全等三角形110

合集下载

全等三角形的判定和性质

全等三角形的判定和性质

全等三角形的判定和性质在初中数学的学习中,全等三角形是一个非常重要的概念。

它不仅在几何证明中经常出现,而且对于培养我们的逻辑思维和空间想象力也有着重要的作用。

接下来,让我们一起深入了解全等三角形的判定和性质。

一、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。

全等用符号“≌”表示,读作“全等于”。

比如,三角形 ABC 全等于三角形 DEF,记作“△ABC≌△DEF”。

二、全等三角形的性质1、全等三角形的对应边相等这意味着,如果△ABC ≌△DEF,那么 AB = DE,BC = EF,AC = DF。

2、全等三角形的对应角相等即∠A =∠D,∠B =∠E,∠C =∠F。

3、全等三角形的对应线段(角平分线、中线、高)相等例如,如果两个三角形全等,那么它们对应的角平分线长度相等,对应的中线长度相等,对应的高的长度也相等。

4、全等三角形的周长相等、面积相等因为全等三角形的对应边相等,所以它们的周长必然相等。

而由于对应边和对应高都相等,根据三角形面积公式(面积=底×高÷2),可得它们的面积也相等。

三、全等三角形的判定1、 SSS(边边边)如果两个三角形的三条边分别对应相等,那么这两个三角形全等。

例如,在△ABC 和△DEF 中,AB = DE,BC = EF,AC = DF,那么就可以判定△ABC ≌△DEF。

2、 SAS(边角边)如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形全等。

比如,在△ABC 和△DEF 中,AB = DE,∠B =∠E,BC = EF,那么△ABC ≌△DEF。

3、 ASA(角边角)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。

假设在△ABC 和△DEF 中,∠A =∠D,AB = DE,∠B =∠E,就能够得出△ABC ≌△DEF。

4、 AAS(角角边)如果两个三角形的两个角和其中一个角的对边分别对应相等,那么这两个三角形全等。

全等三角形(知识点讲解)

全等三角形(知识点讲解)

全等三角形(知识点讲解)全等三角形(知识点讲解)全等三角形是初中数学中的重要概念,也是几何学中的核心内容之一。

在这篇文章中,我们将从定义、判定全等三角形的条件以及全等三角形的性质等方面进行讲解。

一、全等三角形的定义全等三角形指的是具有完全相同的三边和三角的三角形。

简而言之,在几何学中,当两个三角形的对应边长相等、对应角度相等时,我们称这两个三角形是全等的。

二、全等三角形的判定条件为了判断两个三角形是否全等,我们有以下几个常用的判定条件:1. SSS判定法:即边-边-边判定法。

当两个三角形的三条边分别相等时,它们就是全等的。

2. SAS判定法:即边-角-边判定法。

当两个三角形的一对夹角和夹角两边分别相等时,它们就是全等的。

3. ASA判定法:即角-边-角判定法。

当两个三角形的一对夹角和夹角对边分别相等时,它们就是全等的。

4. AAS判定法:即角-角-边判定法。

当两个三角形的两对夹角和一个非夹角边分别相等时,它们就是全等的。

需要注意的是,这些判定条件是相互独立的,即只要满足其中一种条件,就可以判定两个三角形是全等的。

三、全等三角形的性质全等三角形具有以下重要性质:1. 对应边对应角相等性质:全等三角形的对应边对应角相等。

即若∆ABC≌∆DEF,那么 AB = DE, AC = DF, BC = EF,并且∠A = ∠D,∠B = ∠E, ∠C = ∠F。

2. 全等三角形的任意一角都与对应角相等:即若∆ABC≌∆DEF,那么∠A = ∠D, ∠B = ∠E, ∠C = ∠F。

3. 全等三角形的任意一边都与对应边相等:即若∆ABC≌∆DEF,那么 AB = DE, AC = DF, BC = EF。

4. 全等三角形的外角相等:即若∆ABC≌∆DEF,那么∠BAC =∠EDF, ∠ABC = ∠DEF, ∠ACB = ∠DFE。

通过以上性质,我们可以进行全等三角形的各种推理和计算。

四、全等三角形的应用全等三角形在几何学的应用非常广泛。

证明全等三角形的公式

证明全等三角形的公式

证明全等三角形的公式全等三角形是初中数学中非常重要的一个概念,要证明两个三角形全等,那可是有不少公式和方法的。

首先咱们来说说“边边边”(SSS)这个公式。

如果两个三角形的三条边都分别相等,那这两个三角形就是全等的。

比如说有两个三角形,一个三角形的三条边分别是 3 厘米、4 厘米、5 厘米,另一个三角形的三条边也是 3 厘米、4 厘米、5 厘米,那这俩三角形肯定长得一模一样,完全重合,这就是全等啦。

再来讲讲“边角边”(SAS)。

如果两个三角形的两条边及其夹角分别相等,那它们也是全等的。

我给您举个例子啊,就像咱们学校组织的那次三角形模型制作比赛。

有两个小组做的三角形模型,其中一组的模型两条边分别是 6 厘米和 8 厘米,夹角是 60 度;另一组做的也是这两条边长度分别是 6 厘米和 8 厘米,夹角同样是 60 度。

最后评比的时候发现,这两个模型的形状完全一样,这不就是“边角边”证明全等的一个生动体现嘛。

接着是“角边角”(ASA)。

当两个三角形的两个角及其夹边分别相等时,它们全等。

我记得有一次我在课堂上讲这个知识点的时候,有个同学就问我:“老师,这和‘边角边’有啥区别呀?”我就跟他说:“你看啊,‘边角边’是两条边和它们的夹角,‘角边角’是两个角和它们的夹边,顺序可不一样哟。

”还有“角角边”(AAS),两个三角形的两个角和其中一个角的对边分别相等时,它们全等。

这个理解起来也不难,就像我们拼图的时候,知道了几个关键的角度和一条对应的边,就能把整个图形确定下来。

在实际做题的时候,咱们得灵活运用这些公式。

有时候题目不会直接告诉我们边或者角相等,这就需要我们通过一些已知条件去推导。

比如说给了我们平行线,那就能得出同位角、内错角相等;给了我们中线,那就能得出线段相等。

我还记得之前有个学生,在做证明全等三角形的题目时总是出错。

我就专门给他找了一些类似的题目,陪着他一道一道地分析,告诉他怎么找条件,怎么运用公式。

最后他终于掌握了,那开心的样子,让我也特别有成就感。

初中数学《全等三角形》课件PPT

初中数学《全等三角形》课件PPT
(来自《点拨》)
知2-练
1 说出图12.1-2 (2)、图12.1-2 (3)中两个全等三角形 的 对应边、对应角.
(2)(3)图 1源自.1-2(来自教材)知2-练
解:在教材图12.12(2)中,AB和DB,BC和BC,AC和 DC是对应边;∠A和∠D,∠ABC和∠DBC, ∠ACB和∠DCB是对应角. 在教材图12.12(3)中,AB和AD,BC和DE,AC和 AE是对应边;∠BAC和∠DAE,∠B和∠D,∠C 和∠E是对应角.
知1-导
知1-讲
一个图形经过平移,翻折,旋转后,位置变化了, 但_形_状_和_大_小_都没有改变,即平移,翻折, 旋转前后的图形___完__全__重__合__ . 定义 形状、大小相同的图形放在一起能够完全重合.
能够完全重合 的两个图形叫做全等形.
(来自《教材》)
知1-讲
例1 下列图中是全等形是 ①和⑨、②和③、④和⑧、⑪和⑫ .
例2 如图,已知△ABD≌△CDB,∠ABD=∠CDB, 写出其对应边和对应角.
知2-讲
导引:在△ABD和△CDB中,∠ABD=∠CDB,则 ∠ABD,∠CDB所对的边AD与CB是对应边,公共 边BD与DB是对应边,余下的一对边AB与CD是对 应边.由对应边所对的角是对应角可确定其他两组 对应角.
(来自《典中点》)
知1-练
3 下列说法:①两个图形全等,它们的形状相同;
②两个图形全等,它们的大小相同;③面积相
等的两个图形全等;④周长相等的两个图形全
等.其中正确的个数为( B )
A.1个
B.2个
C.3个
D.4个
(来自《典中点》)
知识点 2 全等三角形及对应元素
知2-导
能够完全重合的两个三角形,叫做_全__等__三__角__形___.

《全等三角形》课件

《全等三角形》课件
当两个三角形的顶角和底边相等时,并且两条边有可比长,那么它们就是全等的。
全等三角形的基本性质
1
全等三角形的所有内角相等
在全等三角形中,所有角度都是相等的。
2
全等三角形的对应边相等
在全等三角形中,对应的边都是相等的。
3
全等三角形的对应高度相等
在全等三角形中,对应的高度(垂直于底边的线段)也是相等的。
全等三角形的应用
全等三角形的概念在几何学和实际生活中具有广泛的应用。 • 在建筑设计中,全等三角形帮助确定平面图中房屋的比例。 • 在地图制作中,全等三角形用于测量和标记距离和方向。 • 在工程中,全等三角形可用于测量物体和地形的高度和间距。
全等三角形的例题
例题1
已知两个三角形的三边分别为AB, AC和BC,DE, DF 和EF。如果AB = DE, AC = DF, BC = EF,则三角形ABC 全等于三角形DEF。
角角边(ASA)判定法
当两个三角形的两个角和一个边以及它们对应 的边相等时,它们就是全等的。
直角边(HL)判定法
当两个直角三角形的一条直角边和它们对应的 斜边相等时,它们就是全等的。
全等三角形的性质
等边三角形
全等三角形的特例,三条边都相等。
等腰三角形
全等三角形的另一个特例,两条边相等。
直角三角形
全等三角形可以是直角三角形。
多边形的全等
全等的概念也可以应用到多边形上。
全等三角形的判定条件
除了通过SSS、ASA、AAS和HL判定法,我们还可以通过侧角边(SAS)和顶角和底边(VERT)来判 定全等三角形。
1 SAS判定法
当两个三角形的一条边和两个非包含边的夹角以及它们对应的边相等时,它们就是全等 的。

《全等三角形》讲义(完整版)

《全等三角形》讲义(完整版)

全等三角形讲义一、知识点总结全等三角形定义:形状大小相同,并且能够完全重合的两个三角形叫做全等形三角形。

:形状大小相同,并且能够完全重合的两个三角形叫做全等形三角形。

补充说明:重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

:重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等:全等三角形的对应边相等,全等三角形的对应角相等 全等三角形判定定理:(1)边边边定理:三边对应相等的两个三角形全等。

(简称SSS ) (2)边角边定理:两边和它们的夹角对应相等的两个三角形全等。

)边角边定理:两边和它们的夹角对应相等的两个三角形全等。

((简称SAS) (3)角边角定理:两角和它们的夹边对应相等的两个三角形全等。

(简称ASA ASA)) (4)角角边定理:两个角和其中一个角的对边对应相等的两个三角形全等。

(简称AAS AAS)) (5)斜边、直角边定理:斜边和一条直角边对应相等的两个直角三角形全等。

(简称HL HL)) 角平分线的性质:在角平分线上的点到角的两边的距离相等在角平分线上的点到角的两边的距离相等. .∵OP 平分∠平分∠AOB AOB AOB,,PM PM⊥⊥OA 于M ,PN PN⊥⊥OB 于N ,∴PM=PN 角平分线的判定:到角的两边距离相等的点在角的平分线上到角的两边距离相等的点在角的平分线上. .∵PM PM⊥⊥OA 于M ,PN PN⊥⊥OB 于N ,PM=PN ∴OP 平分∠平分∠AOB AOB三角形的角平分线的性质:三角形三个内角的平分线交于一点,并且这一点到三边的距离等。

二、典型例题举例A BC PMNO A BCPMN O例1、如图,△ABN ≌△ACM,∠B 和∠C 是对应角,AB 与AC 是对应边,写出其他对应边和对应角.例2、如图,△、如图,△ABC ABC 是一个钢架,是一个钢架,AB=AC AB=AC AB=AC,,AD 是连结点A 与BC 中点D 的支架.的支架.求证:△求证:△ABD ABD ABD≌△≌△≌△ACD ACD ACD..例3、已知:点A 、F 、E 、C 在同一条直线上,AF =CE ,BE ∥DF ,BE =DF . 求证:△ABE ≌△CDF .例4、如图:、如图:D D 在AB 上,上,E E 在AC 上,上,AB AB AB==AC AC,∠,∠,∠B B =∠=∠C C .求证AD AD==AE AE..例5、如图:∠、如图:∠1=1=1=∠∠2,∠,∠3=3=3=∠∠4 求证:求证:AC=AD AC=AD例6、如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,AB=DC ,BE=CF ,你认为AB 平行于CD 吗?说说你的理由吗?说说你的理由D CB ACADB123 4例7、如图1,△ABC 的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断△ABC 与△AEG 面积之间的关系,并说明理由.例8、如图,OC 是∠AOB 的平分线,P 是OC 上的一点,PD ⊥OA 交OA 于D ,PE ⊥OB 交OB 于E ,F 是OC 上的另一点,连接DF ,EF ,求证DF =EF例9、如图,△ABC 中,AD 是它的角平分线,P 是AD 上的一点,PE ∥AB 交BC 于E ,PF ∥AC 交BC 于F ,求证:D 到PE 的距离与D 到PF 的距离相等的距离相等例10、如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是282cm ,AB =20cm ,AC =8cm,求DE 的长.AGF CBDE图1AEB DCFAB CDED C EF BA 例10、已知:BE ⊥CD ,BE =DE ,BC =DA ,求证:①,求证:① △BEC ≌△DAE ;②DF ⊥BC .例11、如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C ,D 是垂足,连接CD ,求证:(1)∠ECD=∠EDC ;(2)OD=OC ;(3)OE 是CD 的中垂线.三、专题版块三、专题版块 专题一:专题一: 全等三角形的判定和性质的应用全等三角形的判定和性质的应用例1、如图,在△ABC 中,AB=AC , BAC=40°,分别以AB AB、AC 为边作两个等腰三角形ABD 和ACE ACE,使∠,使∠BAD=∠CAE=90°.(1)求∠DBC 的度数.(2)求证:BD=CE.例2、如图,A B ∥CD,AF CD,AF∥∥DE,BE=CF,DE,BE=CF,求证:求证:求证:AB=CD. AB=CD.例3、如图在△ABC 中,BE 、CF 分别是AC 、AB 边上的高,在BE 延长线上截取BM =AC ,在CF 延长线上截到CN =AB ,求证:AM =AN 。

《全等三角形》ppt课件

人教版八年级数学上册 第十二章全等三角形
12.1 全等三角形
教学环节
2
导入新课
观察与思考 问题1: 观察思考:每组中的两个图形有什么特点?
问题2: 观察思考:每组中的两个图形有什么特点?
3
知识讲解
全等图形的定义及性质
全等图形的定义: 能够完全重合的两个图形叫做全等图形.
全等图形的性质: 如果两个图形全等,它们的形状和大小一定都相同.
4
找一找
下面哪些图形是全等图形?
大小、形状
完全相同
(1)
(3)
(2)
(5) (9)
(6)
(7)
(10)
(11)
(12)
5
全等三角形的定义及性质
A
B
E
F
像上图一样,把△DEF叠到△ABC上,能够完
全重合的两个三角形,叫作全等三角形,
把两个全等的三角形重叠到 一起时,重合的顶点叫作对 应顶点,重合的边叫作对应 边,重合的角叫作对应角.
“全等”用符号“≌ ”表示,读作“全等于”
A
F
B
CD
E
C≌ FDE
注意: 记两个三角形全等时,通常把表示对应顶点的 字母写在对应的位置上.
9
全等三角形的性质
思考:下图中△ABC≌△DEF , 对应边有什么关系? 对应角呢?
B
D
E
全等三角形的对应边相等; 全等三角形的对应角相等.
10
◆全等三角形的性质的几何语言
∵△ABC ≌△FDE ∴A B=FD,A C=FE,BC=DE
∠A=∠F,∠B=∠D,∠Cபைடு நூலகம்∠E
(全等三角形对应边相等) (全等三角形对应角相等)

《全等三角形》PPT课件


∠ACB= ∠AED.
规律三:有公共角的,公共角是对应角
先写出全等式,再指出 它们的对应边和对应角
A ∵△ABC≌△FDE
E B
∴AB=FD,AC=FE,
BC=DE
∴∠A=∠F, ∠B=∠D, ∠ACB= ∠FED.
D
C
规律四:一对最长的边是对应边
一对最短的边是对应边
规律五:一对最大的角是对应角
F
∠ACB与∠DBC是对应角
例题讲解,掌握新知
图中△ABO≌△DCO, A 试写出这两个三角形中 相等的边和相等的角。
D O
B
C
解:∵△ABO≌△DCO
∴AB=DC,BO=CO,AO=DO
∠A=∠ D,∠ABO=∠DCO,
∠AOB=∠DOC
先写出全等式,再指出
它们的对应边和对应角
A
D
C
E
B
F
∵△ACB≌△DEF
一对最小的角是对应角
1.有公共边的,公共边一定是对应边。
2.有对顶角的,对顶角一定是对应角。
3.有公共角的,公共角一定是对应角。
4.对应角所对的边是对应边,对应边 所对的角是对应角.
5.在两个全等三角形中最长边对最长边, 最短边对最短边,最大角对最大角,最 小角对最小角。
找出下列全等三角形的对应边、对应角
A
如图:∵△ABC≌ △DFE
B
C
∴ AB=DF, BC=FE, AC=DE
D
∵△ABC≌ △DFE
F
E
∴∠A=∠D,∠B=∠F,∠C=∠E
例题讲解,掌握新知
如图, △ABC≌△DCB,A
D
指出所有的对应边和
对应角。

《全等三角形》ppt课件

《全等三角形》ppt课件•全等三角形基本概念与性质•判定全等三角形方法探讨•辅助线在证明全等过程中作用•相似三角形与全等三角形关系探讨目录•生活中全等三角形应用举例•总结回顾与拓展延伸全等三角形基本概念与性质全等三角形定义及判定方法定义SSS(边边边)SAS(边角边)HL(斜边、直角边)ASA(角边角)AAS(角角边)对应边相等对应角相等对应关系确定030201对应边、对应角关系全等三角形性质总结判定全等三角形方法探讨SSS判定法定义应用举例注意事项应用举例SAS判定法定义在证明两个三角形全等时,若已知两边及夹角相等,则可直接应用SAS判定法。

注意事项ASA判定法定义AAS判定法定义比较分析案例分析01020304ASA和AAS判定法比较与案例分析辅助线在证明全等过程中作用构造辅助线策略与技巧分享观察图形特征在证明全等三角形时,首先要仔细观察图形,分析已知条件和目标结论,从而确定需要构造的辅助线类型。

利用基本图形熟悉并掌握一些基本图形(如角平分线、中线、高线等)的性质,可以帮助我们更快地构造出合适的辅助线。

构造平行线或垂直线根据题目条件,有时需要构造平行线或垂直线来利用相关性质进行证明。

典型辅助线构造方法剖析角平分线法01中线法02高线法03复杂图形中辅助线应用实例在复杂图形中,有时需要综合运用多种辅助线构造方法才能解决问题。

例如,可以先构造角平分线,再利用中线或高线的性质进行证明。

在一些特殊情况下,可能需要构造多条辅助线才能找到解决问题的突破口。

这时需要仔细分析图形特点,灵活运用所学知识进行构造和证明。

通过学习和掌握典型辅助线的构造方法和应用实例,可以提高学生的几何思维能力和解决问题的能力,为后续的数学学习打下坚实的基础。

相似三角形与全等三角形关系探讨性质面积比等于相似比的平方。

定义:两个三角形如果它们的对应角相等,则称这两个三角形相似。

周长比等于相似比;010203040506相似三角形定义及性质回顾相似三角形判定方法简介预备定理判定定理1判定定理2判定定理3相似三角形与全等三角形联系和区别联系区别全等三角形的性质在相似三角形中同全等三角形的性质更为严格和具体,而相似三角形的性质相对较为宽松和生活中全等三角形应用举例建筑设计中全等三角形应用稳定性美学效果美术创作中全等三角形构图技巧平衡感动态感其他领域(如工程、测量)中全等三角形应用工程测量机械设计地图制作总结回顾与拓展延伸全等三角形的判定方法熟练掌握SSS、SAS、ASA、AAS及HL等全等三角形的判定方法。

(完整版)全等三角形证明经典100题

1.已知: AB=4 ,AC=2 , D 是 BC 中点, AD 是整数,求 AD AB CD12. 已知: D 是 AB 中点,∠ ACB=90 °,求证:CD AB2ADC B3.已知: BC=DE ,∠ B= ∠E,∠ C= ∠ D, F 是 CD 中点,求证:∠ 1=∠ 2A21B EC F D4.已知:∠ 1=∠ 2, CD=DE , EF//AB ,求证: EF=ACA12FCDEB5.已知: AD 均分∠ BAC , AC=AB+BD ,求证:∠ B=2 ∠ CACB D6.已知: AC 均分∠ BAD , CE⊥ AB ,∠ B+ ∠D=180 °,求证: AE=AD+BE7.已知: AB=4 ,AC=2 , D 是 BC 中点, AD 是整数,求 AD AB CD8. 已知: D 是 AB 中点,∠ ACB=90 °,求证:CD 1 AB2ADC B9.已知: BC=DE ,∠ B= ∠E,∠ C= ∠ D, F 是 CD 中点,求证:∠ 1=∠ 2A21B EC F D10. 已知:∠ 1=∠ 2, CD=DE , EF//AB ,求证: EF=ACA12FCDEB11.已知: AD 均分∠ BAC , AC=AB+BD ,求证:∠ B=2 ∠ CACB D12. 已知: AC 均分∠ BAD , CE⊥ AB ,∠ B+ ∠D=180 °,求证: AE=AD+BE12.如图,四边形 ABCD 中, AB ∥ DC ,BE、 CE 分别均分∠ ABC 、∠ BCD ,且点 E 在 AD上。

求证: BC=AB+DC 。

13.已知: AB//ED ,∠ EAB= ∠ BDE , AF=CD , EF=BC ,求证:∠ F=∠ CE DCFA B14.已知: AB=CD ,∠ A= ∠ D,求证:∠ B= ∠ CADB C15.P 是∠ BAC 均分线 AD 上一点, AC>AB ,求证: PC-PB<AC-AB CAP DB16. 已知∠ ABC=3 ∠ C,∠ 1=∠2, BE⊥ AE ,求证: AC-AB=2BE17.已知, E 是 AB 中点, AF=BD , BD=5 , AC=7 ,求 DCDF A CE B18.( 5 分)如图,在△ABC 中, BD=DC ,∠ 1=∠ 2,求证: AD ⊥ BC.19.( 5 分)如图, OM 均分∠ POQ ,MA⊥ OP,MB ⊥OQ , A、B 为垂足, AB 交 OM 于点N.求证:∠ OAB=∠OBA(完满版)全等三角形证明经典100题20.( 5 分)如图,已知AD ∥BC,∠ PAB 的均分线与∠ CBA 的均分线订交于E, CE 的连线交 AP 于 D.求证: AD+BC=AB.PCEDA B21.( 6 分)如图,△ ABC 中, AD 是∠ CAB 的均分线,且AB=AC+CD,求证:∠ C=2∠ BACD B22.( 6 分)如图①, E、F 分别为线段AC 上的两个动点,且DE ⊥AC 于 E, BF⊥AC 于 F ,若 AB=CD , AF=CE, BD 交 AC 于点 M.(1)求证: MB=MD , ME =MF(2)当 E、F 两点搬动到如图②的地址时,其余条件不变,上述结论可否成立?若成立请恩赐证明;若不成立请说明原由.23.( 7 分)已知:如图,DC ∥AB,且 DC =AE, E 为 AB 的中点,( 1)求证:△ AED≌△ EBC.( 2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):AE O DB C24.( 7 分)如图,△ABC 中,∠ BAC=90 度, AB=AC, BD 是∠ ABC 的均分线, BD 的延长线垂直于过 C 点的直线于 E,直线 CE 交 BA 的延长线于 F .求证: BD =2CE.F25、( 10 分)如图: DF=CE, AD=BC,∠ D=∠ C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1206:1如图:AB=DC,BE=DF,AF=DE。

求证:AB∥DC。

2已知:如图,∠A=∠D=90°,AC,BD交于O,AC=BD.求证:OB=OC.
1206:1如图:AB=DC,BE=DF,AF=DE。

求证:AB∥DC。

2已知:如图,∠A=∠D=90°,AC,BD交于O,AC=BD.求证:OB=OC.
1206:1如图:AB=DC,BE=DF,AF=DE。

求证:AB∥DC。

2已知:如图,∠A=∠D=90°,AC,BD交于O,AC=BD.求证:OB=OC.
1206:1如图:AB=DC,BE=DF,AF=DE。

求证:AB∥DC。

2已知:如图,∠A=∠D=90°,AC,BD交于O,AC=BD.
求证:OB=OC.
F
(图19)
E
D
C
B
A
F
(图19)
E
D
C
B
A
F
(图19)
E
D
C
B
A
F
(图19)
E
D
C
B
A
12081如图(8):A 、B 、C 、D 四点在同一直线上,AC=DB ,BE ∥CF ,AE ∥DF 。

求证:△ABE ≌△DCF 。

2已知:如图,AB=AC,AD=AE,∠BAC=∠DAE.求证:BD=CE
1209 1已知:如图 , AB=AE , BC=DE , C , D 在BE 边上.求证:∠CAE=∠DAB
2如图:在△ABC 中,AD ⊥BC 于D ,AD=BD ,CD=DE ,E 是AD 上一点,连结BE 并延长交AC 于点F 。

求证:
(1)BE=AC ,(2)BF ⊥AC 。

3如图(9)AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。

求证:AM 是△ABC 的中线。

4. 已知:如图AC CD 于C , BD ⊥CD 于D , AC=BF ., 连结AB 交CF 于点F .求证:M 是AB 的中点
F
E
(图8)D
C B
A F
(图17)
E
D
C
B
A
M F E
(图9)C
B
A
1210 1如图,已知:AC=DF,AC ∥FD,AE=DB,求证: △ABC ≌△DEF ;BC ∥EF
2 已知:如图,D 、E 分别是△ABC 的边AB,AC 的中点,点F 在DE 的延长线上,且EF=DE .求证:(1)BD=FC (2)AB ∥
CF
3如图, 已知:AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC 于D , BC=DF .求证:AC=EF .
12111如图2,AD=AE ,BD=CE ,∠ADB =100°,∠BAE =70°,下列结论错误的是( ) A .△ABE ≌△ACD B .△ABD ≌△ACE C .∠DAE =40° D .∠C =30° 2将一张长方形纸片按如图4所示的方式折叠,BC BD , 为折痕,则CBD ∠的度数为( )
A .60°
B .75°
C .90°
D .95°
3如图6,△ABC 的三边AB 、BC 、CA 长分别是20、30、40,其三条角平分线将△ABC 分为三个三角形,则S △ABO ︰S △BCO ︰S △CAO 等于( )
A .1︰1︰1
B .1︰2︰3
C .2︰3︰4
D .3︰4︰5 F
G E D
C
B A E D A
C
B
图2
4如图:AB=CD ,AE=DF ,CE=FB 。

求证:AF=DE 。

5如图:在△ABC 中,∠ACB=90°,AC=BC ,D 是AB 上一点,AE ⊥GD 于E ,BF ⊥CD 交CD 的延长线于F 。


证:AE=EF+BF 。

6 已知:如图 , OA=OE , OB=OF , 直线FA 与BE 交于C , AB 和EF 交于O , 求证:∠1=∠2.
1212 1如右图,已知AC=BD ,D A ∠=∠,请你添一个直接 条件, = ,使△AFC ≌△DEB
2已知AC=BD ,21∠=∠,那么△ABC ≌ , 其判定根据是__________。

3下图中全等的三角形是 [ ]
A.Ⅰ和Ⅱ
B.Ⅱ和Ⅳ
C.Ⅱ和Ⅲ
D.Ⅰ和Ⅲ
4如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B
5已知:如图 , AE=BF , AD ∥BC , AD=BC.AB 、CD 交于O 点.求证:OE=OF .
F
(图
18)
E D
C
B
A
F (图
22)
E
D C
B
A
D C
B
A
A
6如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .
如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .
(1)求证:MB =MD ,ME =MF
(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.
已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .
(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三
角形.(直接写出结果,不要求证明):
O
E
D C B
A
四、在Rt △ABC 中,∠B AC =90°,AB=AC ,CE ⊥BD 的延长线于E ,∠1=∠2 求证:BD =2CE .
7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直
线于E ,直线CE 交BA 的延长线于F .
求证:BD =2CE .
如图,已知点C 是AB 上一点,ΔACM 、ΔCBN 都是等边三角形。

(1) 说明AN=MB;
(2) 将ΔACM 绕点C 按逆时针旋转180°,使A 点落在CB 上,请对照原题图在右图画出符合要求的图形。

(3) 在(2)所得到的图形中,结论“AN=BM ”是否成立?若成立,请说明理由;若不成立,也请说明理由。

(4) 在(2)所得到的图形中,设AM 的延长线与BN 相交于点D ,请你判断ΔABD 的形状,并说明你的理由。

难 如图5-7,△ABC 的边BC 的中垂线DF 交△BAC 的外角平分线AD 于D, F 为垂足, DE ⊥AB 于E ,
且AB>AC ,
求证:BE -AC=AE (提示:做D N ⊥AC 于N ,然后证明Rt △DBE ≌Rt △DCN )
A B
C
C
F E
D
C B A
1在△ABC 中,∠C =90°,BC =4CM ,∠BAC 的平分线交BC 于D ,且BD ︰DC =5︰3,则D 到AB 的距离为_____________. 2如图6,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则A C E △的面积为______
3如图5,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是______
4.在△ABC 中,∠C =90°,BC =4cm ,∠BAC 的平分线交BC 于D ,且BD ︰DC =5︰3, 则D 到AB 的距离为_____________。

5如图15,已知在ABC ∆中,90,,A AB AC CD ∠=︒=平分ACB ∠,DE BC ⊥于E ,
若15cm BC =,则DEB △的周长为 cm
6如图,在△AB C 中,∠C=90°,AD 平分∠BAC ,BC=10cm ,BD=6cm ,则点D 到AB 的距离为___________。

7如图所示,AB=AC ,A D ⊥BC 于D ,且AB+AC+BC=50,而AB+BD+AD=40,则AD 为多少?(写过程)
A
D
8如图(14)在△ABC 中,∠ACB=90°,AC=BC ,AE 是BC 的中线,过点C 作CF ⊥AE 于F ,过B 作BD ⊥CB 交CF 的延长线于点D 。

(1)求证:AE=CD ,(2)若BD=5㎝,求AC 的长
A D C B
图5
E
A D C
B 图6
E D
A
9如图,在△ABC中,AD⊥BC ,CE⊥AB ,垂足分别为D 、E ,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是多少?为什么?
B
10在△ABC中,∠C=90°,AD平分∠BAC交BC于D ,若BC=8 ,BD=5 ,则点D到AB的距离是多少?。

相关文档
最新文档