机械设计课程设计减速器计算说明书
机械设计课程设计说明书(二级齿轮传动减速器)模版

机械设计课程设计计算说明书学院:动力与机械学院专业:机械设计制造及其自动化班级:姓名:学号:目录一、设计任务书 (2)二、传动方案的分析及说明 (2)三、电动机的选择 (4)四、确定传动方案的总传动比及分配各级的传动比 (5)五、计算传动方案的运动和动力参数 (6)六、V带传动的设计计算 (8)七、齿轮传动的设计计算 (11)八、轴的设计计算 (21)九、滚动轴承的选择及计算 (32)十、键联接的选择及校核计算 (34)十一、联轴器的选择 (36)十二、附件的选择 (36)十三、减速器箱体的结构设计尺寸 (38)十四、润滑与密封 (38)十五、参考资料目录 (4)十六、设计小结 (40)一、设计任务书1、设计题目:带式输送机传动装置中的二级圆柱齿轮减速器2、技术参数:注:运输带与卷筒以及卷筒与轴承间的摩擦阻力已在F中考虑。
3、工作条件:单向连续转动,有轻微冲击载荷,室内工作,有粉尘。
一班制(每天8小时工作),使用三相交流电为动力,期限10年(每年按365天计算),三年可以进行一次大修。
小批量生产,输送带速度允许误差为±3%。
4、生产条件:中等规模机械厂,可加工7-8级精度的齿轮和蜗杆,进行小批量生产(或单件)。
二、传动方案的分析及说明根据要求及已知条件,对于传动方案的设计选择V带传动和二级闭式圆柱齿轮传动。
V带传动布置于高速级,能发挥它传动平稳、缓冲吸振和过载保护的优点。
二级闭式圆柱齿轮传动能适应在繁重及恶劣的条件下长期工作,且维护方便。
V带传动和二级闭式圆柱齿轮传动相结合,能承受较大的载荷且传动平稳,能实现一定的传动比,满足设计要求。
传动方案运动简图:取0A =112,于是得:53.3033.32355.611233110=⨯=≥n P A d mm 因为轴上应开2个键槽,所以轴径应增大10%-15%,取15%,故11.35%)151(53.30=+⨯≥d mm ,又此段轴与大带轮装配,综合考虑两者要求取min d =38mm 。
机械设计课程设计说明书(减速器)

中北大学课程设计说明书学生姓名:学号:学院:机电工程学院专业:飞行器制造工程题目:单级斜齿圆柱齿轮减速器职称:年月日目录一、设计任务书 (4)二、传动装置总体设计方案 (7)2.1 传动方案特点 (7)2.2 计算传动装置总效率 (7)三、电动机的选择 (7)3.1 电动机的选择 (7)3.2 确定传动装置的总传动比和分配传动比 (8)四、计算传动装置的运动和动力参数 (9)五、V带的设计 (9)六、齿轮传动的设计 (14)七、传动轴和传动轴承及联轴器的设计 (20)7.1 输入轴的设计 (20)7.2 输出轴的设计 (24)八、键联接的选择及校核计算 (29)8.1 输入轴键选择与校核 (30)8.2 输出轴键选择与校核 (30)九、轴承的选择及校核计算 (30)9.1输入轴上轴承的校核 (30)9.2 输出轴上轴承的校核 (31)十、联轴器的选择 (33)十一、减速器的润滑和密封 (33)11.1 减速器的润滑 (33)11.2 减速器的密封 (34)十二、减速器附件及箱体主要结构尺寸 (34)12.1 附件的设计 (34)12.2 箱体主要结构尺寸 (36)设计小结 (37)参考文献 (37)中北大学课程设计任务书2006 /2007 学年第学期学院:机电工程学院专业:飞行器制造工程学生姓名:学号:课程设计题目:单级斜齿圆柱齿轮减速器起迄日期:课程设计地点:指导教师:系主任:下达任务书日期: 2007年月日二、传动装置总体设计方案2.1 传动方案特点1.组成:传动装置由电机、V 带、减速器、工作机组成。
2.特点:齿轮相对于轴承对称分布。
3.确定传动方案:考虑到电机转速高,V 带具有缓冲吸振能力,将V 带设置在高速级。
选择V 带传动和一级圆柱齿轮减速器。
2.2 计算传动装置总效率543321ηηηηηη⋅⋅⋅⋅=a式中η1、η2、η3、η4、η5分别为带传动、联轴器、轴承、齿轮和开式齿轮的传动效率。
机械设计课程设计二级减速器设计说明书

机械设计课程设计二级减速器设计说明书一、设计任务设计一个二级减速器,用于将电动机的高转速降低到所需的工作转速。
减速器的技术参数如下:输入轴转速:1400rpm输出轴转速:300rpm减速比:4.67工作条件:连续工作,轻载,室内使用。
二、设计说明书1.总体结构二级减速器主要由输入轴、两个中间轴、两个齿轮、输出轴和箱体等组成。
输入轴通过两个中间轴上的齿轮与输出轴上的齿轮相啮合,从而实现减速。
2.零件设计(1)齿轮设计根据减速比和转速要求,计算出齿轮的模数、齿数、压力角等参数。
选择合适的齿轮材料和热处理方式,保证齿轮的强度和使用寿命。
同时,要进行轮齿接触疲劳强度和弯曲疲劳强度的校核。
(2)轴的设计根据齿轮和轴承的类型、尺寸,计算出轴的直径和长度。
采用适当的支撑方式和轴承类型,保证轴的刚度和稳定性。
同时,要进行轴的疲劳强度校核。
(3)箱体的设计箱体是减速器的支撑和固定部件,应具有足够的强度和刚度。
根据减速器的尺寸和安装要求,设计出合适的箱体结构。
同时,要考虑到箱体的散热性能和重量等因素。
3.装配图设计根据零件设计结果,绘制出减速器的装配图。
装配图应包括所有零件的尺寸、配合关系、安装要求等详细信息。
同时,要考虑到维护和修理的方便性。
4.设计总结本设计说明书详细介绍了二级减速器的设计过程,包括总体结构、零件设计和装配图设计等部分。
整个设计过程严格遵循了机械设计的基本原理和规范,保证了减速器的性能和使用寿命。
通过本课程设计,提高了机械设计能力、工程实践能力和创新思维能力。
减速器课程设计 说明书

目录设计任务书 (2)第一部分传动装置总体设计 (4)第二部分各齿轮的设计计算 (7)第三部分轴的设计 (17)第四部分主要尺寸及数据 (23)设计任务书一、课程设计题目:方案3:电机→圆锥圆柱齿轮(斜齿)减速器→开式一级齿轮减速→工作机1—电动机;2、4—联轴器;3—圆锥-圆柱斜齿轮减速器;5—输送带;6—滚筒 2原始数据(1)皮带的有效拉力:F=3000N;(2)输送带工作速度:v=1.2m/s;(3)滚筒直径:400mm;3.设计条件1.工作条件:机械厂装配车间;两班制,每班工作四小时;空载起动、连续、单向运转,载荷平稳;2.使用期限及检修间隔:工作期限为8年,每年工作250日;检修期定为三年;3.生产批量及生产条件:生产数千台,有铸造设备;4.设备要求:固定;5.生产厂:减速机厂。
4.工作量1.减速器装配图零号图1张;2.零件图2张(箱体或箱盖,1号图;中间轴或大齿轮,1号或2号图);3.设计说明书一份不少于7000字。
第一部分 传动装置总体设计一、 传动方案(已给定) 1) 外传动为V 带传动。
2) 减速器为两级展开式圆锥-圆柱斜齿轮减速器。
3)方案简图如下:。
计 算 与 说 明结果 三、电动机的选择(一) 类型选择:根据动力源和工作条件,选用Y 型三相异步电动机。
(二) 功率计算 (1)确定工作功率KW FV P w 6.310002.130001000=⨯==(2)原动机功率∑=ηW d P P根据题意 联轴器一个 轴承五对 圆柱齿轮两个 圆锥齿轮一个 滚筒轴一个98.0=轴η97.0=齿η96.0=滚筒η992.0=联η滚筒联齿轴ηηηηη∙∙∙=∑325837.096.0992.098.098.0235=⨯⨯⨯=∑η电动机所需的功率为:30.4837.06.3===∑ηwP P ddP P ed 〉所以选择电动机5.5KW 的(3)电动机的转速 1、工作机主轴转速 min 32.574002.1100060r n w =⨯⨯=π2、各级传动比可选范围 查参考文献[1]表2-2得两级展开式圆柱齿轮减速器的传动比范围'a i 为40~83、电动级转速的确定0.837η∑=4.30d P =57.32min w n r =电动机可选转速范围min 10031~68.137532.57)175~24(r n i n w d =⨯==总从课本查得: 同步转速为1500r/min 满载转速为1440r/min ;电动机额定功5.5KW 制表如下: 电动机型号 额定功率 电动机转速同步 满载 Y132S-414401500 1440Y132S-4电动机的外型尺寸(mm ): (见课设表19-3)A :216B :140C :89D :38E :80F :10G :33H :132 K :12 b: 280 b1: 210 b2: 135 h:315 AA: 60 BB:200 HA:18 L1:475 (二)、传动比分配根据上面选择的电动机型号可知道现在的总传动比 12.2532.571440===w m n n i 总 ;为了使两级大齿轮直径相近取设 2.42=i23.33.1/23==i i 85.1/321=∙=∑i i i i 10.25321=∙∙=∑i i i i(三)、传动装置的运动和动力参数1375.68~10031mind n r =2.42=i3 3.23i = 1 1.85i =25.10i ∑=1、各轴的转速计算 电机轴10min /1440n r nn m===min /38.77885.1/14402r n ==min /33.1852.4/38.7783r n ==min /38.5723.3/33.1854r n ==卷筒min /32.574r n n =≈卷筒 2、各轴输入功率计算KWP KW P P KW P P KW P P KW nd P IV IV 86.3992.090.390.399.098.002.402.499.098.014.414.498.099.027.427.4992.03.412332213=⨯=⨯=⨯⨯===⨯⨯===⨯⨯===⨯==ηηηηηηηηⅢⅡⅢⅠⅡⅠ3 各轴的输入转矩m mN T T m m N i T T m m N i T T m m N i T T m mN T T m mN n P T IV d m d d ⋅⨯=⨯⨯⨯==⋅⨯=⨯⨯⨯⨯==⋅⨯=⨯⨯⨯⨯==⋅⨯=⨯⨯⨯⨯=∙∙=⋅⨯=⨯⨯=∙=⋅⨯=⨯⨯=⨯=552145532335423224413214414661091.699.0992.010036.710036.723.398.099.01025.21025.22.498.099.01051.51051.585.198.099.01083.21083.2992.01085.21085.214403.41055.91055.9ηηηηηηηηηⅢⅡⅠ所以可得表格:01440/minn r =2778.38/min n r = 3185.33/min n r = 457.38/minn r =57.32/minr n=卷筒14.274.144.023.903.86IV IV P KWP KW P KW P KW P KWη====⨯=ⅠⅡⅢ4445552.85102.83105.51102.25107.036106.9110d IV T N mm T N mm T N mm T N mm T N mm T N mm=⨯⋅=⨯⋅=⨯⋅=⨯⋅=⨯⋅=⨯⋅ⅠⅡⅢ轴名功率P/kw转矩T/mm转速n/1min-传动比效率电机轴 4.32.85×410144010.992Ⅰ轴 4.272.83×41014401.85 0.97Ⅱ轴 4.14 5.51×410778.384.2 0.97Ⅲ轴 4.02 2.25×510185.333.230.97IV 轴3.907.036×51057.381 0.98卷筒3.86 6.91510⨯57.32第二部分各齿轮的设计计算一、直齿圆柱齿轮的传动设计1.已知输入功率P2=4.27KW,小齿轮转速960r/min,齿数比u=1.85。
双级减速器机械设计课程设计说明书

设计项目计算及说明结果一、设计任务书二、传动系统方案拟定1、带式输送机传动系统方案如下图所示:2、原始数据3、工作设计带式输送机的传动系统,传动系统中含有两级圆柱齿轮减速器带式输送机由电动机驱动,电动机1通过联轴器2将动力传入两级圆柱齿轮减速器3,再经过联轴器4将动力传至输送机滚筒5,带动输送带6工作。
输送带有效拉力 F=4000N输送带工作速度 v=1.0m/s(允许误差±5%)输送带滚筒直径 d=400mm减速器设计寿命为8年,一年工作300天。
单班制工作,常温下连续工作;空载启动,工作载荷有轻微震动;电压三相交流电源为380/220V的。
设计项目计算及说明结果条件三、电动机的选择1、电动机容量的选择2、电动机转速的选择根据已知条件由计算得知工作机所需的有效功率KWFVPW0.410002.140001000=⨯==8505.098.099.096.052232434231201=⨯⨯=⨯⨯⨯=⨯⨯⨯⨯=齿轮轴承联轴器卷筒总ηηηηηηηηηηw电动机的输出功率KWKWPPaWd703.28505.00.4===η由Y系列三相异步电动机技术数据中可以确定,满足dedPP〉条件的电动机,取电动机额定功率P m=5.5kw输送机滚筒轴的工作转速min/75.474000.160000rnw=⨯⨯=π由表3-2初选同步转速为1500r/min、1000r/min或750r/min的电动机,对于额定功率P m为5.5 kw的电动机型号应分别为Y132S-4型、Y132M2-6型或Y160M2-8型。
把这三种电动机有关技术数据及相应算得的总传动比列于下表:方案号电动机型号额定功率同步转速满载转速总传动比I Y132S-4 5.5 kw 1500r/min 1440r/min 25.12II Y132M2-6 5.5 kw 1000r/min 960r/min 16.75III Y160M2-8 5.5 kw 750r/min 720r/min 12.56方案I:12i=i3.1=5.1723i=12ii=4.40KWPW0.4=858.0=总ηKWPd703.4=KWPm5.5=设计项目计算及说明结果3、电动机型号的确定四、传动比的分配方案II:12i=i3.1=4.6723i=12ii=3.59方案III:12i=i3.1=4.0423i=12ii=3.11通过对这三种方案比较可以看出,由于整个传动系统采用二级减速,高速级传动比12i应≤4.5,因此选择同步转速ns=750r/min的电动机为宜。
减速器设计计算说明书

联轴器外形示意图联轴器外形及安装尺寸型号公称扭矩N·m许用转速r/min轴孔直径mm轴孔长度mmDmm转动惯量kg·m2许用补偿量轴向径向角向HL4 1250 2800 56 112 195 3.4 ±1.5 0.15 ≤0°30’4.1.3轴的结构设计(直径,长度来历)一低速轴的结构图ⅧⅦⅥⅤⅣⅢⅡⅠ二根据轴向定位要求,确定轴的各段直径和长度(1)Ⅰ—Ⅱ段与联轴器配合取d I-II=56,为了保证轴端挡圈只压在半联轴器上而不压在轴的端面上取L I-II=112。
(2)为了满足半联轴器的轴向定位,Ⅰ—Ⅱ段右侧设计定位轴肩,<由[2]P158表16-9>毡圈油封的轴径取d II-III=65mm由轴从轴承座孔端面伸出15-20mm,由结构定取L II-III=49。
(3)轴肩Ⅲ为非定位轴肩,<由[2]P14815-6初选角接触球轴承取d III-IV=70考虑轴承定位稳定,L III-IV略小于轴承宽度加挡油环长度取L III-IV=32。
(4)根据轴上零件(轴承)的定位要求及箱体之间关系尺寸取d IV-V =80m,L IV-V =79.5(5)轴肩Ⅴ、Ⅵ为定位轴肩,直径应大于安装于轴上齿轮内径6—10mm,且保证Δ≥10mm取d V-VI=88mm,L V-VI=8mm(6)Ⅵ—Ⅶ段安装齿轮,由低速级大齿轮内径取d VI-VII=75 d3=101.870mm d4=324.131mm=4b82mm=3b87mm ,考虑齿轮轴向定位,L VI-VII略小于齿宽,齿轮右端用套筒定位。
取L VI-VII =80m。
(7)轴肩Ⅶ至Ⅷ间安装深沟球轴承为6314AC取d VII-VIII =70m根据箱体结构取L VII-VIII=58轴上齿轮、半联轴器零件的周向定位均采用键联接。
由[2]P119表(11-5),取轴端倒角1.5×45 ,各轴肩处圆角半径R=1.6mm二、中速轴尺寸(1)确定各轴段直径d1=40mmd2 =50mmd3 =60mmd4=107mmd5=60mmd6=40mm(2)确定各轴段长度L1=45mmL2=52mmL3=7.5mmL4=87mmL5=8mmL6=32mm三、高速轴尺寸(1)确定各轴段直径d1=25mmd2 =32mmd3 =35mmd4=40mmd5=71.849mmd6=40mmd7=35mm(2)确定各轴段长度L1=56mmL2=58mmL3=18mmL4=112mmL5=60mmL6=8mmL7=30mm4.2 低速轴强度校核(左旋)1 ) 轴承所受的径向载荷F r 和轴向载荷Fa3035.1NFa2617.52N Fa14151.75N2,374.23031====,Fr N Fr2) 当量动载荷P 1和P 2低速轴轴承选用6314,由[1]p321表(13-6)得到2.1=p f已知3=ε,1=t f (常温)由[2]p145表(15-3)得到KN C KN Cr r 2.63,2.800==Fa1/Cor=0.010,由插值法并由[2]p144表(15-3),得到e=0.15 Fa1/Fr1=617.52/2303.374=0.26>e,由[1]p321表(13-5)得到 X=0.56,Y=2.5该轴强度合格2 窥视孔和视孔盖为便于观察齿轮啮合情况及注入润滑油,在箱体顶部设有窥视孔。
减速器课程设计说明书
减速器课程设计说明书篇一:减速器设计说明书(课程设计)学校:河南职业技术学院系别:机械电子工程系姓名:000000000000000班级:000000000000000学号:000000000000000指导老师:00000000000日期:0年0月0日- 0 -课程设计(论文)任务书- 1 -- 2 -注:1.此表由指导教师填写,经系、教研室审批,指导教师、学生签字后生效;2.此表1式3份,学生、指导教师、教研室各1份。
目录课程设计(论文)评阅表……………………………………Ⅰ课程设计(论文)任务书……………………………………Ⅱ 1、系统总体方案设计………………………………………1 1.1、电动机选择...................................................1 1.2、传动装置运动及动力参数计算...........................1 2、 V带传动的设计与计算....................................... 3 3、传动零件的设计计算..........................................4 3.1、高速级齿轮的设计..........................................4 3.2、低速级齿轮的设计..........................................8 4、轴的设计.........................................................12 4.1、高速轴的设计................................................12 4.2、中间轴的设计................................................14 4.3、低速轴的设计................................................17 5、键的设计与校核 (20)6、滚动轴承的选择与校核 (22)7、箱体及各部位附属零件的设计 (24)- 3 -设计总结与参考文献 (27)- 4 -篇二:一级圆柱齿轮机械设计基础课程设计说明书班级:木工113学号: 20XX020XX306姓名:高思思指导老师:完成日期: 20XX.6.17一级圆柱齿轮目录1. 摘要和关键词 (3)2. 设计任务书 (4)3. 传动方案的分析与拟定 (5)4. 电动机的选择计算 (5)5. 传动装置的运动及动力参数选择和计算 (6)6. 传动零件的设计计算 (7)7. 轴的设计计算 (10)8. 滚动轴承的选择和计算 (15)9. 键联接选择和计算......................................16 10.11.12.13.14.联轴器的选择........................................16 减速器的润滑方式和密封类型的选择....................17 箱体设计............................................17 设计小结............................................18 参考文献.. (18)带式输送机传动装置的设计摘要:齿轮传动是应用极为广泛和特别重要的一种机械传动形式,它可以用来在空间的任意轴之间传递运动和动力,目前齿轮传动装置正逐步向小型化,高速化,低噪声,高可靠性和硬齿面技术方向发展,齿轮传动具有传动平稳可靠,传动效率高(一般可以达到94%以上,精度较高的圆柱齿轮副可以达到99%),传递功率范围广(可以从仪表中齿轮微小功率的传动到大型动力机械几万千瓦功率的传动)速度范围广(齿轮的圆周速度可以从0.1m/s到200m/s或更高,转速可以从1r/min到20XX0r/min或更高),结构紧凑,维护方便等优点。
机械原理课程设计—减速器设计说明书(word版)
机械设计课程设计计算说明书设计题目______________减速器设计_____________ _农业机械_院(系) _07级3 __ 班设计者______________ ________________指导老师____________________________________2009______年____06____月____29____日________ KMUST________目录第一部分设计任务书----------------------------------------------------------------3第二部分电传动方案的分析与拟定---------------------------------------------------5第三部分电动机的选择计算----------------------------------------------------------6第四部分各轴的转速、转矩计算------------------------------------------------------7第五部分联轴器的选择-------------------------------------------------------------9第六部分锥齿轮传动设计---------------------------------------------------------10第七部分链传动设计--------------------------------------------------------------12第八部分斜齿圆柱齿轮设计-------------------------------------------------------14第九部分轴的设计----------------------------------------------------------------17第十部分轴承的设计及校核-------------------------------------------------------20第十一部分高速轴的校核---------------------------------------------------------22第十二部分箱体设计---------------------------------------------------------------23第十三部分设计小结---------------------------------------------------------------24第一部分设计任务书1.1 机械设计课程的目的机械设计课程设计是机械类专业和部分非机械类专业学生第一次较全面的机械设计训练,是机械设计和机械设计基础课程重要的综合性与实践性教学环节。
减速器设计计算及说明书
减速器设计计算及说明书
目录
一、总体方案设计 (1)
二、运动参数设计 (2)
三、主要零件的计算 (6)
四、减速器的润滑、密封及装油量的计算 (23)
一、总体方案设计
二、运动参数设计
=65r/min
所选电动机的额定功率,取,选择电动机三相异步电动机,其额定转速
三、主要零件的计算
按图6-7MQ线查得轮齿弯曲疲劳极限应力为:,。
,;
,
,则
查图6-16,得两轮复合齿形系数为,,
代入计算,于是
;按图6-7MQ线查得轮齿弯曲疲劳极限应力为:
,;
,
,则
;弹性系数查表
取a=210mm,按经验式,取。
,。
,
四、减速器的润滑、密封及装油量的计算
时,轴承可选用油润滑润滑,通过在箱体上开油沟以达到润)飞溅润滑:当齿轮圆周速度
)刮板润滑:当齿轮圆周速度很低(。
机械设计基础课程设计减速器的说明书
机械设计基础课程设计减速器的说明书机械设计基础课程设计减速器的说明书一、设计背景减速器是机械传动系统中常用的一种装置,用于降低驱动设备的转速并提高输出扭矩。
在机械设计基础课程中,学生需要通过设计一个减速器来理解和应用各种机械元件的原理和设计方法。
本说明书旨在介绍该减速器的设计原理、结构、材料和性能等方面的内容。
二、设计原理该减速器采用齿轮传动的原理实现减速功能。
通过齿轮的啮合,将输入轴的高速旋转转换为输出轴的低速旋转。
设计中需要考虑齿轮的模数、齿数、螺旋角等参数,以及齿轮的材料和硬度等。
三、结构设计该减速器的结构包括输入轴、输出轴、齿轮、轴承和外壳等主要部件。
输入轴通过轴承固定在外壳上,输出轴与输入轴通过齿轮相连。
齿轮通过齿轮轴和轴承固定在外壳内。
四、材料选择为了确保减速器的稳定性和耐用性,设计中需要选用适当的材料。
通常情况下,输入轴和输出轴可以选用高强度的合金钢,齿轮可以选用优质的硬质合金钢,轴承可以选用耐磨损的滚珠轴承。
五、性能要求设计中需要考虑减速器的性能要求,包括承载能力、传动效率、噪音和寿命等方面。
减速器应能承受输入扭矩,并保证输出扭矩的稳定性。
传动效率应尽可能高,噪音应尽可能低,并保证减速器的使用寿命。
六、安全注意事项在使用和维护减速器时,需要注意以下事项:1. 定期检查减速器的工作状态,发现异常应及时处理。
2. 避免过载使用减速器,以免导致损坏。
3. 维护时应使用适当的润滑油,确保齿轮和轴承的正常润滑。
4. 使用前应确保减速器的安装牢固,防止产生松动或脱落。
七、总结通过本减速器的设计,学生可以深入了解减速器的原理和设计方法,并通过实际操作提高其机械设计的能力。
减速器是各种机械设备中不可或缺的重要部件,其设计和使用对机械系统的正常运行至关重要。
希望通过本课程设计能够培养学生的综合能力和创新思维。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录目录 (1)设计原始数据 (1)第一章传动装置总体设计方案 (1)1.1 传动方案 (1)1.2 该方案的优缺点 (1)第二章电动机的选择 (3)2.1 计算过程 (3)2.1.1 选择电动机类型 (3)2.1.2 选择电动机的容量 (3)2.1.3 确定电动机转速 (3)2.1.4 二级减速器传动比分配 (4)2.1.5 计算各轴转速 (4)2.1.6 计算各轴输入功率、输出功率 (5)2.1.7 计算各轴的输入、输出转矩。
(5)2.2 计算结果 (6)第三章带传动的设计计算 (7)3.1 已知条件和设计内容 (7)3.2 设计步骤 (7)3.3 带传动的计算结果 (9)第四章齿轮传动的设计计算 (10)4.1高速级齿轮传动计算 (10)4.2低速级齿轮传动计算 (14)第五章轴的结构设计 (19)5.1 初步估算轴的直径 (19)5.2 初选轴承 (19)5.3 轴的各段直径和轴向尺寸 (20)5.4 联轴器的选择 (21)第六章轴、轴承及键联接的校核计算 (22)6.1 轴强度的校核计算 (22)6.1.1 轴的计算简图 (22)6.1.2 弯矩图 (22)6.1.3 扭矩图 (23)6.1.4 校核轴的强度 (23)6.2 键联接选择与强度的校核计算 (24)第七章箱体的结构设计以及润滑密封 (25)7.1 箱体的结构设计 (25)7.2 轴承的润滑与密封 (26)设计小结 (27)参考文献 (28)设计原始数据第一章传动装置总体设计方案1.1 传动方案传动方案已给定,外传动为V带传动,减速器为二级展开式圆柱齿轮减速器。
方案简图如1.1所示。
图 1.1 带式输送机传动装置简图展开式由于齿轮相对于轴承为不对称布置,因而沿齿向载荷分布不均,故要求轴有较大的刚度。
1.2 该方案的优缺点该工作机有轻微振动,由于V带有缓冲吸振能力,采用 V带传动能减小振动带来的影响,并且该工作机属于小功率、载荷变化不大,可以采用V 带这种简单的结构,并且价格便宜,标准化程度高,大幅降低了成本。
减速器部分两级展开式圆柱齿轮减速,这是两级减速器中应用最广泛的一种。
齿轮相对于轴承不对称,要求轴具有较大的刚度。
高速级齿轮常布置在远离扭矩输入端的一边,以减小因弯曲变形所引起的载荷沿齿宽分布不均现象。
原动机部分为 Y系列三相交流异步电动机。
总体来讲,该传动方案满足工作机的性能要求,适应工作条件、工作可靠,此外还结构简单、尺寸紧凑、成本低传动效率高。
第二章 电动机的选择2.1 计算过程2.1.1 选择电动机类型按工作要求和工况条件,选用三相笼型异步电动机,电压为 380V ,Y 型。
2.1.2 选择电动机的容量电动机所需的功率为kW Fvp p aawd ηη==由电动机到运输带的传动总效率为5423421ηηηηηη⋅⋅⋅⋅=a式中1η、2η、3η、4η、5η分别为带传动、轴承、齿轮传动、联轴器和卷筒的传动效率。
取=1η0.95(带传动),=2η0.98(角接触球轴承),=3η0.97(齿轮精度为 7 级),=4η0.99(弹性联轴器),=5η0.96(卷筒效率,已知),则:5423421ηηηηηη⋅⋅⋅⋅=a =0.83所以ad Fvp η==10.57 kW根据机械设计手册可选额定功率为11 kW 的电动机。
2.1.3 确定电动机转速卷筒轴转速为Dvn π100060⨯==52.52 min /r取 V 带传动的传动比4~21='i ,二级圆柱齿轮减速器传动比20~82='i ,则从电动机到卷筒轴的总传动比合理范围为80~16='a i 。
故电动机转速的可选范围为⨯=⋅'=')80~16(n i n a d52.52 =840 —8403 r/min 综合考虑电动机和传动装置的尺寸、重量和带传动、减速器的传动比,选电动机型号为Y160M-4,将总传动比合理分配给 V 带传动和减速器,就得到传动比方案,如表2.1所示。
表2.1 电动机主要技术参数电动机型号为Y160M-4,主要外形尺寸见表 2.2。
图2.1 电动机安装参数 表2.2 电动机主要尺寸参数2.1.4 二级减速器传动比分配按展开二级圆柱齿轮减速器推荐高速级传动比21)5.1~3.1(i i =,取214.1i i =,得==i i 4.11 3.14所以==12i i i 2.242.1.5 计算各轴转速Ⅰ轴 ==1i n n m370.14 m in /rⅡ轴 ==112i n n 117.84 m in /r Ⅲ轴 ==223i n n 52.52 m in /r 卷筒轴 ==34n n 52.52 m in /r 2.1.6 计算各轴输入功率、输出功率各轴输入功率Ⅰ轴 1P =d P 1η=10.04 KW Ⅱ轴 2P =1P 2η3η=9.54 KW Ⅲ轴 3P =2P 2η3η=9.07 KW 卷筒轴 =4 P 3P 2η4η=8.80 KW 各轴输出功率Ⅰ轴 1P '=d P 2η=9.84 KW Ⅱ轴 2P '=1P 2η=9.35 KW Ⅲ轴 3P '=2P 2η=8.89 KW 卷筒轴 4P '=3P 2η=8.62 KW 2.1.7 计算各轴的输入、输出转矩。
电动机的输出转矩d T 为=⨯=mdd n p T 61055.969.11 mm N ⋅ Ⅰ轴输入转矩=⨯=11611055.9n p T 258.98 mm N ⋅ Ⅱ轴输入转矩=⨯=22621055.9n p T 773.29 mm N ⋅ Ⅲ轴输入转矩=⨯=33631055.9n p T 1649.26 mm N ⋅卷筒轴输入转矩=⨯=44641055.9n p T 1600.12 mm N ⋅ 各轴的输出转矩分别为各轴的输入转矩乘轴承效率0.98。
2.2 计算结果运动和动力参数计算结果整理后填入表 2.3中。
表 2.3 运动和动力参数计算结果第三章 带传动的设计计算3.1 已知条件和设计内容设计V 带传动时的已知条件包括:带传动的工件条件;传动位置与总体尺寸限制;所需传递的额定功率P ;小带轮转速1n ;大带轮带轮转速2n 与传动比i 。
3.2 设计步骤(1)确定计算功率ca p查得工作情况系数K A =1.1。
故有: ca p ==D A P K 11.62 kW (2)选择V 带带型 据ca p 和n 选用A 带。
(3)确定带轮的基准直径d d 并验算带速1)初选小带轮的基准直径d d ,取小带轮直径1d d =90mm 。
2)验算带速v ,有: 10006001⨯⨯⨯=n d v d π=6.88 m/s因为6.88 m/s 在5m/s —30m/s 之间,故带速合适。
3)计算大带轮基准直径2d d=⨯=1d 2d i d d 360mm 取2d d =355mm (4)确定V 带的中心距a 和基准长度d L 1)初定中心距a 0=534mm 2)计算带所需的基准长度22121004)()(22a d d d d a L d d d d d -+++≈π=1800mm选取带的基准长度d L =1800mm 3)计算实际中心距 20d d L L a a -+≈≈534m 中心局变动范围:=-=d a a 015.0m in 507.00 mm =+=d a a 03.0m ax 588.00 mm (5)验算小带轮上的包角=⨯--=︒︒ad d d d 3.57)(18012α151.56 ︒>120︒(6)计算带的根数z1)计算单根V 带的额定功率r P 由=1d d 90mm 和=0n 1460.00 r/min 查得 P 0=1.07KW据n 0=1460.00 r/min ,i=3.944444444和A 型带,查得 ∆P 0=0.17KW查得αK =0.92,L K =1.01,于是: r P =(0P +∆0P )⨯L K ⨯αK =1.15 KW 2)计算V 带根数z ==rcaP p Z 10.09 故取11根。
(7)计算单根V 带的初拉力最小值min 0)(F查得A 型带的单位长质量q=0.1kg/m 。
所以 2m in 0)5.2(500)(qv vz K P K F ca+⨯⨯-⨯=αα=136.60 N应使实际拉力0F 大于min 0)(F (8)计算压轴力p F 压轴力的最小值为:min )(p F =2sin )(2m in 0aF z=2913.24 N3.3 带传动的计算结果把带传动的设计结果记入表中,如表 3.1。
表 3.1 带传动的设计参数第四章 齿轮传动的设计计算4.1高速级齿轮传动计算选用斜齿圆柱齿轮,齿轮1材料为40Cr (调质),硬度为280HBS ,齿轮2材料为45钢(调质)硬度为240HBS 。
齿轮1齿数17,齿轮2齿数54,初选螺旋角︒=14β。
按齿面接触强度: 齿轮1分度圆直径3211][12⎪⎪⎭⎫⎝⎛+≥H EH d t t Z Z u u T K d σεφα其中:t K ——载荷系数,选=t K 1.6d φ——齿宽系数,取=d φ1αε——端面重合度,21αααεεε+=,查得=1αε0.75,=2αε0.84,则=αε 1.59u ——齿轮副传动比,=u 3.14H Z ——区域系数,查得=H Z 2.433E Z ——材料的弹性影响系数,查得=E Z 189.821MPa[]H σ——许用接触应力,[][][]221H H H σσσ+=查得齿轮1接触疲劳强度极限=1lim H σ700MPa 。
查得齿轮2接触疲劳强度极限=2lim H σ650MPa 。
计算应力循环次数:(设两班制,一年工作300天,工作20年)h jL n N 1160=81097.1)2030082(119.3460⨯=⨯⨯⨯⨯⨯⨯=782109.921097.1⨯=⨯=N查得接触疲劳寿命系数=1HN K 0.93,=2HN K 0.95取失效概率为%1,安全系数=S 1,得:[]==SK H HN H 1lim 11σσ651MPa[]==S K H HN H 2lim 22σσ617.5MPa则许用接触应力[][][]221H H H σσσ+==634.25MPa有=⎪⎪⎭⎫ ⎝⎛+≥3211][12H E H d t t Z Z u u T K d σεφα71.87 mm 圆周速度=⨯=10006011n d v t π 1.54 s m /齿宽==t d d b 1φ71.87 mm模数==11cos z d m t nt β4.10 mm ==nt m h 25.29.23 mm=h b /7.79纵向重合度==βφεβtan 318.01z d 1.35计算载荷系数K :已知使用系数=A K 1;根据=v 1.39 s m /,7级精度,查得动载系数=v K 1.04;用插值法查得7级精度、齿轮1相对支承非对称布置时接触疲劳强度计算用的齿向载荷分布系数=βH K 1.42 ;查得弯曲强度计算齿向载荷分布系数=βF K 1.3; 查得齿间载荷分配系数==ααF H K K 1.2; 故载荷系数==βαH H v A K K K K K 1.78按实际载荷系数校正所算的分度圆直径==311tt K Kd d 42.27 mm 计算模数n m :==11cos z d m n β4.25 mm 按齿根弯曲强度:[]32121cos 2FSaFa d n Y Y z Y KT m σεφβαβ⋅≥ 计算载荷系数==βαF F v A K K K K K 1.62根据纵向重合度=βε 1.35 ,查得螺旋角影响系数=βY 0.88 计算当量齿数==β311cos z z v 18.61 ==β322cos z z v 59.11 查取齿形系数:查得=1Fa Y 2.84 ,=2Fa Y 2.28 查取应力校正系数: =1Sa Y 1.54,=2Sa Y 1.727 查得齿轮1弯曲疲劳极限=1FE σ625MPa 查得齿轮2弯曲疲劳极限=2FE σ625MPa 取弯曲疲劳寿命系数=1FN K 0.93,=2FN K 0.95 计算弯曲疲劳使用应力:取弯曲疲劳安全系数=S 1.4,得[]==SK FE FN F 111σσ415.18 MPa[]==SK FE FN F 222σσ424.11 MPa计算齿轮1的[]F SaFa Y Y σ并加以比较[]=111F Sa Fa Y Y σ0.0105[]=222F Sa Fa Y Y σ0.0093齿轮2的数值大 则有:[]=⋅≥32121cos 2FSaFa d n Y Y z Y KT m σεφβαβ 2.53 mm 对比计算结果,由齿面接触疲劳强度计算的法面模数n m 大于由齿根弯曲疲劳强度计算的法面模数,取模数=n m 3mm ,已可满足弯曲强度。