
=
” , 等式称为均值不 等式 . )该不
s 一
= L + H 一 L.
・
31 ・
21年 9 01 月