Casimir effect in a two dimensional signature changing spacetime

合集下载

Calculation of the Casimir Force between Similar and Dissimilar Metal Plates at Finite Temp

Calculation of the Casimir Force between Similar and Dissimilar Metal Plates at Finite Temp
Abstract The Casimir pressure is calculated between parallel metal plates, containing the materials Au, Cu, or Al. Our motivation for making this calculation is the need of comparing theoretical predictions, based on the Lifshitz formula, with experiments that are becoming gradually more accurate. In particular, the finite temperature correction is considered, in view of the recent discussion in the literature on this point. A special attention is given to the case where the difference between the Casimir pressures at two different temperatures, T = 300 K and T = 350 K, is involved. This seems to be a case that will be experimentally attainable in the near future, and it will be a critical test of the temperature correction.
2
temperature T is finite. Of main interest will be the temperature correction, in view of the conflicting opinions in the literature on this point. We will follow the same calculational strategy as in our earlier recent papers on these issues [10, 11, 12].

卡西米尔效应

卡西米尔效应
卡西米尔效应
物理现象
01 概论
03 计算 05 理论特点
目录
02 真空能量 04 原理 06 研究进展
卡西米尔效应(英语:Casimir effect)是由荷兰物理学家亨德里克·卡西米尔(Hendrik Casimir)于 1948年提出的一种现象,此效应随后被侦测到,并以卡西米尔为名以纪念他。其根据量子场论的“真空不空”观 念——即使没有物质存在的真空仍有能量涨落,而提出此效应:真空中两片中性(不带电)的金属板会出现吸力; 这在经典理论中是不会出现的现象。这种效应只有在两物体的距离非常之小时才可以被检测到。例如,在亚微米 尺度上,该效应导致的吸引力成为中性导体之间主要作用力。事实上在10纳米间隙上(大概是一个原子尺度的 100倍),卡西米尔效应能产生1个大气压的压力(101.3千帕)。一对中性原子之间的范德瓦耳斯力是一种类似 的效应。
概论
卡西米尔效应在理解上,可以看为金属导体或介电材料的存在改变了真空二次量子化后电磁场能量的期望值。 这个值与导体和介电材料的形状及位置相关,因此卡西米尔效应表现就成了与这些属性相关的力。
真空能量
卡西米尔效应是量子场论的自然结果;量子场论陈述了所有各式各样的基本场—例如电磁场—必须在空间中 每个点且处处被量子化。采单纯的观点来说,物理场可以想作是充满空间的振动球,之间以弹簧相连接。场的强 度可以看作是球偏离其平衡位置的位移。场的振动可以传播,并由对应于此特殊场的适当波方程所主导。量子场 论的二次量子化程序要求球与弹簧的组合是呈现量子化的,也就是说场强度在空间中每一点被量子化。正则式地 (Canonically)来说,空间中每点的场是个谐振子,量子化则成了每点有个量子谐振子。场的激发则对应到粒 子物理学中的基本粒子。然而,这样的图像会显示出:即使是真空也有极其复杂的结构。所有量子场论的计算都 须与这样的真空模型有所关联。

动力学压缩真空中的Casimir力

动力学压缩真空中的Casimir力
[+] 。设两块平行的理想导体被静止地放置于 数因子
(M)
沿 x 轴方向的真空中, 板间距离为 L * ; 为了在导体 板间产生压缩真空, 这里我们采用参数共振运动法, 即令其中一个板固定于原点, 而另一个板则进行所 谓的特殊参数共振运动
[M]

其D>QoW v = CDNH θ, θ, 幺正性条件:
)***?11?)A * 收稿日期: 作者简介: 景辉 (1X+3 Y ) , 男, 河南鲁山县人, 现在南开大学数学所理论室攻读博士, 主要从事量子物理研究。
第 18 卷第 3 期
景辉: 动力学压缩真空中的 Casimir 力
263
(6) | u |2 - | v |2 = 1 + 容易验证, 这里的新算符 bn , b n 也满足 Boson 对易关 系, 称为 “准光子算符” 。 注意, 温度参数 θ 由这样的 物理要求确定: 静态情形下只有热光子分布, 因此热 场真空中的光子数实际上就是 Boson-Einstein 分布: ~ | b + b | 0, ~〉 Nn =〈0, 0 0 n n
+ *) ( bα cm = Σ n nm + b n βnm n * (b+ (11) =Σ α* nm + bβ n nm ) n n 这称为动力学 Bogoliubov 变换。 新的准光子算符 cm
π 1 + 2 n )∞ nd n ε C = - ( 0 2n L2 0 e π - 1 0 (1 / 2 (18) = - π 2 coth θT ) 24 L 0 其中为消除零点发散而又避免复杂的重整化程序,

c+ m
[7] 知的结果 :

生活大爆炸学习笔记(下)

生活大爆炸学习笔记(下)

A4纸原大小打印24张,方便使用~~~TBBT笔记(B版)111 薄烤饼面糊异常1.普通级词汇checkmate:将军contagious:adj. 传染性的germaphobe:有洁癖的人lysol:煤酚皂液swab:v.擦净pathogen:n. 病原体typhoid:n. 伤寒comatose:adj. 昏睡的sinus:n.鼻窦exponentially:adv. 成倍地,幂地,指数地sputum:n. 唾液,痰cuisine:n. 烹饪blitzkrieg:n.闪电战enema:n.灌肠whiny:adj.牢骚不断的congested:adj. 拥挤的mucous:adj. 黏液的,似黏液的2.爆炸级词汇candy land:经典棋盘游戏“糖果乐园”,孩之宝(Hasbro)出品petri dishes:n. 皮氏培养皿Betty Crocker:贝蒂妙厨ionized plasma:离子化电浆centrifuge:n. 离心分离机delirium:n.说胡话,神志失常,精神错乱containment vessel:安全壳Vaporub:维克斯伤风膏(vicks vaporub)3.爆炸级食品lime jello:酸橙果冻apricot yogurt:杏仁酸奶Howard's beloved breakfast:chocolate milk and eggossoup for sick Sheldon:split pea with little frankfurter slices and these homemade croutonssoups in Cheesecake Factory:chicken鸡汤, tortilla玉米汤, potato leek罗宋汤grilled cheese:烤奶酪4.精选语录Sheldon: Checkmate!Leonard: Oh, again?Sheldon: Obviously, you're not well suited for three-dimensional chess. Perhaps three-dimensional candy land would be more your speed.Leonard: Just reset the board.Sheldon: It must be humbling to suck on so many levels.Sheldon的level双关Leonard: Sheldon, relax. She doesn't have any symptoms. I'm sure she's not contagious.Sheldon: Oh, please. If infulenza was only contagious after symptoms appear, it would have died out thousands of years ago. Somewhere between tool using and cave painting, homo habilou wisld have figured out how to kill the guy with the runny nose.Sheldon描述为什么流感没有在原始社会被消灭5.地道表达ungodly hour:不能容忍的时间lay low:打倒,击败shout Sb. down:以喊叫声压倒对方keep ture=go straight6.本集八卦Sheldon…IQ:187Sheldon15岁在Heidelberg Institute做visiting professor这一集第一次出现Soft Kitty,歌词见TBBT221学习笔记传送门/group/topic/6265541/BBT笔记(B版)112 耶路撒冷对偶性1.普通级词汇teleportation:n. 传送术disintergrate:v. (使)粉碎,分解sought-after:adj. 很吃香的;广受欢迎的smuggle:v. 偷运,走私asterisk:n. 星号(*) vt.加星号hunch:n. v.预感apparatus:n. 装置,器具chubby:adj. 圆胖的2.爆炸级词汇quantum loop:圈量子,Loop quantum gravity圈量子重力理论Nautilus:诺德士,美国健身器械公司Lorentz invariant:洛伦兹不变量field theory approach:场论方法Wolfgang Amadeus Mozart:莫扎特全名Antonio Salieri:萨列里,意大利作曲家,野史称他因嫉妒毒死莫扎特cyborg:n. 半机械人,即cybernetic organismpostpubescent:青春期后的wunderkind:n.【德语】神童argon laser:氩激光器helium-neon:氦氖雷射oompa-loompas:《查理与巧克力工厂》里的矮小雇工titanium:n. 钛carbon nanotubes:碳纳米管bubula:犹太语词汇,祖母称呼小孩用cold fusion:冷核聚变taco stands:临街卖墨西哥玉米卷的小摊Jat:贾特人,印度北部由穆斯林、印度教和锡克教徒组成的农民阶层3.爆炸级食品Dingdong:a chocolate cake, round with a flat top and bottom, similar in shape toa hockey puck好像很好吃~~Howard之选4.精选语录Raj: How about that one?Howard: Oh, interesting, kind of pretty, a little chubby, so probably lowself-esteem.Leonard: I think that's our girl. One of us should go talk to her.Raj: I can't talk to her, you do it.Leonard: I can't just go up and talk to her. Howard, you talk to her.Howard: I don't know, she'll never go for the kid once she gets a peek at this. Raj: You know, if we were in India, this would be simpler. Five minutes with her dad, 20 goats and a laptop, and we'd be done.Leonard: Well, we're not in India.Raj: All right, why don't we do it your way then? We'll arrange for this girl to move across the hall for Dennis so he can pathetically mourn for her for months on end. Leonard: Hey, that was uncalled for.Raj: You started it dude.阿三威武Howard: He's back.Leonard: Yeah, mission accomplished.Raj: Forget the mission, how do that little Jat get a girl in the zone?Howard: I guess times have changed since we were young. Smart is the new sexy. Leonard: Then why do we go home alone every night? We are still smart.Raj: Maybe we are too smart. So smart it's off-putting.Howard: Yeah, let's go with that.三个孔乙己5.地道表达a tale of woe:悲情故事I sense a disturbance in the Force出自星战A bad feeling I have about this同上,语出Yodado the trick:将困难工作做好; 达到预期目的build it and they will come:出自电影《梦幻成真》field of dreams,主人公在自己的玉米田里建造了一座棒球场吸引到偶像来打球put out a spread:大摆筵席the oracle told us "little Neo was the one":出自黑客帝国6.本集八卦Leonard说话的习惯end sentences with prepositionsSheldon14岁半时拿到Stevenson奖(没查到)Howie:Howard的小名Smart is the new sexy出自本集Howard之口TBBT笔记(B版)113 蝙蝠侠罐子猜想1.普通级词汇tawdry:adj. 廉价而俗丽的Go Fish:【扑克】抽王八emblazon:v. 饰以纹章vanilla:n. 香草Carthage:n. 迦太基Nintendo:任天堂glimpse:n. 闪光, 模糊的感觉dalmatian:斑点犬idiosyncrasy:n. 特质janitor:n. 守卫,门警,房屋管理员polymerize:v. 聚合tree sap:树汁inorganic:adj. 无机的trajectory:n. 轨道2.爆炸级词汇vulcans:瓦肯人;罗马神话中掌管锻冶的神barbershop quartet:理发店四重唱,40年代兴起的无伴奏合唱Knott's Berry Farm:纳氏草莓乐园,位于南加州,是美国最大的主题乐园Zod:超人的敌人,来自氪星Jacques Cousteau:库斯托,著名海洋学家,发明水中呼吸器,并拍摄制作了纪录片Jacques Cousteau的海底世界optics:n. 光学attosecond:n.阿秒,微微微秒,1秒=10^18阿秒quantum mechanical effect:量子机械效应/量子化效应/量子力学效应giant magneto resistance:巨磁阻frame dragging:时空结构拖曳效应,一个物体在旋转时会产生与不旋转时不同的重力场gravity probe B:重力探测器B,NASA于2004年发射的人造卫星,证明了爱因斯坦的时空结构拖曳效应和测地线效应Anodized Aluminum:阳极化铝dilepton:n. 双轻子supersymmetry:n. 超对称性mano y mano y mano a mano:mano是西班牙语的“手”,mano a mano就是徒手战斗,一对一,a是“to”的意思,y是“和”的意思,所以就是一加一加一(三个人)对一(Sheldon)misogynistic:n.【心理学】厌恶女人者isotope:n. 同位素Technetium:n.【化学】锝(元素符号Tc)Casimir Effect:卡西米尔效应是指在两个很靠近的平行导体板,会因两板间真空的电磁场扰动产生吸引力Shor's algorithm:量子分解算法,1995年由美国科学家Peter Shor提出,目前量子计算机的主要运算原理之一Prevost's theory of exchanges:普雷沃斯交换原理,当物体与其周围物体处于平衡,它以相同速率辐射和吸收辐射,因而它的温度保持不变PMS:一般指pre-menstrual syndrome经前综合症AA:一般指Alcoholics Anonymous匿名戒毒会/戒酒会3.爆炸级食品macaroon:蛋白杏仁饼干chutney:(印度的)酸辣调味品4.精选语录Sheldon: Count me out.Leonard: What? Why?Sheldon: You want me to use my intelligence in a tawdry competetion? Would you ask Picasso to play Pictionary? Would you ask Noah Webster to play Boggle? Would you ask Jacques Cousteau to play Go Fish?Sheldon总有很多经典的比喻Howard: Hey, I buzzed in.Sheldon: And I answered, it's called teamwork.Howard: Don't you think I should answer the engineering questions? I am an engineer.Sheldon: By that logic I should answer all the anthropology questions because I am a mammal.黄金法则:不要和Sheldon争论5.地道表达point of order:辩论中规则被破坏时提请主席解决以使辩论继续的说法heads up:提醒buzz in:从蜂鸣器传来klatch, klatsch:非正式聚会sack up:鼓起勇气来nice and loose放轻松come to play?准备好了吗got your game face on?准备好了吗6.本集八卦本集提及三部经典美剧Blossom一部1991年的美剧Wonder Years《纯真年代》1988年的美剧The Brady Bunch《脱线家族》1969年的情景喜剧Sheldon来自德克萨斯州东部Sheldon心目中最性感的男演员有William Shatner和Patrick StewartRaj不能和女人说话,但只要女人混在一堆人中间就没问题了TBBT笔记(B版)114 呆子天堂湮灭1.普通级词汇culinary:adj. 厨房的,烹调的payload:n. 有效负载colon:n. 结肠,直肠vertigo:n. 眩晕apocalyptic:a. 预示灾祸的,启示的subterranean:adj. 地下的Jacuzzi:n. 极可意浴缸speedo:n. 速率计,速度计;Speedo,知名泳具品牌cloaking:a. 隐身的ergo:adv. 因此demeanor:n. 行为(态度,举止),=demeanourNerdvana:应该是呆子天堂吧。

Casimir效应的两种解释

Casimir效应的两种解释

时 自由空 间 的 零 点 能 。
由 于 对 的 求 和 得 到 一 个 无 穷 大 的 值 ,所 以 上 式 得 到 的 C s r 量 是 发 散 的 。 而 , 实 际 的 物 理 情 况 下 , 体 平 板 对 ai 能 mi 然 在 导 高 频 的波 是 透 射 的 , 就 是 说 , 界 并 不 改 变 频 率 t t 的 模 式 , 也 边 OO > 这 些 模 式 对 C s i能 量 的 贡 献 为 零 。 ai r m 由此 , 们 可 以引 入 截 断 函 我
C s 效 应 的 两种 解 释 i ai r m
童 爱 红
( 北第二 师 范学 院 物 理与 电子 工程 系,武 汉 湖 4 00 ) 3 2 5
摘要 : 本文介绍 了 C s r ai 效应 两种解释 , mi 一种解释基于真 空电磁场涨 落和零 点能变化 , 另一种解释基 于辐射 压 , 并在 这两种 解释 的W -, f 用简单 的模型推导 出了 C s r - ai 力的经典表 达式。 mi



C s r 应 的 另 一 种 特 别 简 单 的 解 释 是 基 于 经 典 的 辐 射 ai 效 mi 压 [ .认 为 C s i力 是 作 用 在平 板 外 表 面 的 向里 的 辐 射 压 和 内 4 ] ai r m
表 面 向 外 的 辐 射 压 的 差 值 产 生 的 。 图 2所 示 , 如 考虑 两 半 无 限 大
C s i 力 起 源 于 真 空 零 点 能 的 涨 落 .它 是 量 子 电动 力 学 最 ai r m 著 名 的预 测 之 一 。 1 4 自 9 8年 C s i 提 出该 理 论 以 来 , 直 受 到 ai r m 一 物 理 界 的 高度 重 视 …[。 理 论 的进 一 步 研 究 对 量子 电 动 力 学 、 2该 ] 真

Casimir effect on the pull-in parameters of nanometer switches

Casimir effect on the pull-in parameters of nanometer switches

Casimir effect on the pull-in parameters of nanometer switches W.-H.Lin,Y.-P.ZhaoAbstract Casimir effect on the critical pull-in gap and pull-in voltage of nanoelectromechanical switches is studied.An approximate analytical expression of the critical pull-in gap with Casimir force is presented by the perturbation theory.The corresponding pull-in parame-ters are computed numerically,from which one can notice the nonlinear effect of Casimir force on the pull-in parameters.The detachment length has been presented, which increases with increasing thickness of the beam.1IntroductionThe nanoelectromechanical systems(NEMS),as an exten-sion of microelectromechanical systems(MEMS),have turned into the hot research topic in recent years.In MEMS and NEMS,with the geometric dimension decreasing,the surface forces[1–6],replacing the body forces,take over the dominant position,which become more important for the nano-scales.In this paper,we just consider Casimir force and electrostatic force.Casimir[7]predicted an attractive force between objects.Kenneth et al.[8]have extended these considerations to real-world materials.NEM switches are fundament building blocks for the design of NEMS applications.However,the pull-in phe-nomenon,an inherent instability of MEM and NEM switches,is one of annoying problems in design.By applying a voltage difference between the two electrodes, an electrostatic force is formed.At certain voltage the switches lost its stability and the gap between the switches rapidly decrease,until the two electrodes adhere.The voltage and deformation of the switches at this state are referred to as the pull-in voltage and the critical pull-in gap respectively,or shortly as the pull-in parameters of switches.Therefore,an analytical expression of the pull-in parameters could guide the design.An analytical expression of the pull-in parameters has been given about the MEMS switches in[9].A lumped two degrees of freedom(L2DOF)pull-in model was presented in[10].The pull-in parameters for electrostatic torsion actuators are the pull-in voltage and pull-in angle[11,12]. The pull-in phenomenon is widely applied in many micromachined devices that require bi-stability for their operation[13,14].In the above references[9–14],the Casimir and van der Waals effects are neglected.The significant effect of van der Waals force has been shown on the pull-in voltage of NEMS switches,but the effect on the critical pull-in gap has been omitted[15].The Casimir effect in MEMS was studied in[16]and measured in[17].In[18],a micromachined torsional device is used to determine the Casimir effect in MEMS. Casimir force has a profound influence on the oscillatory behavior of nanostructures[19].The maximum length that will not stick to the substrate, also called detachment length is basic design parameter [20,21].The objective of the present paper is to study the effect of Casimir force on the pull-in parameters.An approximate analytical expression of the critical pull-in gap is obtained by the perturbation theory and the detachment lengths and the minimum initial gap of the cantilever andfixed-fixed beams are given,which are basic design parameters.2TheoryTo simplify the analysis,the geometry shown in Fig.1is simplified to a one-dimensional(1D)lumped model as shown in Fig.2.In the1D lumped model,the NEMS switch is approximated by a rigid beam suspended over a ground plane using mechanical springs.Thus the only degree of freedom of the system is the gap,r,between the plate and the ground plane.The equilibrium condition of the plate by Casimir, electrostatic and elastostatic forces(F rðÞ¼F CþF elecþF elas¼0)yields(see appendix2for expressions of the surface forces)p2"h cwL240rþe0wLV22rÀK gÀrðÞ¼0:ð1ÞThe equilibrium is stable with o F rðÞ=o r<0.With voltage increasing,the gap decreases with instability condition is ing the critical condition o F rðÞ=o r¼0,we get Àp2"h cwL120rÀe0wLV22rþKr2¼0:ð2ÞMicrosystem Technologies11(2005)80–85ÓSpringer-Verlag2005DOI10.1007/s00542-004-0411-6Received:17March2003/Accepted:18November2003W.-H.Lin,Y.-P.Zhao(&)State Key Laboratory of Nonlinear Mechanics(LNM),Institute of Mechanics,Chinese Academy of Sciences,Beijing100080,Chinae-mail:yzhao@This work was supported by the Distinguished Young ScholarFund of NSFC(Grant No.10225209),key project from theChinese Academy of Sciences(Grant No.KJCX2-SW-L2)andNational‘973’Project(No.G1999033103).80Defining this solution by g PI and substituting it into Eqs.(1)and (2)and then adding the equations,we obtainÀp 2"h cwL 120g 4PIÀ2Kg þ3Kg PI ¼0:ð3ÞWe should solve the above nonlinear equation to get g PI .Using Eq.(1),the pull-in voltage V PI can be calculated byV PI ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiK g Àg PI ðÞÀp 2"h cwL 240g 4PI!2g 2PIe 0wL s ;ð4ÞIf we neglect the contribution of Casimir force in the aboveanalysis,the critical pull-in gap and the pull-in voltage can be solved by Eqs.(3)and (4)asg 0¼23gð5ÞandV 0¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi8Kg 3027e 0wLs ;ð6Þwhich are the same as the expressions derived in [9].If we just omit the effect of Casimir force on the critical pull-in gap,that is,we replace g PI in (4)by g 0.Then the pull-in voltage is given by V PI ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiK g Àg 0ðÞÀp 2"h cwL 240g 40!2g 20e 0wL s :ð7ÞWe now use the perturbation theory to discuss how much the effect of Casimir force on the critical pull-in gaparound g 0.By perturbation theory,we could add a per-turbation value d around g 0,that is,we use the approxi-mate critical valueg PI ¼g 0þd ð8Þto replace the accurate critical value.Substituting Eq.(8)into Eq.(3),and using the first-order approximation,i.e.,neglecting the higher-orderterms of d ,we get the linearized function about the per-turbation value d :K þ27p 2"h cwL 320g d ¼9p 2"h cwL640g :ð9ÞFig.1.Schematic of cantilever switch:a cantilever switch,and b fixed-fixedswitchFig.2.One-dimensional lumped models for pull-in parameters estimation.The deflection of the plate is given by u ,and r ¼g ÀuVariation of the critical pull-in gap with length for thegiven initial gap:a Cantilever switches.b Fixed-fixed switches 81Solving d from Eq.(9),we have the approximateanalytical expression of the critical pull-in gap as fol-lowingg PI ¼g 0þd :ð10Þ3Results and discussionSome numerical results are presented in this section.Arectangle beam is considered.Only the points with positive value for the square of the pull-in voltage are shown inFigs.4and 6.3.1Comparison of the critical pull-in gap and the pull-involtageWe now consider cantilever and fixed-fixed switches with varying length and gap with the given thickness,t ¼10nm,compared the critical pull-in parametersobtained in this paper with those results in [9].We first consider the variation of the critical pull-in gap and the pull-in voltage for the cantilever and fixed-fixed switches with length when the initial gap is 10nm.FromFig.3,the critical pull-in gap with Casimir force isidentical to that without Casimir force when the beam is shorter.At the same time,from Fig.4the pull-in voltages with Casimir force computed by (4)and (7)are also identical to that without Casimir force computed by (6).With the length increasing,the effect of Casimir force on both the critical pull-in gap and the pull-in voltagebecomes much clearer.However,the difference of the pull-in voltage computed by (4)and (7)is not clear.This im-plies that we can substitute (7)for (4)as the pull-in voltage with Casimir force for engineering designs.From Fig.4,the square of the pull-in voltage computed by (4)or (7)is not positive when the length is larger than a critical value,the detachment length,which will be determined later.Ifthe length is larger than the detachment length,the switch can collapse onto the ground plane even without an ap-pliedvoltage.Variation of the pull-in voltage with length for the giveninitial gap:a Cantilever switches.b Fixed-fixedswitchesVariation of the critical pull-in gap with gap for the givenlength:a Cantilever switches.b Fixed-fixed switches82Figures.5and 6show the variation of the critical pull-in gap and the pull-in voltage as a function of the initialgap for cantilever and fixed-fixed switches with the given length,L ¼100nm,respectively.From Figs.5and 6,the effect of Casimir on the pull-in parameters is still clear when the initial gap is less than some value,and the pull-in voltage computed by (4)is still identical to that computed by (7).When the initial gap is less than a critical value,the minimum gap,the pull-in phenomenon will occur.From Figs.3–6,we notice that the effect of Casimir force on the fixed-fixed switch is less than the effect on the cantilever switch for the same geometry parameters.3.2Comparison of the pull-in gap with different thicknessIn this section,we just consider the cantilever beam.Withdifferent thickness,we compute variation of the pull-in gap with length and initial gap shown in Figs.7and 8,respectively.From Fig.7,we notice that the effect of Casimir force on the pull-in gap with the growth of thickness is more and more inconspicuous for the same length.That is,the detachment length increases with the increasing of the thickness of the beam.On the contrary,the minimum initial gap is decreasing with the increasing of the thickness from Fig.8.3.3Detachment parametersIt is interesting to note that the detachment length of the cantilever and fixed-fixed beam can be obtained by equating zero the pull-in voltage in Eq.(7).That is,the detachment length of the cantilever that will not adhere with the substrate due to Casimir force is L max ¼43g ffiffiffiffiffiffiffiffiffiffiffiffiffiffi10Et 3g 3p 2"h c 4r ;ð11ÞVariation of the pull-in voltage with gap for the givenlength:a Cantilever switches.b Fixed-fixedswitchesVariation of the critical pull-in gap with length withdifferentthicknessVariation of the critical pull-in gap with initial gap withdifferent thickness83and the detachment length of the fixed-fixed beam isL 0max ¼43g ffiffiffiffiffiffiffiffiffiffiffiffiffiffi80Et 3g p "hc 4r :ð12ÞFrom Fig.9,we could see the variation of the maximum length with gap of the cantilever and fixed-fixed switches,respectively.As an alternative case,if the length is known,we can calculate the minimum gap.The equations of the cantile-ver and fixed-fixed beam areg min ¼32ffiffiffiffiffiffiffiffiffiffiffiffiffiffip 2"h cL 480Et 5r ;ð13Þandg 0min ¼14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi81p 2"h cL 420Et 5r ;ð14Þrespectively.From Fig.10,we could see the variation of the minimum gap with length of the cantilever and fixed-fixed switches,respectively.4ConclusionAn approximate analytical expression of the critical pull-in gap considered Casimir force is given by the perturbation theory in this paper.Numerical results with cantilever and fixed-fixed switches show:The critical pull-in gap and the pull-in voltage with Casimir force is much more dif-ferent from that without Casimir force as the geometry parameters are greater or less than some value.When the length is greater than the detachment length or the initial gap is less than the minimum gap,the beams will adhere to the substrate without any applied voltage.However,we can still substitute the critical pull-in gap,g 0(without Casimir force),for the critical pull-in gap,g PI (with Casi-mir force),to compute the pull-in voltage with Casimir force.This would be much more convenient for engi-neering designs.The detachment lengths of the cantilever and fixed-fixed beam have been determined by equating zero the pull-in voltage,which are fundamental design parameters for NEM switches.The detachment length is increasing or the minimum initial gap is decreasing with the growth of the cantilever beam’s thickness from Figs.7and 8.Appendix 1Appendix 2The Casimir force between parallel plates of infinite con-ductivity separated be a distance r is given by [7]F C wL ¼Àd U d r ¼p 2"h c 240r 4;where w and L are the width and length of beam,respec-tively,"h ¼1:055Â10À34Js is the Planck’s constant di-vided by 2p ,c ¼2:998Â108m/s is the speed oflight.Variation of the detachment length with initial gap for the cantilever and fixed-fixedswitches Variation of the minimum gap with length for the can-tilever and fixed-fixed switchesTable 1.Parameters in the present paper Symbol Physical meaningDimension c Speed of lightLT À1E Effective modulus of beam ML À1T À2g Initial gap between movable and ground platesL "h Planck’s constant divided by 2p ML 2T À1I Moment of the inertia of cross-sectionL 4K Effective spring constant of beam MT À2L Length of beamL r Gap between movable and ground plates Lt Thickness of beam L w Width of beam LV Voltage appliedML 2T À2Q À1e 0Vacuum permittivityM À1L À3T 2Q 284For the parallel plate configuration shown in Fig.2,the electrostatic force(not accounting for fringingfields)is given by[9]F elec¼e0wLV2 2r2;where V is the applied voltage,e0¼8:854Â10À12C2NÀ1mÀ2 is the permittivity of vacuum within the gap.The elastostatic force,F elas,is modeled by a spring. The effective spring constant,K,is derived from the small-deflection mechanical solution for the maximum displacement,g max,of the structure with a uniform dis-tributed load.Considering an1D lumped beam model, the spring constant is K¼8EI=L3for a cantilever beam and K¼384EI=L3for afixed-fixed beam,whereE¼1:2TPa is the Young’s modulus,and I is the moment of inertia.References1.Israelachvil JN(1985)Intermolecular and surface forces,Academic Press2.Maboudian R;Howe RT(1997)Critical review:adhesion insurface micromechanical structures.J Vac Sci Technol B15(1):1–193.Komvopoulos K(1996)Surface engineering and microtribol-ogy for microelectromechanical systems.Wear200:2305–2327 4.Zhao YP(2002)Morphological stability of epitaxial thinelasticfilms by van der Waals force.Arch Appl Mech72(1): 77–845.Zhao YP;Li WJ(2002)Surface stability of epitaxial elasticfilms by the Casimir force.Chin Phys Lett19(8):1161–1163 6.Zhao YP;Wang LS;Yu TX(2003)Mechanics of adhesion inMEMS-a review.J Adhesion Sci Technol17:519–5467.Casimir HBG(1948)Proc K Ned Akad Wet51:793.8.Kenneth O et al(2002)Repulsive Casimir force.Phys Rev Lett89:0330019.Osterberg PM(1995)Electrostatically actuated microme-chanical test structures for material property measurement.PhD Dissertation,MIT,Cambridge,MA10.Bochobza-Degani O;Nemirovsky Y(2002)Modeling the pull-in parameters of electrostatic actuators with a novel lumpedtwo degrees of freedom pull-in model.Sensors&Actuators A97–98:569–57811.Degani O;Nemirovsky Y(2002)Design considerations ofrectangular electrostatic torsion actuators based on newanalytical pull-in expressions.J Microelectromech Syst11(1):20–2612.Degani O;Socher E;Lipson A;Leitner T;Setter DJ;Kaldor S;Nemirovsky Y(1998)Pull-in study of an electrostatic torsionmicroactuator.J Microelectromech Syst7(4):373–37913.Zhang LX;Zhao YP(2003)Electromechanical model of RFMEMS switches.Microsystem Technologies9:420–42614.Hornbeck LJ(1991)Spatial light modulator and method,USPatent5,061,04915.Dequesnes M;Rotkin SV;Aluru NR(2002)Calculation ofpull-in voltages for carbon-nanotube-based nanoelectrome-chanical switches.Nanotechnology13:120–13116.Serry FM;Walliser D;Maclay GJ(1998)The role of theCasimir effect in the static deflectionand stiction of mem-brane strips in MEMS.J Appl Phys84(50):2501–250617.Chan HB;Aksyuk VA;Kleiman RN;Bishop DJ;Capasso F(2001)Quantum mechanical actuation of microelectrome-chanical systems by the Casimir force.Science291:1941–194418.Chan HB;Aksyuk VA;Kleiman RN;Bishop DJ;Capasso F(2001)Nonlinear micromechanical Casimir oscillator.PhysReview Lett87(21):21180119.Bukes E;Roukes ML(2001)Stiction,adhesion energy,and theCasimir effect in micromechanical systems.Phys Rev B63:03340220.Zhao YP(2003)Stiction and anti-stiction in MEMS andNEMS.Acta Mechanica Sinica19(1):1–1021.Johnstone RW;Parameswaran M(2002)Theoretical limits onthe freestanding length of cantilever produced by surfacemicromachining technology.J Micromech Microeng12:855–86185。

Casimir力作用下的纳米级静电执行器的Pull-in现象分析

单位代码: 10293 密级:硕士学位论文论文题目:Casimir 力作用下的纳米级静电执行器的Pull-in 现象分析1010020731 王蔚 方玉明电路与系统微机电系统工学硕士二零一三年四月学号 姓名 导 师 学 科 专 业 研 究 方 向 申请学位类别 论文提交日期Pull-in characteristic analysis of the effect of Casimir force on the Nano-electromechanicalsystemThesis Submitted to Nanjing University of Posts and Telecommunications for the Degree ofMaster of EngineeringByWang WeiSupervisor: Prof. Fang YumingApril 2013南京邮电大学学位论文原创性声明本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。

尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得南京邮电大学或其它教育机构的学位或证书而使用过的材料。

与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。

本人学位论文及涉及相关资料若有不实,愿意承担一切相关的法律责任。

研究生签名:_____________ 日期:____________南京邮电大学学位论文使用授权声明本人授权南京邮电大学可以保留并向国家有关部门或机构送交论文的复印件和电子文档;允许论文被查阅和借阅;可以将学位论文的全部或部分内容编入有关数据库进行检索;可以采用影印、缩印或扫描等复制手段保存、汇编本学位论文。

本文电子文档的内容和纸质论文的内容相一致。

论文的公布(包括刊登)授权南京邮电大学研究生院办理。

涉密学位论文在解密后适用本授权书。

2012-6双曲超材料hyperbolic metamaterials

Focus issue: hyperbolic metamaterialsMikhail Noginov,1 Mikhail Lapine,2 Viktor Podolskiy,3,* and Yuri Kivshar41Department of Physics, Norfolk State University, Norfolk, VA, USA2CUDOS, School of Physics, The University of Sydney, NSW 2256, Australia 3Department of Physics and Applied Physics, University of Massachusetts at Lowell, Lowell, MA, 01854, USA 4Nonlinear Physics Centre, Australian National University, Canberra, ACT 0200, Australia* Viktor_Podolskiy@Abstract: This special issue presents a cross-section of recent progress inthe rapidly developing area of optics of hyperbolic metamaterials©2013 Optical Society of AmericaOCIS codes: (160.3918) Metamaterials; (160.1190) Anisotropic optical materials.References and links1. V. Drachev, V. A. Podolskiy, and A. V. Kildishev, “Hyperbolic Metamaterials: new physics behind a classicalproblem,” Opt. Express 21(12), 15048–15064 (2013).2. S. Prokes, O. J. Glembocki, J. E. Livenere, T. U. Tumkur, J. K. Kitur, G. Zhu, B. Wells, V. A. Podolskiy, and M.A. Noginov, “Hyperbolic and plasmonic properties of Silicon/Ag aligned nanowire arrays,” Opt. Express 21(12),14962–149714 (2013).3. S. Zhukovsky, O. Kidwai, and J. E. Sipe, “Physical nature of volume plasmon polaritons in hyperbolicmetamaterials,” Opt. Express 21(12), 14982–14987 (2013).4. G. Milton, R. C. McPhedran, and A. Sihvola, “The searchlight effect in hyperbolic materials,” Opt. Express21(12), 14926–14942 (2013).5. T. Morgado, S. I. Maslovski, and M. G. Silveirinha, “Ultrahigh Casimir interaction torque in nanowire systems,”Opt. Express 21(12), 14943–14955 (2013).6. C. Simovski, S. Maslovski, I. Nefedov, and S. Tretyakov, “Optimization of radiative heat transfer in hyperbolicmetamaterials for thermophotovoltaic applications,” Opt. Express 21(12), 14988–15013 (2013).7. Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21(12), 15014–15019 (2013).8. C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, “Negative refraction, gain and nonlinear effects inhyperbolic metamaterials,” Opt. Express 21(12), 15037–15047(2013).9. W. Yan, A. Mortensen, and M. Wubs, “Hyperbolic metamaterial lens with hydrodynamic nonlocal response,”Opt. Express 21(12), 15026–15036 (2013).10. B. H. Cheng, Y. C. Lan, and D. P. Tsai, “Breaking optical diffraction limitation using optical hybrid-super-hyperlens with radially polarized light,” Opt. Express 21(12), 14898–14906 (2013).11. E. E. Narimanov, H. Li, Y. A. Barnakov, T. U. Tumkur, and M. A. Noginov, “Reduced reflection fromroughened hyperbolic metamaterial,” Opt. Express 21(12), 14956–14961 (2013).12. P. Ginzburg, F. J. Rodriguez Fortuno, G. A. Wirtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A.Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V. Zayats,“Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 21(12), 14907–14917 (2013).13. J. Sun, J. Zeng, and N. M. Litchinitser, “Twisting light with hyperbolic metamaterials,” Opt. Express 21(12),14975–14981 (2013).14. Z. Huang and E. E. Narimanov, “Zeroth-order transmission resonance in hyperbolic metamaterials,” Opt.Express 21(12), 15020–15025 (2013).15. I. I. Smolyaninov, B. Yost, E. Bates, and V. N. Smolyaninova, “Experimental demonstration of metamaterial“multiverse” in a ferrofluid,” Opt. Express 21(12), 14918–14925 (2013).The beginning of the 21st century coincided with the invention of an entirely new materials platform – metamaterials – engineered multi-phase composite materials containing inclusions that often have tailored shapes, sizes, mutual arrangements and orientations. Such materials exhibit unparalleled responses to many types of wave excitations, including electromagnetic, acoustic and thermal.Metamaterials promise to alleviate the common limitations of optics, increasing the resolution of imaging systems and providing new avenues for manipulating refraction, reflection, and guidance of light. Materials with negative indices of refraction, “perfect” lenses and hyperlenses that focus and image with resolution beyond the diffraction limit, invisibility cloaks, and nanoscopic lasers — are just some of the emerging concepts that have resulted from the evolving view of what constitutes a material.#192205 - $15.00 USD Received 12 Jun 2013; published 17 Jun 2013 (C) 2013 OSA17 June 2013 | Vol. 21, No. 12 | DOI:10.1364/OE.21.014895 | OPTICS EXPRESS 14895Hyperbolic (highly anisotropic) homogeneous- and meta-materials, in which dielectricpermittivities in orthogonal directions have different signs, have recently generated a lot of interest because of their unique physical properties and unmatched potential applications. Instriking contrast to all commonly known media, in which iso-frequency dispersion surfaces are spheroids or ellipsoids, iso-frequency dispersion surfaces in said anisotropic materials are hyperboloids, determining the name hyperbolic (meta)material (also known as indefinite media). Although few natural materials have hyperbolic dispersion in the far-infrared range, known hyperbolic media in the visible and near-infrared parts of the spectrum are engineered metamaterials: ordered arrays of metallic nanowires and lamellar metal/dielectric or semiconductor multi-layered thin film structures. Because of their unique dispersion characteristics, hyperbolic metamaterials can propagate waves with nominally infinitely large wavevectors (and infinitely short wavelengths) and have a broad-band singularity of the (nominally infinite) density of photonic states. The former property is used in a “hyperlens” providing for a deep sub-wavelength resolution, while the latter phenomenon leads to a wide range of fundamental quantum and classical effects.This focus issue presents a snapshot of recent developments in optics of hyperbolic systems, covering the areas as diverse as new fabrication techniques to theoretical predictions of new phenomena unique to hyperbolic systems, and even cosmological problems that might be modeled in metamaterials.In [1] A. Kildishev et.al present a review of progress and challenges in the area of hyperbolic materials and systems.In [2], S.M. Pokes et.al. present the a comprehensive study of optical properties of newclass of optical metamaterials, based on Si/Ag nanowire arrays. The manuscript describes the fabrication of this new material system, presents the spectroscopic study of these composites, and analyzes the dynamics of light emission in these systems. Analytical model describing the linear response of this structure is also presented.Hyperbolicity of optical modes in composite systems remains an active research area. In [3], S. Zhukovsky et.al. study the origin of the bulk plasmon – a unique collective mode that can propagate in the bulk of hyperbolic systems.G. Milton et.al [4]. present a theoretical analysis of a two-dimensional hyperbolic medium, and reveal curious dissipation patterns as well as a “search-light” effect with the remote dipoles strongly interacting when placed to the appropriate positions.Hyperbolic systems are known to offer strong enhancement of density of states. Inspiredby this phenomenon, strong enhancement of Casimir torque inside hyperbolic structures is discussed by T. Morgado with colleagues [5], who design the required dispersion by combining metal nanorods with dielectric fluids, and show an efficient channeling of quantum fluctuations.With regards to practical applications of hyperbolic media, the perspectives of transfer ofthermal energy by hyperbolic structures are studied in [6] and [7]. C. Simovski et al. [6] study the viability of a huge enhancement of the radiative heat transfer in thermophotovoltaic systems, and discuss the optimal design strategy, while Y. Guo et al [7] investigate the role of specific electromagnetic states enabled by myltilayered stack of metamaterials with hyperbolic dispersion, in achieving an efficient thermal emission. It has been demonstrated that the heat transfer across a nano-gap in the metamaterial systems can be very strong, and its spectral selectivity can be optimized on demand.Strongly anisotropic structures often drastically modify optics of closely positioned quasi-static systems, like dipoles. Anomalous behavior of field distribution in quasi-static systems in proximity to hyperbolic structures is discussed in [4].In the absence of diffraction limit, the limitations to performance of hyperbolicmetamaterials come from optical absorption and from nonlocal optical response. The formerclass of limitations can be somewhat compensated by optical gain. The perspectives of such compensation, and the possibilities for nonlinear interaction in hyperbolic structures are discussed in [8]. The “ultimate limits” of hyperbolicity, dictated by optical nonlocalities are analyzed in [9]. In particular, it is shown that focusing characteristics of a hyperbolic#192205 - $15.00 USD Received 12 Jun 2013; published 17 Jun 2013 (C) 2013 OSA17 June 2013 | Vol. 21, No. 12 | DOI:10.1364/OE.21.014895 | OPTICS EXPRESS 14896metamaterial lens in the local response approximation and and in the non-local hydrodynamic Drude model can differ significantly.Hyperbolic metamaterials continue to inspire and enable numerous science-fiction-like applications. In this issue, sub-wavelength imaging with lenses based on strongly anisotropic metamaterials are discussed in [10].Strong suppression of reflection from roughened hyperbolic metamaterials is reported in [11]. This phenomenon, demonstrated experimentally in arrays of silver nanowires grown in alumina membranes, is consistent with a broad-band singularity in the density of photonic states. It paves the road to a variety of applications ranging from the stealth technology to high-efficiency solar cells and photodetectors.Novel possibilities for controlling light polarization with thin anisotropic metamaterials are discussed in [12]. In particular, it is shown that l/20 thick slab of a highly anisotropic metamaterial may provide nearly linear-to-circular polarization conversion or 90° linear polarization rotation. In a related class of applications, metamaterials offer new opportunities for manipulating optical pulses. On this track, J.Sun et.al [13]. discusses a design of biaxial metamaterial based on silver nanowires, which provides and inter-conversion between Gaussian beams and vortices.The work of Z. Huang et.al [14]. presents a new class of transmission resonances that can be observed in hyperbolic structures. The work demonstrates that hyperbolic structures can be combined with conventional material to build ultra-thin Fabri-Perot-type resonators.Hyperbolic systems find their applications far beyond photonics and plasmonics. In their work [15] I. Smolyaninov et.al. use thermal fluctuation of nanoparticle concentration in a cobalt based nanofluid, which lead to transient formation of hyperbolic regions, to study the evolution of individual Minkowski space-times the cosmological multi-universe.We hope that the collection of the papers, presented in this issue, will not only familiarize the reader with the current cutting-edge research on optics of hyperbolic systems, but will motivate new research directions in this exciting and rapidly developing research field. AcknowledgmentsWe are grateful to all the authors for their valuable contributions, to the Optics Express Editors, Martijn de Sterke and Andy Weiner, for their support, and are especially thankful to OSA staff, and to Carmelita Washington in particular, for making this issue a reality.#192205 - $15.00 USD Received 12 Jun 2013; published 17 Jun 2013 (C) 2013 OSA17 June 2013 | Vol. 21, No. 12 | DOI:10.1364/OE.21.014895 | OPTICS EXPRESS 14897。

活塞的Casimir效应研究

场模式 由一个 3 维矢量 k 加上两个极化方 向标记. 显然这个和是无穷大的. 然而, 这不会产生问题. 在物 理学的所有场中( 引力除外 ) 能量是定义在一个附加 的常数之上 的. , 所有的物理能量是从 自由空间中
无 穷大 真空 的顶部 测 量 的. 于这点 , 基 当计算 某种 量 子过 程 的物 理 能量 时 , 们 首先 得 到 一个 无 穷 大 的 人
不为人所注意. 这是由于受到实验测量上的限制. 例如 , 对于面积 S= e 的两平行金属板, lm 当它们相
距 n =1 m时 , 它们之 间 的 C s r ai 吸引力 仅为 l N, 量 如此小 的力是非 常 困难 的 . mi 0 测
15 年 Sa a 完成了对 Cs i力的首次测量 _ . 98 pmay a mr i 2 虽然这个实验有很多粗糙的地方 , J 许多不确 定因素没有得到解决 , 但它仍然为以后 Cs i力的测量奠定了基础. a mr i 尤其重要的是 , 他在实验报告 中第
收稿 日期 : 0 8 42 2 0 - —5 0
基金项 目: 国家 自然科学基金 (612 )上海市教委项 目(6 Z0 ) 0718 ; 0 D O5 作者 简介 : 向华 (99 , , 师范大学天体物理 中心教授. 翟 16 一)女 上海
上海师范大学学报(自然科学版)
20 0 8年

次指 出测量 C s r ai 力必须具 备 的条件 , mi 如导体 表面必 须纯净 无杂质 , 两块 导体板 必须严 格平行 , 导体 为 了满足 上述这些 条件 , 物理学 家们 想 出了许 多 办法 改进 实验 .9 7年 ,a rax利用 一个 基 于 19 Lmo u e
表面不带静电荷等. 扭摆的天平精确地定量测量到一块金属平板和一块镀金球面透镜之间的 C s i力 J 这是测量 c — ai r m , a s i力实验的一个里程碑. ir m 几项重要 的进步确保可以实现比之前所有实验都要高的精度. 首先 , 基底表

两双折射平板间的Casimir力


, : y K

()一 + ze a
() ze ]
其 中, N=( 仃 2

) 是归一化 箱沿 轴 和 Y轴方 向的
两介质板的光轴都在 — Y平 面 内, 中介质板 1的光轴 其 与 轴 的夹角 为 , 介质板 2的光轴与 轴的夹角为 0 。在 + 主轴系中 , 电常数张量 为 介
.。
( ) 也, 是平面 内的波矢 , 和 a 常用 的产生 a 是
算符和 消灭 算符 。空问的电磁场满足无 源的麦克斯韦方程 :
厂l 8l


0 0 、
{× 一百 f =嵩 V

f s o ’ o I
() 2
0 s
( 4 )
无限大各 向异性介质平板 ( 如图 2所示 ) 空 间三个 区域的介 ,
苫, 和H2真空的介电常数为 旬。 ,
为了方 便描述模式函数 , 按下述 方式选取坐标系 :取介 质
板 的法向为 z , 择波矢 轴 选
表示成
.。
电常数 分别记为苫,s 和苫,两板间为真空 。 ,, , 我们只需考虑与介 质表 面模 式相联 系 的零点 能 , 这些 模 式在 < 0和 。 >a的外 部区域指数衰减。一般 , 相应 于表 面模
维普资讯
20 0 7年 2月
湖 : 育 学 院 学 报 化教
J un lo o ra Hu e I s tt fE u ain b i n tueo d ct i o
Fe . O b 2o 7 Vo . No. 124 2
第2 4卷第 2期
的宏观理 论 ,2随后 , 多 物理 学 家 对 该 理 论 进行 了 发展 。 【 许
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Casl signature changing spacetime
F. Darabi ∗and M. R. Setare

arXiv:gr-qc/0507043v3 18 Feb 2006
Department of Physics, Azarbaijan University of Tarbiat Moallem, 53714-161 Tabriz, Iran . Physics Dept. Inst. for Studies in Theo. Physics and Mathematics (IPM), 19395-5531, Tehran, Iran .
and this will alter the energy spectrum and the diffeomorphism algebra discussed above. Meanwhile, a lot of topics related to the Casimir effect have been explored in the context of string theory [10] [27]. The above two-dimensional signature-changing cylinder is topologically similar to a closed string, with two Euclidean and Lorentzian parts, propagating in a distributional way in the 2-dimensional target space, and the discontinuous nature of the model in classifying Euclidean and Lorentzian solutions with discrete symmetry motivates one to study it in the context of orbifolds [26] [28]. On the other hand, a closed string with two Euclidean and Lorentzian parts may be of some importance in the context of D -branes and related conformal field theories. Therefore, taking into account this similarity, the study of Casimir effect in our model may have nontrivial impacts on closed strings or D -branes. In general, we believe the idea of Casimir effect in signature-changing spacetimes is novel and interesting. In the present paper this effect is inevitably limited to two-dimensional spacetime, which may be relevant to the study of closed bosonic strings with Euclidean and Lorentzian parts. But, further study of Casimir effect in 3+1 dimensional signature changing spacetimes may have more important physical implications, especially at early universe [29].
February 4, 2008
Abstract We study the Casimir effect for free massless scalar fields propagating on a twodimensional cylinder with a metric that admits a change of signature from Lorentzian to Euclidean. We obtain a nonzero pressure, on the hypersurfaces of signature change, which destabilizes the signature changing region and so alters the energy spectrum of scalar fields. The modified region and spectrum, themselves, back react on the pressure. Moreover, the central term of diffeomorphism algebra of corresponding infinite conserved charges changes correspondingly.
∗ †
Corresponding author e-mail:f.darabi@ e-mail:rezakord@ipm.ir
1
1
Introduction
The Casimir effect is usually regarded as the most well-known manifestation of vacuum fluctuations in quantum field theory. In this effect, the presence of reflecting boundaries in the quantum vacuum alters the zero-point modes of the quantized fields, and results in the shifts of the vacuum expectation values of quantities such as energy densities and stresses. These shifts lead to vacuum forces which act on the reflecting boundaries. The particular features of these forces depend on the nature of the quantum field, the type of spacetime manifold and its dimensionality, the boundary geometries and the specific boundary conditions imposed on the field. Since the original work by Casimir in 1948 [1] many theoretical and experimental works have been done on this problem [3, 4, 5, 6, 7, 8, 9, 10, 11] . In general, there are several approaches to calculate the Casimir energy: mode summation [2], Green’s function method [4], heat kernel method [8], along with appropriate regularization schemes such as point separation [12, 13], dimensional regularization [14], and zeta function regularization [15, 16, 17, 18, 19]. Recently, general new methods have been obtained to compute the renormalized one-loop quantum energies and energy densities [20, 21]. On the other hand, signature changing spacetimes have recently been of particular importance as the specific geometries with interesting physical effects. The original idea of signature change was due to Hartle, Hawking and Sakharov [22]. This interesting idea would make it possible to have both Euclidean and Lorentzian metrics in path integral approach to quantum gravity. Later, it was shown that the signature change may happen in classical general relativity, as well [23]. There are two different approaches, continuous and discontinuous, to study the signature change in classical general relativity [23, 24]. In the continuous approach, the signature of metric changes continuously in passing from Euclidean to Lorentzian region. Hence, the metric becomes degenerate at the border of these regions. In the discontinuous approach, however, the metric becomes nondegenerate everywhere and is discontinuous at the border of Euclidean and Lorentzian regions. The issue of propagation of quantum fields on signature-changing spacetimes has also been of some interest [24]. For example, Dray et al have shown that the phenomenon of particle production may happen for scalar particles propagating in a spacetime with heterotic signature. They have also obtained a rule for propagation of massless scalar fields on a two dimensional spacetime with signature change. Dynamical determination of the metric signature in spacetime of nontrivial topology is another interesting issue which has been studied in [25]. To the authors knowledge, no attempt has been done to study the Casimir effect within the geometries with signature change. A relevant work to the present paper is [26]. In this work, a model of free massless scalar fields on a two dimensional cylinder with a signature-changing strip has been studied and shown that the energy spectrum depends on the strip’s width and differs from the ordinary bosonic spectrum, for low energies. Moreover, It was shown that the diffeomorphism algebra of the corresponding infinite conserved charges is different from “Virasoro” algebra and approaches it at higher energies. In this paper, we study the Casimir effect for the free massless scalar field propagating on the above two-dimensional signature-changing cylinder. We will obtain a nonzero pressure on the hypersurfaces of signature change which leads to instability in the signature-changing region. Therefore, depending on situation, Euclidean or Lorentzian region will grow or shrink, 2
相关文档
最新文档