2021年高考数学压轴题100题精选含答案

合集下载

2021年全国高考数学压轴题新高考全国Ⅱ卷-

2021年全国高考数学压轴题新高考全国Ⅱ卷-

绝密★启用前2021年普通高等学校招生全国统一考试(新高考全国Ⅱ卷)压轴题注意事项:1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上8.已知函数f(x)的定义域为R,f(x+2)为偶函数,f(2x+1)为奇函数,则()A.f(﹣)=0 B.f(﹣1)=0 C.f(2)=0 D.f(4)=0答案:B本题考查了函数的奇偶性的综合应用,属于中档题.解:由题意,f(x+2)为偶函数,可得f(x+4)=f(﹣x),f(2x+1)为奇函数,可得f(﹣2x+1)=﹣f(2x+1),令F(x)=f(2x+1)为奇函数,可得F(0)=f(1)=0,∴f(﹣1)=﹣f(3)=﹣f(1)=0,即f(﹣x)=﹣f(x+2),∴f(x+4)=﹣f(x+2),易知f(x)的周期T=4,其他选项的值不一定等于0.即f(﹣1)=0,故选:B.二.多选题(共1小题)12.设正整数n=a0•20+a1•21+…+a k﹣1•2k﹣1+a k•2k,其中a i∈{0,1},记ω(n)=a0+a1+…+a k,则()A.ω(2n)=ω(n)B.ω(2n+3)=ω(n)+1C.ω(8n+5)=ω(4n+3)D.ω(2n﹣1)=n答案:ACD本题考查数列递推式,考查数学运算能力,属于难题.解:∵2n=a0•21+a1•22+…+a k﹣1•2k+a k•2k+1,∴ω(2n)=ω(n)=a0+a1+…+k,∴A对;当n=2时,2n+3=7=1•20+1•21+1•22,∴ω(7)=3.∵2=0•20+1•21,∴ω(2)=0+1=1,∴ω(7)≠ω(2)+1,∴B错;∵8n+5=a0•23+a1•24+•••+a k•2k+3+5=1•20+1•22+a0•23+a1•24+•••+a k•2k+3,∴ω(8n+5)=a0•+a1•+•••+a k+2.∵4n+3=a0•22+a1•23+•••+a k•2k+2+3=1•20+1•21+a0•22+a1•23+•••+a k•2k+2,∴ω(4n+3)=a0•+a1•+•••+a k+2=ω(8n+5).∴C对;∵2n﹣1=1•20+1•21+•••+1•2n﹣1,∴ω(2n﹣1)=n,∴D对.故选:ACD.三.填空题(共1小题)16.已知函数f(x)=|e x﹣1|,x1<0,x2>0,函数f(x)的图象在点A(x1,f(x1))和点B(x2,f(x2))的两条切线互相垂直,且分别交y轴于M,N两点,则的取值范围是.答案:(0,1)本题考查导数的运用:切线的方程,以及两直线垂直的条件,考查方程思想和运算能力,属于中档题.解:当x<0时,f(x)=1﹣e x,导数为f′(x)=﹣e x,可得在点A(x1,1﹣e x1)处的斜率为k1=﹣e x1,切线AM的方程为y﹣(1﹣e x1)=﹣e x1(x﹣x1),令x=0,可得y=1﹣e x1+x1e x1,即M(0,1﹣e x1+x1e x1),当x<0时,f(x)=e x﹣1,导数为f′(x)=e x,可得在点B(x2,e x2﹣1)处的斜率为k2=e x2,令x=0,可得y=e x2﹣1﹣x2e x2,即N(0,e x2﹣1﹣x2e x2),由f(x)的图象在A,B处的切线相互垂直,可得k1k2=﹣e x1•e x2=﹣1,即为x1+x2=0,x1<0,x2>0,所以===∈(0,1).故答案为:(0,1).四.解答题(共2小题)21.一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代,……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X表示1个微生物个体繁殖下一代的个数,P(X=i)=p i(i=0,1,2,3).(Ⅰ)已知p0=0.4,p1=0.3,p2=0.2,p3=0.1,求E(X);(Ⅱ)设p表示该种微生物经过多代繁殖后临近灭绝的概率,p是关于x的方程:p0+p1x+p2x2+p3x3=x的一个最小正实根,求证:当E(X)≤1时,p=1,当E(X)>1时,p<1;(Ⅲ)根据你的理解说明(2)问结论的实际含义.本题考查了样本估计总体的应用,事件概率的理解和应用,数学期望公式的运用,考查了逻辑推理能力与运算能力,属于中档题.解:(Ⅰ)解:由题意,P0=0.4,P1=0.3,P2=0.2,P3=0.1,故E(X)=0×0.4+1×0.3+2×0.2+3×0.1=1;(Ⅱ)证明:由题意可知,p0+p1+p2+p3=1,则E(X)=p1+2p2+3p3,所以p0+p1x+p2x2+p3x3=x,变形为p0﹣(1﹣p1)x+p2x2+p3x3=0,所以p0+p2x2+p3x3﹣(p0+p2+p3)x=0,即p0(1﹣x)+p2x(x﹣1)+p3x(x﹣1)(x+1)=0,即(x﹣1)[p3x2+(p2+p3)x﹣p0]=0,令f(x)=p3x2+(p2+p3)x﹣p0,则f(x)的对称轴为,注意到f(0)=﹣p0<0,f(1)=2p3+p2﹣p0=p1+2p2+3p3﹣1=E(X)﹣1,当E(X)≤1时,f(1)≤0,f(x)的正实根x0≥1,原方程的最小正实根p=1,当E(X)>1时,f(1)>0,f(x)的正实根x0<1,原方程的最小正实根p=x0<1;(Ⅲ)解:当1个微生物个体繁殖下一代的期望小于等于1时,这种微生物经过多代繁殖后临近灭绝;当1个微生物个体繁殖下一代的期望大于1时,这种微生物经过多代繁殖后还有继续繁殖的可能.22.已知函数f(x)=(x﹣1)e x﹣ax2+b.(Ⅰ)讨论f(x)的单调性;(Ⅱ)从下面两个条件中选一个,证明:f(x)有一个零点.①<a≤,b>2a;②0<a<,b≤2a.本题考查了分类讨论函数的单调性及函数的零点问题,考查零点存在定理,属于难题.解:(Ⅰ)∵f(x)=(x﹣1)e x﹣ax2+b,f'(x)=x(e x﹣2a),①当a≤0时,当x>0时,f'(x)>0,当x<0时,f'(x)<0,∴f(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,②当a>0时,令f'(x)=0,可得x=0或x=ln2a,(i)当时,当x>0或x<ln2a时,f'(x)>0,当ln2a<x<0时,f'(x)<0,∴f(x)在(﹣∞,ln2a),(0,+∞)上单调递增,在(ln2a,0)上单调递减,(ii)a=时,f'(x)=x(e x﹣1)≥0 且等号不恒成立,∴f(x)在R上单调递增,(iii)当时,当x<0或x>ln2a时,f'(x)>0,当0<x<ln2a时,f'(x)<0,f(x)在(﹣∞,0),(ln2a,+∞)上单调递增,在(0,ln2a)上单调递减.综上所述:当a⩽0 时,f(x)在(﹣∞,0)上单调递减;在(0,+∞)上单调递增;当时,f(x)在(﹣∞,ln2a)和(0,+∞)上单调递增;在(ln2a,0)上单调递减;当时,f(x)在R上单调递增;当时,f(x)在(﹣∞,0)和(ln2a,+∞)上单调递增;在(0,ln2a)上单调递减.(Ⅱ)证明:若选①,由(Ⅰ)知,f(x)在(﹣∞,0)上单调递增,(0,ln2a)单调递减,(ln2a,+∞)上f(x)单调递增.注意到.∴f(x)在上有一个零点;f (ln 2a )=(ln 2a ﹣1)⋅2a ﹣a ⋅ln 22a +b >2aln 2a ﹣2a ﹣aln 22a +2a =aln 2a (2﹣ln 2a ), 由得 0<ln 2a ⩽2,∴aln 2a (2﹣ln 2a )⩾0,∴f (ln 2a )>0,当 x ⩾0 时,f (x )⩾f (ln 2a )>0,此时 f (x ) 无零点. 综上:f (x ) 在 R 上仅有一个零点.若选②,则由(Ⅰ)知:f (x )在 (﹣∞,ln 2a ) 上单调递增,在 (ln 2a ,0)上单调递减,在 (0,+∞) 上单调递增.f (ln 2a )=(ln 2a ﹣1)2a ﹣aln 22a +b ⩽2aln 2a ﹣2a ﹣aln 22a +2a =aln 2a (2﹣ln 2a ), ∵,∴ln 2a <0,∴aln 2a (2﹣ln 2a )<0,∴f (ln 2a )<0,∴当 x ⩽0 时,f (x )⩽f (ln 2a )<0,此时 f (x ) 无零点. 当 x >0 时,f (x ) 单调递增,注意到 f (0)=b ﹣1⩽2a ﹣1<0, 取,∵b <2a <1,∴,又易证 e c >c +1,∴﹣1=1>0,∴f (x )在(0,c )上有唯一零点,即f (x )在(0,+∞)上有唯一零点. 综上:f (x ) 在 R 上有唯一零点.压轴题模拟1.(2021·云南红河哈尼族彝族自治州·高三三模)已知函数()f x 是定义在R 的奇函数,且满足()()110f x f x ++-=,当[)10x ∈-,,()ln f x x =-,则下列关于函数()f x 叙述正确的是( )A .函数()f x 的最小正周期为1B .函数()f x 在()02021,内单调递增 C .函数()f x 相邻两个对称中心的距离为2D .函数()ln y f x x =+的图象在区间()20202021,内的零点0x 满足2002020e e x x -=答案:D解:由题意可得:()00=f ,()f x 关于点()10,成中心对称,因为()()110f x f x ++-=,可得()()11f x f x +=--,所以()()11f x f x =+-,所以()f x 的最小正周期为2,可得()f x 的大致图象如下:所以,()f x 的最小正周期为2,A 错误;()f x 在()222k k +,()k ∈Z 内单调递增,但是在()02021,内没有单调性,故B 错误;()f x 的对称中心为()0k ,()k ∈Z ,故相邻两个对称中心的距离为1,故C 错误;()y f x =的图象与ln y x =-的图象在每个()222k k +,区间内都有1个交点,且()y f x =在()20202021,内的解析式为ln(2020)y x =-,所以()ln y f x x =+的图象在区间()20202021,内的零点0x 满足()20000ln(2020)ln ln 20200y x x x x =-+=-=,故20020201x x -=,所以22020e e x x -=.故选:D2.(2021·吉林松原市·高三月考)在数学课堂上,为提高学生探究分析问题的能力,教师引导学生构造新数列:现有一个每项都为1的常数列,在此数列的第()*n n ∈N 项与第1n +项之间插入首项为2,公比为2,的等比数列的前n 项,从而形成新的数列{}n a ,数列{}n a 的前n 项和为n S ,则( ) A .520212a = B .620212a = C .6320213259S =⨯+ D .64202123S =-答案:AD解:设2021a 介于第n 个1与第1n +个1之间或者为这两个1当中的一个, 则从新数列的第1个1到第n 个1一共有()12n n +项,从新数列的第1个1到第1n +个1一共有()()212n n ++项,所以()()()121202122n n n n +++≤≤,解得63n =,而()6316320162+=,所以520212a=,故A 正确,B 错误;123621234520211636226126021222222S =⨯+⨯+⨯+⨯++⨯+++++1236212562261260212=+⨯+⨯+⨯++⨯, 令1236262261260212T =⨯+⨯+⨯++⨯, 则23463262261260212T =⨯+⨯+⨯++⨯,123462632622222212T T -=-⨯++++++⨯,642128T =-,所以64202123S =-,故D 正确,C 错误, 故选:AD .3.(2021·江苏苏州大学附属中学高三模拟)已知等比数列{}n a 满足11a =,其前n 项和()*1,0n n S pa r n N p +=+∈>.( )A .数列{}n a 的公比为pB .数列{}n a 为递增数列C .1r p =--D .当14p r-取最小值时,13-=n n a 答案:BD解:依题意,等比数列{}n a ,11a =,其前n 项和()*1,0n n S pa r n N p +=+∈>,设公比是q ,2n ≥时,11n n n n S pa rS pa r+-=+⎧⎨=+⎩,作差得,1n n n pa a pa +-=,即()11n n p a pa +=+,故11n n a p a p ++=,即1p q p +=,即11p q =-. 选项A 中,若公比为p ,则11p q q ==-,即210q q --=,即12p q +==时,数列{}n a 的公比为p ,否则数列{}n a 的公比不为p ,故错误;选项B 中,由0p >知,1111p q p p +==+>,故111111n n n n a a q q p ---=⋅==⎛⎫+ ⎪⎝⎭是递增数列,故正确;选项C 中,由1n n S pa r +=+,11n n q S q-=-,11p q =-,1nn a q +=知,1111111n n n n q p q q a qr S p q +--=-⋅=-=---=,故C 错误;选项D 中, 因为r p =-,故()1111444p p p r p p -=-=+≥=⋅-,当且仅当14p p =,即12p =时等号成立,14p r -取得最小值1,此时13p q p +==,113n n n a q --==,故正确.故选:BD.4.(2021·山东省实验中学高三模拟)设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( ) A .数列{}n a 为等比数列 B .数列{}n S n +为等比数列C .数列{}n a 中10511a =D .数列{}2n S 的前n 项和为2224n n n +---答案:BCD解:因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++. 又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故B 正确; 所以2nn S n +=,则2nn S n =-. 当2n ≥时,1121n n n n a S S --=-=-,但11121a -≠-,故A 错误;由当2n ≥时,121n n a -=-可得91021511a =-=,故C 正确;因为1222n n S n +=-,所以2311222...2221222...22n n S S S n ++++=-⨯+-⨯++-()()()23122412122 (2)212 (22412)2n n n n n n n n n ++--⎡⎤=+++-+++=-+=---⎢⎥-⎣⎦所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确.故选:BCD .5.(2021·浙江镇海中学高三模拟)已知函数224()ln ,[1,)x f x k x k k x -⎛⎫=++∈+∞ ⎪⎝⎭,曲线()y f x =上总存在两点()11,M x y ,()22,N x y ,使曲线()y f x =在M ,N 两点处的切线互相平行,则12x x +的取值范围为________.答案:()+∞ 解: 由题设知:224()1k k f x x x+'=-+-,且0x >,∵曲线()y f x =上两点()11,M x y ,()22,N x y 的切线平行,∴122114k k x x ++=且120x x ≠>,即212121222()()()444k k x x k k x x x x ++++=<⋅,有12126x x k k +>+, ∴要曲线()y f x =上总存在M ,N 两点,使它们所在的切线互相平行,则12max 16()2x x k k+>+即可,而162k k≤=+1k =>时等号成立,∴12x x +>.故答案为:()+∞.6.(2020·安徽六安市·六安一中高三月考)直线y a =与函数ln y x =交于A ,B 两点,函数ln y x =在A ,B 两点处切线分别交y 轴于C ,D 两点,C ,D 的中点为M ,两切线交于N 点,则MN =______.答案:1解:ln y x =,0y ≥,0a ∴≥,如图:ln x a =,ln x a =±,1a x e =,2a x e -=,12y y a ==, 11x >,201x <<,ln ,1ln ln ,01x x y x x x ≥⎧==⎨-<<⎩,所以1,11,01x xy x x⎧≥⎪⎪=⎨'⎪-<<⎪⎩,在点()11,x y 处的切线方程为:11a y x a e =+-,① 在()22,x y 处的切线方程为:11a y x a e-=-++,②将0x =代入①、②,可得1C y a =-,1D y a =+,110,2a a M -++⎛⎫∴ ⎪⎝⎭,即()0,M a ,由1111a ax a x a e e -+-=-++, 112a a x e e -⎛⎫+= ⎪⎝⎭,解得2a a x e e -=+,2211ay a e =+-+,所以222,11a a aN a e e e -⎛⎫+-⎪++⎝⎭,MN ∴==1===故答案为:17.(2021·厦门市湖滨中学高三期中)新药在进入临床实验之前,需要先通过动物进行有效性和安全性的实验.现对某种新药进行5000次动物实验,一次实验方案如下:选取3只白鼠对药效进行检验,当3只白鼠中有2只或2只以上使用“效果明显”,即确定“实验成功”;若有且只有1只“效果明显”,则再取2只白鼠进行二次检验,当2只白鼠均使用“效果明显”,即确定“实验成功”,其余情况则确定“实验失败”.设对每只白鼠的实验相互独立,且使用“效果明显”的概率均为(01)P p <<. (Ⅰ)若12p =,设该新药在一次实验方案中“实验成功”的概率为0p ,求0p 的值; (Ⅱ)若动物实验预算经费700万元,对每只白鼠进行实验需要300元,其他费用总计为100万元,问该动物实验总费用是否会超出预算,并说明理由. 解:(Ⅰ)当12p =时,一次检验就取得“实验成功”的概率为32233331111(1)34222C p p C p ⎛⎫-+=⨯⨯+= ⎪⎝⎭;经过两次检验才取得“实验成功”的概率为12231113(1)324432C p p p ⎛⎫⎡⎤-=⨯⨯⨯= ⎪⎣⎦⎝⎭; 在一次实验方案中“实验成功”的概率为0131923232p =+=. (Ⅱ)设一次实验方案需要用到的经费为X 元,则X 的可能值为900,1500.123(900)1(1)==--P X C p p ;123(1500)(1)P X C p p ==-.所以1212233()9001(1)1500(1)9001800(1)E X C p p C p p p p ⎡⎤=⨯--+-=+-⎣⎦, 设2()(1)f p p p =-,则2()(1)2(1)(31)(1)f p p p p p p '=-+-=--,当10,3p ⎛⎫∈ ⎪⎝⎭时,()0f p '>,所以()f p 在10,3⎛⎫ ⎪⎝⎭上单增;当1,13p ⎛⎫∈ ⎪⎝⎭时,()0f p '<,所以()f p 在1,13⎛⎫ ⎪⎝⎭上单减.所以()f p 的最大值为14327f ⎛⎫=⎪⎝⎭, 因此实施一次此方案最高费用为435009001800273+⨯=元 所以动物实验阶段估计最高试验费用为4350017502050100500010100333-+⨯⨯=+=万元, 因为20507003<, 所以该阶段经费使用不会超出预算.8.(2021·辽宁沈阳市·沈阳二中高三模拟)某校高三男生体育课上做投篮球游戏,两人一组,每轮游戏中,每小组两人每人投篮两次,投篮投进的次数之和不少于3次称为“优秀小组”.小明与小亮同一小组,小明、小亮投篮投进的概率分别为12,p p .(1)若123p =,212p =,则在第一轮游戏他们获“优秀小组”的概率;(2)若1243p p +=则游戏中小明小亮小组要想获得“优秀小组”次数为16次,则理论上至少要进行多少轮游戏才行?并求此时12,p p 的值.解:(1)由题可知,所以可能的情况有①小明投中1次,小亮投中2次;②小明投中2次,小亮投中1次;③小明投中2次,小亮投中2次. 故所求概率12212222222221112211221143322332233229P C C C C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅⋅+⋅⋅+⋅⋅= ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ (2)他们在一轮游戏中获“优秀小组”的概率为()()()()()()()()()222222122122211222122221221212121123P C p p C p C p C p p C p C p p p p p p p =-+-+=+-因为1243p p +=,所以()()221212833P p p p p =- 因为101p ≤≤,201p ≤≤,1243p p +=,所以1113p ≤≤,2113p ≤≤,又21212429p p p p +⎛⎫≤= ⎪⎝⎭所以121499p p <≤,令12t p p =,以1499t <≤,则28()33P h t t t ==-+ 当49t =时,max 1627P =,他们小组在n 轮游戏中获“优秀小组”次数ξ满足~(,)B n p ξ由max ()16np =,则27n =,所以理论上至少要进行27轮游戏.此时1243p p +=,1249p p =,2123p p ==9.(2021·正阳县高级中学高三模拟)已知函数()()211ln 2f x x a x =-+,(1)讨论()f x 在[]2,5上的单调性;(2)若函数()()g x f x ax =+有两个零点,求a 的取值范围. 解:(1)∵()()211ln 2f x x a x =-+, ∴()()211x a a f x x x x-++'=-=; ①若10a +≤,即1a ≤-,()0f x '>, 故函数()f x 在[]2,5上单调递增;②若10a +>,即1a >-,令()0f x '=,x =当13a -<≤时,()0f x '≥在[]2,5上恒成立, 故函数()f x 在[]2,5上单调递增;当324a <<时,当x ⎡∈⎣时,()0f x '<,()f x 单调递减,当x ⎤∈⎦时,()0f x '>,()f x 单调递增;当24a ≥时,()0f x '≤在[]2,5上恒成立, 故函数()f x 在[]2,5上单调递减;综上,当3a ≤时,函数()f x 在[]2,5上单调递增:当324a <<时,函数()f x 在⎡⎣上单调递减,在⎤⎦上单调递增;当24a ≥时,函数()f x 在[]2,5上单调递减.(2)由题意,()()211ln 2g x x ax a x =+-+, 故()()()()1110x x a a g x x a x x x-+++'=+-=>, ①若10a +>,即1a >-时,()g x 在()0,1上单调递减, 在()1,+∞上单调递增,因为0x →时,()g x →+∞, 且()()()2221ln 222210g a a a a =+-+≥+-+=, 故要使()g x 有两个零点,只需()1102g a =+<,解得112a -<<-;②若10a +=,即1a =时,()212g x x x =-在(0,)+∞只有1个零点,不合题意; ③若10a +<,即1a <-,(i )当2a =-时,()g x 在()0,∞+上单调递增,故不可能有两个零点; (ii )当21a -<<-时,()g x 在()0,1a --上单调递增, 在()1,1a --上单调递减,在()1,+∞上单调递增, 且0x →时,()g x →-∞,又()1102g a =+<, ()()442222e e ee 1ln e e 022g a a a =+-+>+>, 故要使()g x 有两个零点,则有()10g a --=, 即()()()()()211111ln 12g a a a a a a --=+-+-+-- ()()11ln 102a a a -⎡⎤=+---=⎢⎥⎣⎦,即()1ln 102aa ----=, 令()()1ln 12am a a -=---,()2,1a ∈--,则()()11302121a m a a a +'=--=->++, 故()()1ln 12am a a -=---在()2,1--上单调递增, 且在2a =-时,()3202m -=>, 即当()2,1a ∈--时,()0m a >, 此时()g x 不可能有2个零点;(iii )当2a <-时,()g x 在()0,1上单调递增, 在()1,1a --上单调递减,在()1a --+∞,上单调递增,因为()1102g a =+<,故()g x 也不可能有2个零点; 综上,当112a -<<-时,()g x 有2个零点.10.(2021·湖北省直辖县级行政单位·高三模拟)已知函数()sin ln(1),f x x a x a R =-+∈. (1)若3a =,求()f x 在0x =处的切线方程;(2)若()f x 在,4ππ⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围;(3)当102a <<时,()f x 在区间(0,)π内有多少个零点,叙述并证明你的结论. 解:(1)当3a =,3()cos 1f x x x '=-+,(0)2f '=-,又(0)0f =, 所以()f x 在0x =处的切线方程为2y x =-; (2)由题设:[,],()cos 041a x f x x x ππ'∀∈=-≤+,所以[,],(1)cos 4x a x x ππ∀∈≥+, 令()(1)cos g x x x =+,[,]4x ππ∈,当[,]2x ππ∈时,()0g x ≤;当[,]42x ππ∈时,'()cos (1)sin cos sin 0g x x x x x x =-+≤-≤,()g x 在[,]42ππ递减,所以)4()()48g x g ππ+≤=,故a 的取值范围是)4[,)8π++∞; (3)当102a <<时,()f x 在区间(0,)π内有且只有一个零点,证明如下: 设()1sin 0,22h x x x x π⎛⎫⎛⎫=-∈ ⎪ ⎪⎝⎭⎝⎭,则()1'cos ,2h x x =-()()'00,'0.332h x x h x x πππ>⇔<<<⇔<<所以()h x 在0,3π⎛⎫ ⎪⎝⎭上增,在,32ππ⎛⎫⎪⎝⎭减,又()00,02h h π⎛⎫=> ⎪⎝⎭,故()0.h x >即当0,2x π⎛⎫∈ ⎪⎝⎭时,1sin .2x x > 容易证明()ln 1x x ≥+,故当02x π<<时()()11sin ln 1ln 122x x x a x >>+>+ 即当02x π<<时,()0f x >,故()f x 在0,2π⎛⎫⎪⎝⎭上没有零点. 当2x π≤<π时,()'cos 01a f x x x =-<+,()f x 在,2ππ⎛⎫ ⎪⎝⎭上单调递减, 又()()11ln 11ln 10,ln 102222f a f a πππππ⎛⎫⎛⎫⎛⎫=-+>-+>=-+<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故()f x 在,2ππ⎛⎫ ⎪⎝⎭上有且只有一个零点,因此()f x 在()0,π上有且只有一个零点.。

高考数学压轴卷理含解析试题

高考数学压轴卷理含解析试题

卜人入州八九几市潮王学校〔全国卷Ⅰ〕2021年高考数学压轴卷理〔含解析〕一、选择题〔此题一共12道小题,每一小题5分,一共60分.在每一小题的四个选项里面,只有一项为哪一项哪一项符合题目要求的〕1.集合{}{}228023A x x x B x x =+-≥=-<<,,那么A∩B=(). A.(2,3)B.[2,3)C.[-4,2]D.(-4,3)2.(1i)(2i)z =+-,那么2||z =〔〕 A.2i +B.3i +C.5D.103.假设向量a=1,2⎛ ⎝⎭,|b |=a ·(b -a )=2,那么向量a 与b 的夹角为() A.6πB.4π C.3π D.2π 4.某几何体的三视图如下列图,那么该几何体的体积为 A.8B.12C.16D.245.某批零件的长度误差〔单位:毫米〕服从正态分布()20,3N ,从中随机取一件,其长度误差落在区间〔3,6〕内的概率为〔〕〔附:假设随机变量ξ服从正态分布()2,Nμσ,那么()68.26%P μσξμσ-<<+=,()2295.44%P μσξμσ-<<+=.〕A.6%B.19%C.28%D.34%6.我国古代名著庄子天下篇中有一句名言“一尺之棰,日取其半,万世不竭〞,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如下列图的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),那么①②③处可分别填入的是() A.17?,,+1is s i i i≤=-=B.1128?,,2is s i i i≤=-=C 17?,,+12is s i i i ≤=-= D.1128?,,22i s s i i i≤=-=7.变量x ,y 满足约束条件1031010x y x y x y +-≤⎧⎪-+≥⎨⎪--≤⎩,那么2z x y =+的最大值为〔〕 A.1 B.2 C.3 D.48.九章算术中有这样一个问题:今有竹九节,欲均减容之〔其意为:使容量均匀递减〕,上三节容四升,下三节容二升,中三节容几何?〔〕 A.二升B.三升C.四升D.五升9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c,3,sin a c b A ===cos 6a B π⎛⎫+ ⎪⎝⎭,那么b=() A.110..假设直线220(0,0)ax by a b -+=>>被圆014222=+-++y x y x 截得弦长为4,那么41a b +的最小值是〔〕A.9B.4C.12D.1411.抛物线2:2(0)C y px p =>的焦点为F,点(002p M x x ⎛⎫> ⎪⎝⎭是抛物线C 上一点,以点M 为圆心的圆与直线2px =交于E ,G 两点,假设1sin 3MFG ∠=,那么抛物线C 的方程是〔〕A.2y x = B.22y x =C.24y x = D.28y x =12.函数1,0(),0x x mf x e x -⎧=⎪=⎨⎪≠⎩,假设方程23()(23)()20mf x m f x -++=有5个解,那么m 的取值范围是〔〕A.(1,)+∞B.(0,1)(1,)⋃+∞C.31,2⎛⎫⎪⎝⎭D.331,,22⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭二、填空题〔此题一共4道小题,每一小题5分,一共20分〕13.()0,θπ∈,且sin()4πθ-=,那么tan2θ=________.14.设m 为正整数,()2mx y +展开式的二项式系数的最大值为()21m a x y ++,展开式的二项式系数的最大值为b ,假设158ab =,那么m=______.15.函数()42423,0,3,0,x x ax x f x x x ax x ⎧-->=⎨-+<⎩有四个零点,那么实数a 的取值范围是__________.16.如图,六棱锥P-ABCDEF 的底面是正六边形,PA ⊥平面ABC ,2PA AB =,给出以下结论: ①PB AE ⊥;②直线//BC 平面PAE ; ③平面PAE⊥平面PDE;④异面直线PD 与BC 所成角为45°;⑤直线PD 与平面PAB 其中正确的有_______〔把所有正确的序号都填上〕三.解答题〔本大题一一共6小题.解答题应写出文字说明、证明过程或者演算步骤〕17.〔本小题12分〕△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,24sin 4sin sin 22A BA B -+=〔1〕求角C 的大小; 〔2〕4b=,△ABC 的面积为6,求边长c 的值.18.〔本小题12分〕如图,在四棱锥P-ABCD 中,PD⊥平面ABCD ,122BC CD AB ===,∠ABC=∠BCD=90°,E 为PB 的中点。

北京市2021年高考数学压轴卷含解析.doc

北京市2021年高考数学压轴卷含解析.doc

北京市2021年高考数学压轴卷(含解析)本试卷共5页,150分,考试时长120分钟.考试务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题 共40分)一、选择题10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{(1)(2)0}M x x x =-+<|,{1}N x x =-|,则M N =( )A .(2,1)-B .[1,1)-C .[1,)-+∞D .(1,1)-2.设复数z 满足(1)1i z i -=+,则z 等于( ) A .i -B .iC .2i -D .2i3.在61x ⎫⎪⎭的展开式中,常数项为( )A .15B .30C .20D .404.已知两条直线m ,n 和平面α,且//n α,则“m n ⊥”是“m α⊥”的( ) A .充分必要条件 B .充分而不必要条件 C .必要而不充分条件D .既不充分也不必要条件5.在平面直角坐标系xOy 中,直线l 的方程为(1)3y k x =++,以点(1,1)为圆心且与直线l 相切的所有圆中,半径最大的圆的半径为( ) A .2B.C .4D .86.在ABC 中,90,4,3C AC BC =︒==,点P 是AB 的中点,则CB CP ⋅=( ) A .94B .4C .92D .67.已知函数211,0,()221,0,x x f x x x x ⎧+≤⎪=⎨⎪-++>⎩则不等式()20x f x ->的解集是( )A .(1,0)(0,1)- B .(1,1)- C .(0,1) D .(1,)-+∞8.将函数()sin f x x ω=(0>ω)的图象向左平移2π个单位长度后得到函数()g x 的图象,且()01g =,下列说法错误..的是( ) A .()g x 为偶函数 B .02g π-=⎛⎫⎪⎝⎭C .当5ω=时,()g x 在0,2π⎡⎤⎢⎥⎣⎦上有3个零点D .若()g x 在0,5π⎡⎤⎢⎥⎣⎦上单调递减,则ω的最大值为9 9.数列{}n a 是等差数列,{}n b 是各项均为正数的等比数列,公比1q >,且44a b =,则( ) A .2635a a b b +>+ B .2635a a b b +=+C .2635a a b b +<+D .26a a +与35b b +大小不确定10.形状、节奏、声音或轨迹,这些现象都可以分解成自复制的结构.即相同的形式会按比例逐渐缩小,并无限重复下去,也就是说,在前一个形式中重复出现被缩小的相同形式,依此类推,如图所示,将图1的正三角形的各边都三等分,以每条边中间一段为边再向外做一个正三角形,去掉中间一段得到图2,称为“一次分形”;用同样的方法把图2中的每条线段重复上述操作,得到图3,称为“二次分形”;依次进行“n 次分形”,得到一个周长不小于初始三角形周长100倍的分形图,则n 最小值是( )(取lg30.4771,lg 20.3010≈≈)A .15B .16C .17D .18第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分。

上海市2021年高考数学压轴卷含解析

上海市2021年高考数学压轴卷含解析

上海市2021年高考数学压轴卷(含解析)第I 卷(选择题)一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.若集合{|13}A x x =-<<,{1,2,3,4}B =,则AB =____.2.若复数z 满足(34)|(2)(12)|i z i i -=+-(其中i 为虚数单位),则z 的虚部是___________.3.行列式123456789中,6的代数余子式的值是______. 4.已知球的体积为36π,则该球大圆的面积等于______.5.在262()x x+的二项展开式中,常数项等于____.6.已知向量||||||1a b c ===,若12a b ⋅=,且c xa yb =+,则x y +的最大值为____. 7.若1sin 3α=,则cos(2)πα-=____. 8.函数()2log 1y x m =-+的反函数的图象经过点()1,3,则实数m =______.9.设F 为双曲线()222:10y x b bΓ-=>的右焦点,O 为坐标原点,P 、Q 是以OF 为直径的圆与双曲线Γ渐近线的两个交点.若PQ OF =,则b =___________. 10.从以下七个函数:221,,,2,log ,sin ,cos x y x y y x y y x y x y x x=======中选取两个函数记为()f x 和()g x ,构成函数()()()F x f x g x =+,若()F x 的图像如图所示,则()F x =____.11.小王同学有4本不同的数学书,3本不同的物理书和3本不同的化学书,从中任取2本,则这2本书属于不同学科的概率为______________(结果用分数表示). 12.已知1a 、2a 与1b 、2b 是4个不同的实数,若关于x 的方程121||||||+x a x a x b -+-=-2||x b -的解集A 不是无限集,则集合A 中元素的个数构成的集合为___________.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设(0,),(0,)a b ∞∞∈+∈+,则a b <“”是“11a b -<-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件14.在圆锥PO 中,已知高2PO =,底面圆的半径为4,M 为母线PB 的中点;根据圆锥曲线的定义,下列四个图中的截面边界曲线分别为圆、椭圆、双曲线及抛物线,下面四个命题,正确的个数为①圆的面积为4π; 37;③双曲线两渐近线的夹角正切值为34-④抛物线中焦点到准线的距离为455. A .1个B .2个C .3个D .4个15.在ABC 中,若2sin A =,则cos 2cos B C +的取值范围是( ) A .(0,1] B .(0,1](2,5]C .3(0,1](2,5]2D .以上答案都不对16.已知定义在R 上的函数()f x 是奇函数,且满足()()3f x f x +=,()13f =-,数列{}n a 满足2n n S a n =+(其中n S 为{}n a 的前n 项和),则()()56f a f a +=( ) A .3-B .2-C .3D .2三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤. 17.将边长为1的正方形11AAO O (及其内部)绕1OO 旋转一周形成圆柱,如图,AC 长为23π,11A B 长为3π,其中1B 与C 在平面11AAO O 的同侧.(1)求三棱锥111C O A B -的体积;(2)求异面直线1B C 与1AA 所成的角的大小. 18.已知函数1()lg()f x a x=+(1)设1()f x -是()f x 的反函数,当1a =时,解不等式11()2f x -<; (2)若关于x 的方程2()lg()0f x x +=的解集中恰好有一个元素,求实数a 的值;(3)设0a >,若对任意1[,1]2t ∈,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过lg 2,求a 的取值范围.19.对于函数()()f x x D ∈,若存在正常数T ,使得对任意的x D ∈,都有()()f x T f x +≥成立,我们称函数()f x 为“T 同比不减函数”.(1)求证:对任意正常数T ,()2f x x =都不是“T 同比不减函数”;(2)若函数()sin f x kx x =+是“2π同比不减函数”,求k 的取值范围; (3)是否存在正常数T ,使得函数()11f x x x x =+--+为“T 同比不减函数”,若存在,求T 的取值范围;若不存在,请说明理由.20.设A 是单位圆221x y +=上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x轴的交点,点M 在直线l 上,且满足||||(0,1)DM m DA m m =>≠.当点A 在圆上运动时,记点M 的轨迹为曲线C .(1)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(2)过原点且斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H .是否存在m ,使得对任意的0k >,都有PQ PH ⊥?若存在,求m 的值;若不存在,请说明理由.21.若数列{}n a 满足11n na a λλ+≤≤(1λ>,且λ为实常数),*n ∈N ,则称数列{}n a 为()B λ数列.(1)若数列{}n a 的前三项依次为12a =,2a x =,39a =,且{}n a 为(3)B 数列,求实数x 的取值范围;(2)已知{}n a 是公比为(1)≠q q 的等比数列,且10a >,记21321||||||n n n T a a a a a a +=-+-++-.若存在数列{}n a 为(4)B 数列,使得1lim0n nn nT tT T +→∞-≤成立,求实数t 的取值范围;(3)记无穷等差数列{}n a 的首项为1a ,公差为d ,证明:“110da λ≤≤-”是“{}n a 为()B λ数列”的充要条件.2021上海市高考压轴卷数学参考答案1.【答案】{1,2} 【解析】解:{}|13A x x =-<<,{}1,2,3,4B =,∴{1,2}AB =.故答案为:{1,2}. 【点睛】集合基本运算的方法技巧:(1)当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算,也可借助Venn 图运算;(2)当集合是用不等式表示时,可运用数轴求解.对于端点处的取舍,可以单独检验. 2.【答案】45【解析】由题意,复数z 满足(34)|(2)(12)|i z i i -=+-, 可得()()()43534|(2)(12)|343434343455i i i i z i i i i i -⨯++-====+---+,所以复数z 的虚部为45. 故答案为:45. 3.【答案】6【解析】由题意,可得6的代数余子式2312(1827)678A =-=-⨯-⨯=.故答案为6. 【点睛】本题主要考查了三阶行列式的代数余子式的定义,考查行列式的展开,属于基础题. 4.【答案】9π【解析】因为球的体积为36π,设球的半径为r ,则34363r ππ=,解得:3r =, 因为球的大圆即是过球心的截面圆, 因此大圆的面积为29S r ππ==. 故答案为:9π. 【点睛】本题主要考查球的相关计算,熟记球的体积公式,以及圆的面积公式即可,属于基础题型. 5.【答案】240【解析】解:在622 x x ⎛⎫+ ⎪⎝⎭的二项展开式中,通项公式为 123162r r r r T C x -+=⋅⋅, 令1230r -=,求得4r =,可得展开式的常数项为 4462240C ⋅=,故答案为:240. 【点睛】方法点睛:求二项展开式的某一项,一般利用二项展开式的通项研究求解.6.【解析】解:∵||||a b =,且12a b ⋅=, ∴a 与b 的夹角为60︒, 设(1,0)a =,则13(,2b =, ∵c xa yb =+,∴12c x y y ⎛⎫=+ ⎪ ⎪⎝⎭,又||1c =,∴221122x y y ⎛⎫⎛⎫++= ⎪ ⎪ ⎪⎝⎭⎝⎭,化简得221x xy y ++=,∴22()()14x y x y xy ++-=,当且仅当x y ==时,等号成立,∴233x y+.故答案为:3. 7.【答案】79-【解析】因为1sin 3α=, 所以()2227cos(2)cos 212sin 12sin 199παααα-=-=--=-+=-+=-. 故答案为: 79- 8.【答案】2 【分析】由反函数的图象经过点()1,3,得原函数的图象经过点()3,1,代入解出答案即可. 【详解】解:因为函数()2log 1y x m =-+的反函数的图象经过点()1,3 所以函数()2log 1y x m =-+的图象经过点()3,1 所以()21log 31m =-+,解得2m = 故答案为2. 【点睛】本题考查了函数与反函数图像的关系,属于基础题. 9.【答案】1【解析】由已知PQ OF =可得(,)22c cp ,又点p 在渐近线b y x a = 上,22c b ca b a ∴=⋅⇒= 又1a = ,1b ∴= 10.【答案】2sin x x +【解析】由图象可知,函数()F x 的定义域为R ,故排除1y x=,2log y x =, 又由()F x 的图象过定点(0,1),由函数()F x 图象,可得当0x >时,()1F x >且为增函数, 当0x <时, ()F x 大于0与小于0交替出现,若()2F x x x =+时,此时函数()F x 的图象不过定点(0,1),因为2xy =过(0,1),且当0x >时,1y >,当0x <时,01y <<,若包含cos y x =,当0x =时,1y =,2cos xy x =+不满足过点(0,1),若包含y x =,此时函数()2xF x x =+不满足0x <时,()F x 大于0与小于0交替出现,若包含2yx ,此时函数()22x F x x =+不满足0x <时,()F x 大于0与小于0交替出现,所以只有()2sin xF x x =+满足条件. 故答案为:2sin x x +. 11.【答案】1115【解析】共43310++=本不同的数,任取2本包含21045C =种方法,若从中任取两本,这2本书属于不同学科的情况有11111143433333C C C C C C ⋅+⋅+⋅=,所以这2本书属于不同学科的概率33114515P ==. 故答案为:111512.【答案】{1}【解析】转化为12()||||f x x a x a =-+-和12()||||g x x b x b =-+-图像交点, 为了简化问题,我们可以研究|||1|||||x x x a x b +-=-+-,21,0()11,0121,1x x f x x x x x x -+<⎧⎪=+-=≤≤⎨⎪->⎩,设a b <,2,(),2,x a b x a g x x a x b b a a x b x a b x b -++<⎧⎪=-+-=-≤≤⎨⎪-->⎩,设(0,1)A ,(1,1)B ,(,)C a b a -,(,)D b b a -, ①由图像易知,1个交点容易得到, 如1,22a b ==时,可求得唯一一个交点为53(,)42而0个交点和2个交点都是不可能的. ②假设有0个交点,由题意|1|||2||AC b a k a --=>,|1|||2|1|BD b a k b --=>-,∴||1|1|2a b a <--,|1|1|1|2b b a -<--,∴|||1|1|1||1|a b b a b a -+<----,而由三角不等式,|||1||1|1|1||1||1|a b b a b a b a b a ---+≥=------,故矛盾,∴不可能有0个交点; ③假设有2个交点,1(2,0)AC b a k a --=∈-,1(0,2)1BD b a k b --=∈-, ∴112a b a ->--,1112b b a ->--,∴111b a b a -->--,明显矛盾,∴不可能有2个交点.其他0个交点和2个交点的情况均可化归为以上两类.综上所述,解集A 不是无限集时,集合A 的元素个数只有1个. 故答案为:{}1. 【点睛】关键点点睛:本题的关键是将方程的解的个数转化为两个函数图像的交点个数,其中两个分段函数可以用特值法固定一个,再讨论另一个函数的情况. 13.【答案】C【解析】若a b <“”,则根据不等式性质,两边同时减去1,不等式符号不变,所以, a b <“”成立,则“11a b -<-”成立,充分性成立; “11a b -<-”成立,根据不等式性质,两边同时加上1,不等式符号不变,所以,“11a b -<-”成立,则a b <“”成立,必要性成立; 所以,a b <“”是“11a b -<-”的充要条件 故选C 14.【答案】B 【解析】①点M 是母线的中点, ∴截面的半径2r,因此面积224ππ=⨯=,故①正确;②由勾股定理可得椭圆的长轴为==,故②正确;③在与底面、平面PAB 的垂直且过点M 的平面内建立直角坐标系,不妨设双曲线的标准方程为()22221,0x y a b a b-=>,则()1,0M ,即1a =,把点(2,代入可得21241b -=,解得2,2b b a =∴=,设双曲线两渐近线的夹角为2θ,2224tan 2123θ⨯∴==--,4sin 25θ∴=,因比双曲线两渐近线的夹角为4arcsin 5,③不正确;④建立直角坐标系,不彷设抛物线的标准方程为22y px =,把点)4代入可得242p =,解得p =∴抛物线中焦点到准线的距离p ,④不正确, 故选B . 【点睛】本题通过对多个命题真假的判断,综合考查圆锥的性质、椭圆的性质、双曲线的性质,抛物线的方程与性质,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题. 15.【答案】B【解析】由题意,在ABC 中,若sin A = 因为(0,)A π∈,可得4A π=或34A π=, 当4A π=时,可得34B C π+=,则34B C π=-,可得3cos cos()sin()4224B C C C C C C ππ+=-=+=+, 因为3(0,)4C π∈,所以(,)44C πππ+∈,所以sin()(0,1]4C π+∈; 当34A π=时,可得4B C π+=,则4B C π=-,可得cos cos())422B C C C C C C πϕ+=-=+=+, 其中tan 3ϕ=,设())g x x ϕ=+在区间[0,]2πϕ-上单调递增,在[,]24ππϕ-上单调递减,又由()02()24g g π=>=,()2g πϕ-=,所以()g x ∈)C ϕ+∈,综上可得,cos B C +的取值范围是(0,1](2,5].故选:B. 【点睛】解答与三角函数有关的范围问题的求解策略:1、根据已知条件化简得出三角函数的解析式为sin()y A wx ϕ=+的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解. 16.【答案】C【解析】对任意的n *∈N ,2n n S a n =+. 当1n =时,11121a S a ==+,解得11a =-; 当2n ≥时,由2n n S a n =+可得1121n n S a n --=+-,上述两式作差得1221n n n a a a -=-+,即121n n a a -=-,所以,()1121n n a a --=-, 所以,数列{}1n a -是首项为112a -=-为首项,以2为公比的等比数列,所以,11222n n n a --=-⋅=-,即12nn a =-,531a ∴=-,663a =-,因为函数()f x 是定义在R 上的奇函数,则()00f =, 函数()f x 满足()()3f x f x +=,()13f =-,所以,()()()()5313113f a f f f =-=-=-=,()()()66300f a f f =-==, 因此,()()563f a f a +=. 故选:C 【点睛】方法点睛:函数的三个性质:单调性、奇偶性和周期性,在高考中一般不会单独命题,而是常将它们综合在一起考查,其中单调性与奇偶性结合、周期性与抽象函数相结合,并结合奇偶性求函数值,多以选择题、填空题的形式呈现,且主要有以下几种命题角度;(1)函数的单调性与奇偶性相结合,注意函数的单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性相结合,此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解;(3)周期性、奇偶性与单调性相结合,解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.17.【答案】4π.【解析】(1)由题意可知,圆柱的高1h =,底面半径1r =. 由11A B 的长为π3,可知1113π∠A O B =.11111111111sin 2SA O AB =O A ⋅O B ⋅∠O B =,1111111V 312C O A B Sh -O A B =⋅=(2)设过点1B 的母线与下底面交于点B ,则11//BB AA , 所以1C ∠B B 或其补角为直线1C B 与1AA 所成的角.由AC 长为2π3,可知2π3C ∠AO =, 又111π3∠AOB =∠A O B =,所以π3C ∠OB =,从而C OB 为等边三角形,得1C B =. 因为1B B ⊥平面C AO ,所以1C B B ⊥B .在1C B B 中,因为1π2C ∠B B =,1C B =,11B B =,所以1π4C ∠B B =, 从而直线1C B 与1AA 所成的角的大小为π4.【考点】几何体的体积、空间角【名师点睛】此类题目是立体几何中的常见问题.解答本题时,关键在于能利用直线与直线、直线与平面、平面与平面位置关系的相互转化,将空间问题转化成平面问题.立体几何中的角与距离的计算问题,往往可以利用几何法、空间向量方法求解,应根据题目条件,灵活选择方法.本题能较好地考查考生的空间想象能力、逻辑推理能力、转化与化归思想及基本运算能力等.18.【答案】(1)(,0)(lg3,)-∞+∞;(2)0a =或14a =-;(3)23a ≥.【解析】(1)因为()1()lg y f x x a -==+,所以110y x a -+=,所以101y x a=-,所以11()10x f x a-=-,当1a =时,11011()12xf x -=-<,故解集为(,0)(lg3,)-∞+∞; (2)方程2()lg()0f x x +=即()2lg 0ax x +=,即21ax x +=的解集中恰好有一个元素,当0a =时,1x =,符合题意, 当0a ≠时,140a ∆=+=,解得14a =-, 综上所述,0a =或14a =-; (3)当0a >时,设120x x <<,则1211a a x x +>+,1211lg lg a a x x ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭, 所以()f x 在(0,)+∞上单调递减,所以函数()f x 在区间[,1]t t +上的最大值与最小值为(),(1)f t f t +, 所以11()(1)lg lg lg 21f t f t a a t t ⎛⎫⎛⎫-+=+-+ ⎪⎪+⎝⎭⎝⎭, 所以1211(1)ta t t t t -≥-=++设1t r -=,则102r ≤≤,21(1)(1)(2)32t r r t t r r r r -==+---+,当0r =时,2032rr r =-+,当102r <≤时,212323r r r r r=-++-, 因为2y r r =+在上递减,所以219422r r +≥+=,所以211229323332r r r r r =≤=-++--, 所以实数a 的取值范围是23a ≥. 【点睛】关键点睛:(1)解题关键在于利用反函数定义,得到11011()12x f x -=-<,进而用单调性解不等式;(2)解题关键在于利用二次函数性质进行求解;(3)解题关键在于得出()f x 的单调性后,分类讨论,并利用均值不等式求解;本题难度属于中档题 19.【答案】(1)证明见解析 (2)k ≥(3)存在,4T ≥【解析】证明:(1)任取正常数T ,存在0x T =-,所以00x T +=, 因为()()()()2000f x f T T f f x T =-=>=+,即()()f x f x T ≤+不恒成立,所以()2f x x =不是“T 同比不减函数”.(2)因为函数()sin f x kx x =+是“2π同比不减函数”, 所以()2f x f x π⎛⎫+≥ ⎪⎝⎭恒成立,即sin sin 22k x x kx x ππ⎛⎫⎛⎫+++≥+ ⎪ ⎪⎝⎭⎝⎭恒成立,()2sin cos 4x x x k πππ⎛⎫- ⎪-⎝⎭≥=对一切x ∈R 成立.所以max4x k πππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭ ⎪≥= ⎪⎪⎝⎭.(3)设函数()11f x x x x =+--+是“T 同比不减函数”,()()()()211121x x f x x x x x ⎧-≥⎪=--<<⎨⎪+≤-⎩,当1x =-时,因为()()()1113f T f f -+≥-==成立, 所以13T -+≥,所以4T ≥, 而另一方面,若4T ≥, (Ⅰ)当(],1x ∈-∞-时,()()()112f x T f x x T x T x T x +-=+++--++-+ 112T x T x T =++--++-因为()()1111x T x T x T x T +--++≥-+--++2=-, 所以()()220f x T f x T +-≥--≥,所以有()()f x T f x +≥成立.(Ⅱ)当()1,x ∈-+∞时,()()()211f x T f x x T x x x +-=+--+--+211T x x =---++因为()()11112x x x x +--≥-+--=-, 所以()()220f x T f x T +-≥--≥, 即()()f x T f x +≥成立.综上,恒有有()()f x T f x +≥成立, 所以T 的取值范围是[)4,+∞. 【点睛】本题考查新定义的理解和应用,考查等价转化思想,考查从特殊到一般的解决问题方法,属于较难题.20.【答案】(1)答案见解析;(2)存在,m =.【解析】(1)如图1,设(,)M x y ,00(,)A x y ,则由DM m DA =,(0m >且1)m ≠ 可得0x x =,0y m y =,所以0x x =,01y y m=① , 因为A 点在单位圆上运动,所以22001x y +=② ,将①式代入②式即得所求曲线C 的方程为2221y x m+=(0m >且1)m ≠,因为(0,1)(1,)m ∈+∞,所以当01m <<时,201m <<,曲线C 是焦点在x 轴上的椭圆,两焦点坐标分别为(,; 当1m 时,21m >,曲线C 是焦点在y 轴上的椭圆,两焦点坐标分别为(0,. (2)存在,理由如下:如图2、3,1(0,1)x ∀∈,设11(,)P x y ,22(,)H x y ,则11(,)Q x y --,1(0,)N y ,因为P ,H 两点在椭圆C 上,所以222211222222,,m x y m m x y m ⎧+=⎨+=⎩两式相减可得 222221212()()0m x x y y -+-=,③依题意,由点P 在第一象限可知,点H 也在第一象限,且P ,H 不重合, 故1212()()0x x x x -+≠,于是由③式可得212121212()()()()y y y y m x x x x -+=--+,④又Q ,N ,H 三点共线,所以QN QH k k =,即1121122y y y x x x +=+, 于是由④式可得211212121121212()()12()()2PQ PHy y y y y y y m k k x x x x x x x --+⋅=⋅=⋅=---+, 而PQ PH ⊥等价于1PQ PHk k ⋅=-,即212m -=-,又0m >,得2m =, 故存在2m =,使得在其对应的椭圆2212y x +=上,对任意的0k >,都有PQ PH ⊥.【点睛】本题考查椭圆的标准方程,直线与圆锥曲线的位置关系;考查分类讨论的数学思想以及运算求解的能力.本题是一个椭圆模型,求解标准方程时注意对焦点的位置分类讨论,不要漏解;对于探讨性问题一直是高考考查的热点,一般先假设结论成立,再逆推所需要求解的条件,对运算求解能力和逻辑推理能力有较高的要求.21.【答案】(1)[3,6];(2)(1,)+∞;(3)证明见解析.【解析】(1)因为{}n a 为B (3)数列,所以1133n na a +, 则13321933xx⎧⎪⎪⎨⎪⎪⎩,解得36x , 即x 的取值范围是[3,6];(2)由数列{}n a 为B (4)数列,可得1114n na q a +=<或14q <, 当114q <时,由10a >,111(1)0n n n a a a q q -+-=-<,所以11||n n n n a a a a ++-=-. 则12231111(1)n n n n n T a a a a a a a a a q ++=-+-+⋯+-=-=-,所以11()lim lim 101nn n nn n n T tT t q t q t T q +→∞→∞----==--,即1t ; 当14q <时,由10a >,111(1)0n n n a a a q q -+-=->,所以11||n n n n a a a a ++-=-.则21321111(1)n n n n n T a a a a a a a a a q ++=-+-+⋯+-=-=-,所以11()1lim lim lim 0111nnn n n n n n n ntq t T tT q t q tq q t T q q+→∞→∞→∞------+===---,即t q ,所以1t >, 则t 的取值范围是(1,)+∞; (3)先证充分性.因为11da λ-,所以10a ≠,{}n a 为等差数列, 所以当0d =时,10n a a =≠,此时11n na a +=, 由1λ>,所以111n na a λλ+=成立,所以{}n a 为()B λ数列; 当0d ≠时,1111111(1)111(1)(1)(1)1n n a a nd a n d d d a a a n d a n d a n dn d+++-+===+=++-+-+-+-, 因为101d a λ-,所以111a dλ-,所以1110(1)(1)11a n n dλλ---++-, 即有1(1)11(1)(1)1n na n a n λλ+-+--+,因为1λ>,所以(1)1(1)(1)(1)1(1)(1)1(1)(1)1n n n n λλλλλ-+--+-+=--+--+11111111(1)(1)1111n n λλλλλ-=+=++=--+-+--, 所以111n na a λλ+恒成立,所以{}n a 为()B λ数列, 综上可得,{}n a 为()B λ数列;再证必要性.因为{}n a 为()B λ数列,所以11n na a λλ+恒成立,所以10a ≠, 当0d =时,11da λ-显然成立; 当0d ≠时,因为110n n a a λ+>,所以{}n a 的每一项同号,所以1a 与d 也同号, 所以10da ,因为11n n a a λλ+恒成立,所以1n =时,211a a λλ成立, 因为{}n a 为等差数列,21a a d =+,211111a a d d a a a +==+, 所以111d a λλ+,即为111da λλ--,101d a λ-, 综上可得,“101da λ-”是“{}n a 为B ()λ数列”的充要条件. 【点睛】关键点睛:解答本题的关键是第3小问,证明“101da λ-”是“{}n a 为B ()λ数列”的充要条件,先证明充分性,利用不等式证明111n na a λλ+恒成立,所以{}n a 为()B λ数列;再证明必要性,证明11da λ-成立.。

2021年高考数学高考数学压轴题 三角函数与解三角形多选题分类精编含解析

2021年高考数学高考数学压轴题 三角函数与解三角形多选题分类精编含解析

2021年高考数学高考数学压轴题 三角函数与解三角形多选题分类精编含解析一、三角函数与解三角形多选题1.ABC 中,2BC =,BC 边上的中线2AD =,则下列说法正确的有( )A .AB AC →→⋅为定值B .2210AC AB += C .co 415s A << D .BAD ∠的最大值为30【答案】ABD 【分析】A 利用向量的加减法及向量的数量积公式运算即可,B 根据余弦定理及角的互补运算即可求值,C 利用余弦定理及基本不等式求出cos A 范围即可,D 根据余弦定理及基本不等式求出cos BAD ∠的最小值即可. 【详解】 对于A ,22413AB AC AD DB AD DB AD DB →→→→→→→→⎛⎫⎛⎫⋅=+-=-=-= ⎪⎪⎝⎭⎝⎭,AB AC →→∴⋅为定值,A 正确; 对于B ,cos cos ADC ADB∠=-∠2222222cos 2cos AC AB AD DC AD DC ADC AD DB AD DB ADB ∴+=+-⋅⋅∠++-⋅⋅∠2222AD DB DC =++ 2221110=⨯++=,故B 正确;对于C ,由余弦定理及基本不等式得224242122b c bc cosA bc bc bc+--=≥=-(当且仅当b c =时,等号成立),由A 选项知cos 3bc A =,22cos cos 1133cos AA A∴≥-=-, 解得3cos 5A ≥,故C 错误; 对于D,2222213cos 44c c BAD c c +-+∠==≥=(当且仅当c =立),因为BAD ABD ∠<∠, 所以(0,)2BAD π∠∈,又cos BAD ∠≥BAD ∠的最大值30,D 选项正确. 故选:ABD 【点睛】本题主要考查了向量的数量积运算,余弦定理,基本不等式,考查了推理能力,属于难题.2.函数()sin 24f x x π⎛⎫=+⎪⎝⎭,则( ) A .函数()y f x =的图象可由函数sin 2y x =的图象向右平移4π个单位得到 B .函数()y f x =的图象关于直线8x π=轴对称C .函数()y f x =的图象关于点,08π⎛⎫- ⎪⎝⎭中心对称D .函数2()y x f x =+在08π⎛⎫ ⎪⎝⎭,上为增函数 【答案】BCD 【分析】对四个选项,一一验证:对于选项A ,利用三角函数相位变化即可;对于选项B ,利用正弦函数的对称轴经过最高(低)点判断; 对于选项C ,利用正弦函数的对称中心直接判断; 对于选项D ,利用复合函数的单调性“同增异减”判断; 【详解】由题意,对于选项A ,函数sin 2y x =的图象向右平移4π个单位可得到()sin 2sin 2cos 242f x x x x ππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭,所以选项A 错误;对于选项B ,sin 21884f πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,取到了最大值,所以函数()y f x =的图象关于直线8x π=轴对称,所以选项B 正确;对于选项C ,08f π⎛⎫-= ⎪⎝⎭,所以函数()y f x =的图象关于点,08π⎛⎫- ⎪⎝⎭中心对称,所以选项C 正确;对于选项D ,函数2yx 在08π⎛⎫ ⎪⎝⎭,上为增函数,08x π⎛⎫∈ ⎪⎝⎭,时,2442x πππ⎛⎫+∈ ⎪⎝⎭,,单调递增,所以函数2()y x f x =+在08π⎛⎫⎪⎝⎭,上为增函数,所以选项D 正确. 故选:BCD. 【点睛】(1)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于sin y x =或cos y x =的性质解题;(2)求单调区间,最后的结论务必写成区间形式,不能写成集合或不等式.3.函数()()()2sin 0,f x x ωϕωϕπ=+><的部分图象如图所示,则下列结论正确的是( )A .1()2sin 36f x x π⎛⎫=-⎪⎝⎭ B .若把()f x 的横坐标缩短为原来的23倍,纵坐标不变,得到的函数在[],ππ-上是增函数C .若把函数()f x 的图像向左平移2π个单位,则所得函数是奇函数 D .函数()y f x =的图象关于直线4x π=-对称【答案】ACD 【分析】根据函数的图象求出函数的解析式,得选项A 正确; 求出213263x πππ--得到函数在[],ππ-上不是增函数,得选项B 错误;求出图象变换后的解析式得到选项C 正确; 求出函数的对称轴方程,得到选项D 正确. 【详解】 A, 如图所示:1732422T πππ=-=, 6T π∴=,∴2163πωπ==,(2)2f π=,∴2(2)2sin()23f ππϕ=+=,即2sin()13πϕ+=, ∴22()32k k Z ππϕπ+=+∈,∴2()6k k Z πϕπ=-∈,||ϕπ<,∴6πϕ=-,∴1()2sin()36f x x π=-,故选项A 正确;B, 把()y f x =的横坐标缩短为原来的23倍,纵坐标不变,得到的函数12sin()26y x π=-,[x π∈-,]π,∴213263x πππ--,∴12sin()26y x π=-在[π-,]π上不单调递增,故选项B 错误;C, 把()y f x =的图象向左平移2π个单位,则所得函数12sin[()]2sin 3223xy x ππ=-+=,是奇函数,故选项C 正确; D, 设1,,32,362x k k Z x k πππππ-=+∈∴=+当24k x π=-⇒=-,所以函数()y f x =的图象关于直线4x π=-对称,故选项D 正确.故选:ACD 【点睛】方法点睛:求三角函数的解析式,一般利用待定系数法,一般先设出三角函数的解析式sin()y A wx k ,再求待定系数,,,A w k ,最值确定函数的,A k ,周期确定函数的w ,非平衡位置的点确定函数的φ.4.已知函数()22sin cos f x x x x =+,则下列结论中正确的是( )A .()f x 的图象是由y= 2sin2x 的图象向左移3π个单位得到的 B .()f x 在,03π⎡⎤-⎢⎥⎣⎦上单调递增 C .()f x 的对称中心的坐标是(),026k k Z ππ⎛⎫-∈⎪⎝⎭D .函数()()g x f x =[]0,10内共有8个零点 【答案】BCD 【分析】A.化简得()2sin(2)3f x x π=+,利用函数的图象变换得该选项错误;B.利用复合函数的单调性原理分析得该选项正确;C. 由2,3x k k Z ππ+=∈得该选项正确;D.解方程sin 232x π⎛⎫+= ⎪⎝⎭得该选项正确. 【详解】()2π2sin cos sin 222sin 22sin 236f x x x x x x x x π⎛⎫⎛⎫=+-=+=+=+ ⎪ ⎪⎝⎭⎝⎭,把2sin 2y x =的图象向左平移6π个单位,得到()f x ,所以选项A 不正确; 设23t x π=+,则t 在,03π⎡⎤-⎢⎥⎣⎦上单调增, ,03x π⎡⎤∈-⎢⎥⎣⎦2,333x πππ⎡⎤∴+∈-⎢⎥⎣⎦,,33t ππ⎡⎤∴∈-⎢⎥⎣⎦又sin y t =在,33ππ⎡⎤-⎢⎥⎣⎦上单调递增, ()2sin 23f x x π⎛⎫∴=+ ⎪⎝⎭在,03π⎡⎤-⎢⎥⎣⎦上单调递增,所以选项B 正确;由2,3x k k Z ππ+=∈得对称中心为(),062k k Z ππ⎛⎫-+∈ ⎪⎝⎭,所以选项C 正确;由sin 232x π⎛⎫+= ⎪⎝⎭得2233x k πππ+=+或222,33x k k Z πππ+=+∈ 解得x k π=或,6x k k Z ππ=+∈,又[]0,10,x ∈0,1,2,3k ∴=时,713190,,,,2,,3,6666x πππππππ=,共8个零点,所以选项D 正确. 故选:BCD 【点睛】方法点睛:函数的零点问题的研究,常用的方法有:(1)方程法(解方程即得解);(2)图象法(直接画出函数的图象得解);(3)方程+图象法(令()=0f x 得()()g x h x =,再分析函数(),()g x h x 的图象得解). 要根据已知条件灵活选择方程求解.5.下列结论正确的是( )A .在三角形ABC 中,若AB >,则sin sin A B > B .在锐角三角形ABC 中,不等式2220b c a +->恒成立 C .若sin 2sin 2A B =,则三角形ABC 为等腰三角形D .在锐角三角形ABC 中,sin sin cos cos A B A B +>+【答案】ABD 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,利用锐角△ABC 这个条件,可得2A B π+>,结合三角函数的单调性比较sin A 与cos B 大小即可判断D . 【详解】ABC 中,A B a b >⇔>,由sin sin a bA B=,得sin sin A B >,A 正确; 在锐角三角形ABC 中,222222cos 0,02b c a A b c a bc+-=>∴+->,B 正确;ABC 中,若sin 2sin 2A B =,则22A B =或22180A B ︒+=,即A B =或90A B ︒+=,ABC 为等腰三角形或直角三角形,C 错误;在锐角三角形ABC 中,2A B π+>,022A B ππ∴>>->,sin sin 2A B π⎛⎫∴>- ⎪⎝⎭,即sin cos A B >,同理:sin cos B A >sin sin cos cos A B A B ∴+>+,D 正确.故选:ABD. 【点睛】关键点睛:本题考查正弦定理,余弦定理,正弦函数的性质,诱导公式等,学会公式的灵活应用是解答本题的关键.6.已知函数()()()2sin 0,0f x x ωϕωϕπ=+><<的部分图象如图所示,则下列说法正确的是( )A .23ϕπ=B .()f x 的最小正周期为πC .()f x 的图象关于直线12x π=对称D .()f x 的图象关于点5,06π⎛⎫⎪⎝⎭对称 【答案】BCD 【分析】利用图象,把(代入求ϕ,利用周期求出2ω=,从而2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,研究对称轴和对称中心. 【详解】由图可知2sin ϕ=sin 2ϕ=,根据图象可知0x =在()f x 的单调递增区间上,又0ϕπ<<,所以3πϕ=,A 项错误;因为()2sin 3f x x πω⎛⎫=+ ⎪⎝⎭,所以结合图像,由五点法得33ωπππ+=,解得2ω=,则()f x 的最小正周期2T ππω==,B 项正确;将12x π=代入2n 2)3(si f x x π⎛⎫=+⎪⎝⎭,得2sin 21263f πππ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象关于直线12x π=对称,C 项正确﹔将56x π=代入可得552sin 0633f πππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以点5,06π⎛⎫⎪⎝⎭是()f x 图象的一个对称中心,D 项正确. 故选:BCD. 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.7.已知函数()2sin (0)6f x x πωω⎛⎫=-> ⎪⎝⎭,则下列结论正确的是( ) A .函数()f x 的初相为6π- B .若函数()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增,则(0,2]ω∈ C .若函数()f x 关于点,02π⎛⎫⎪⎝⎭对称,则ω可以为12D .将函数()f x 的图象向左平移一个单位得到的新函数是偶函数,则ω可以为2023 【答案】AB 【分析】根据选项条件一一判断即可得结果. 【详解】A 选项:函数()2sin (0)6f x x πωω⎛⎫=-> ⎪⎝⎭的初相为6π-,正确; B 选项:若函数()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增,则2266k ππωππ-+≤-,2362k πωπππ-≤+,k Z ∈,所以21226k k ω-+≤≤+,k Z ∈,又因为0ω<,则02ω<≤,正确;C 选项:若函数()f x 关于点,02π⎛⎫⎪⎝⎭对称,则,26k k Z πωππ-=∈,所以12,3k k Z ω=+∈故ω不可以为12,错误; D 选项:将函数()f x 的图象向左平移一个单位得到()12sin 6f x x πωω⎛⎫+=+- ⎪⎝⎭是偶函数,则,62k k Z ππωπ-=+∈,所以2,3k k Z πωπ=+∈故ω不是整数,则ω不可以为2023,错误; 故选:AB 【点睛】掌握三角函数图象与性质是解题的关键.8.已知4παπ≤≤,32ππβ≤≤,4sin 25α=,cos()10αβ+=-,则( )A .cos α=B .sin cos 5αα-=C .34πβα-= D .cos cos 5αβ=-【答案】BC 【分析】先根据4sin 25α=,判断角α的范围,再根据cos2α求cos α; 根据平方关系,判断sin cos αα-的值;利用公式cos()cos[()2]βααβα-=+-求值,并根据角的范围判断角βα-的值;利用公式()cos βα+和()cos βα-,联合求cos cos αβ.【详解】 ①因为4παπ≤≤,所以222παπ≤≤,又4sin 205α=>,故有22παπ≤≤,42ππα≤≤,解出2231cos 22cos 1cos cos 55αααα=-=-⇒=⇒=,故A 错误; ②()21sin cos 1sin 25ααα-=-=, 由①知:42ππα≤≤,所以sin cos αα>,所以sin cos 5αα-=,故B 正确; ③由①知:42ππα≤≤,而32ππβ≤≤,所以524παβπ≤+≤,又cos()010αβ+=-<,所以5342ππαβ≤+≤,解得sin()αβ+=所以34cos()cos[()2]1051052βααβα⎛⎫⎛⎫-=+-=--+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭又因为5342ππαβ≤+≤,22ππα-≤-≤-, 所以4πβαπ≤-≤,有34πβα-=,故C 正确;④由cos()cos cos sin sin 1010αβαβαβ+=-⇒-=-,由③知,cos()cos cos sin sin 2βααβαβ-=+=-,两式联立得:cos cos 10αβ=-,故D 错误. 故选:BC 【点睛】关键点点睛:本题的关键是三角函数恒等变形的灵活应用,尤其是确定角的范围,根据三角函数值4sin 25α=,确定22παπ≤≤,且cos()0αβ+=<,进一步确定5342ππαβ≤+≤,这些都是确定函数值的正负,以及角的大小的依据.9.将函数cos 2y x =的图象上所有点向左平移6π个单位长度,再向下平移1个单位长度,得到函数()y f x =的图象,则( ) A .()f x 的图象的对称轴方程为()62k x k Z ππ=-+∈ B .()f x 的图象的对称中心坐标为(),0212k k Z ππ⎛⎫+∈⎪⎝⎭ C .()f x 的单调递增区间为()2,36k k k Z ππππ⎡⎫-+-+∈⎪⎢⎣⎭ D .()f x 的单调递减区间为()2,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【答案】AC 【分析】首先根据图象平移求函数()y f x =的解析式,再根据整体代入的方法判断函数的对称性和单调区间. 【详解】cos 2y x =的图象上所有点向左平移π6个单位长度,得到cos 26y x π⎛⎫=+ ⎪⎝⎭,再向下平移1个单位长度后得到()cos 213y f x x π⎛⎫==+- ⎪⎝⎭, 对于A ,令23x k ππ+=,解得,62k x k Z ππ=-+∈,函数的对称轴是,62k x k Z ππ=-+∈,故A 正确; 对于B ,令232x k πππ+=+,解得:,122k x k Z ππ=+∈,所以函数的对称中心,1,122k k Z ππ⎛⎫+-∈ ⎪⎝⎭,故B 不正确; 对于C ,令2223k x k ππππ-+≤+≤,解得:236k x k ππ-+π≤≤-+π,所以函数的单调递增区间是2,,36k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦,由于单点不具有单调性,所以()f x 的单调递增区间为()2,36k k k Z ππππ⎡⎫-+-+∈⎪⎢⎣⎭也正确,故C 正确; 对于D ,令2223k x k ππππ≤+≤+,解得:63k x k ππππ-+≤≤+,所以函数单调递减区间是,63k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈,故D 不正确. 故选:AC【点睛】方法点睛:本题考查函数的图象变换,以及()sin y A ωx φ=+的性质,属于中档题型,()sin y A x ϕ=+的横坐标伸长(或缩短)到原来的1ω倍,得到函数的解析式是()sin y A ωx φ=+,若sin y A x ω=向右(或左)平移ϕ(0ϕ>)个单位,得到函数的解析式是()sin y A x ωϕ=-⎡⎤⎣⎦或()sin y A x ωϕ=+⎡⎤⎣⎦.10.已知函数()()cos 22f x x πϕϕ⎛⎫=+< ⎪⎝⎭,()()124F x f x f x π⎛⎫=+ ⎪⎝⎭为奇函数,则下述四个结论中说法正确的是( )A .tan ϕ=B .()f x 在[],a a -上存在零点,则a 的最小值为6π C .()F x 在3,44ππ⎛⎫ ⎪⎝⎭上单调递增 D .()F x 的图象可由()f x 的图象向左平移2π个单位得到 【答案】ABC【分析】首先得到()()1224F x f x f x π⎛⎫=++ ⎪⎝⎭的解析式,再根据函数的奇偶性求出参数ϕ,最后结合三角函数的性质一一验证即可.【详解】 解:因为()cos(2)f x x ϕ=+,所以11()()+cos(2))cos 22423F x f x f x x x x ππϕϕϕ⎛⎫⎛⎫==++=++ ⎪ ⎪⎝⎭⎝⎭, 因为()F x 为奇函数,则(0)0F =,即cos 03πϕ⎛⎫+= ⎪⎝⎭,所以32k ππϕπ+=+,k Z ∈,因为||2ϕπ<,所以6π=ϕ;对于A ,tan tan 63πϕ==,故A 正确; 对于B ,令()cos 206f x x π⎛⎫=+= ⎪⎝⎭,得26k x ππ=+,k ∈Z ,若()f x 在[,]a a -上存在零点,则0a >且a 的最小值为6π,故B 正确; 对于C ,()cos 2sin 263F x x x ππ⎛⎫=++=- ⎪⎝⎭,当3,44x ππ⎛⎫∈ ⎪⎝⎭时,2,232x ππ⎛⎫∈ ⎪⎝⎭,则()F x 在3,44ππ⎛⎫ ⎪⎝⎭上单调递增,故C 正确. 对于D ,因为()cos 26f x x π⎛⎫=+ ⎪⎝⎭, ()cos 266F x x ππ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦,根据“左加右减”,()F x 的图象可由()f x 的图象向左平移6π个单位得到,故D 错误.故选:ABC .【点睛】关键点点睛:本题解答的关键是先根据()()124F x f x f x π⎛⎫=++ ⎪⎝⎭为奇函数,确定参数ϕ的值,再结合三角函数的性质逐一判断即可.。

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)1. 设函数f(x) = x^3 3x + 1,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 1和x = 1,极值分别为f(1) = 1和f(1) = 3。

2. 已知等差数列{an}的前n项和为Sn = n^2 + n,求该数列的通项公式。

答案:an = 2n + 1。

3. 已知三角形ABC中,AB = AC = 5,BC = 8,求三角形ABC的面积。

答案:三角形ABC的面积为12。

4. 设直线y = kx + b与圆x^2 + y^2 = 1相切,求k和b的值。

答案:k = ±√3/3,b = ±√6/3。

5. 已知函数f(x) = log2(x^2 + 1),求f(x)的导数。

答案:f'(x) = 2x/(x^2 + 1)ln2。

6. 已知向量a = (2, 3),向量b = (1, 4),求向量a和向量b的夹角。

答案:向量a和向量b的夹角为arccos(1/√5)。

7. 已知矩阵A = [1 2; 3 4],求矩阵A的逆矩阵。

答案:矩阵A的逆矩阵为[4 2; 3 1]。

8. 已知函数f(x) = x^3 6x^2 + 9x + 1,求f(x)的零点。

答案:f(x)的零点为x = 1和x = 3。

9. 已知函数f(x) = sin(x) cos(x),求f(x)在区间[0, π/2]上的最大值。

答案:f(x)在区间[0, π/2]上的最大值为√2。

10. 已知函数f(x) = x^2 + 4x + 4,求f(x)的顶点坐标。

答案:f(x)的顶点坐标为(2, 0)。

高考数学压轴题100题汇总(含答案)11. 已知函数f(x) = e^x 2x,求f(x)的导数。

答案:f'(x) = e^x 2。

12. 已知函数f(x) = x^2 4x + 4,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 2,极值为f(2) = 0。

2021年高考数学高考数学压轴题 导数及其应用多选题分类精编及答案

2021年高考数学高考数学压轴题 导数及其应用多选题分类精编及答案

2021年高考数学高考数学压轴题 导数及其应用多选题分类精编及答案一、导数及其应用多选题1.已知函数()xf x e =,()1ln22x g x =+的图象与直线y m =分别交于A 、B 两点,则( )A .AB 的最小值为2ln2+B .m ∃使得曲线()f x 在A 处的切线平行于曲线()g x 在B 处的切线C .函数()()f x g x m -+至少存在一个零点D .m ∃使得曲线()f x 在点A 处的切线也是曲线()g x 的切线 【答案】ABD 【分析】求出A 、B 两点的坐标,得出AB 关于m 的函数表达式,利用导数求出AB 的最小值,即可判断出A 选项的正误;解方程()12ln 2m f m g e -⎛⎫''= ⎪⎝⎭,可判断出B 选项的正误;利用导数判断函数()()y f x g x m =-+的单调性,结合极值的符号可判断出C 选项的正误;设切线与曲线()y g x =相切于点()(),C n g n ,求出两切线的方程,得出方程组,判断方程组是否有公共解,即可判断出D 选项的正误.进而得出结论. 【详解】令()xf x e m ==,得ln x m =,令()1ln22x g x m =+=,得122m x e -=, 则点()ln ,A m m 、122,m B e m -⎛⎫⎪⎝⎭,如下图所示:由图象可知,122ln m AB e m -=-,其中0m >,令()122ln m h m em -=-,则()1212m h m em-'=-,则函数()y h m '=单调递增,且102h ⎛⎫'= ⎪⎝⎭,当102m <<时,0h m,当12m >时,0h m.所以,函数()122ln m h m e m -=-在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞⎪⎝⎭上单调递增, 所以,min 112ln 2ln 222AB h ⎛⎫==-=+⎪⎝⎭,A 选项正确; ()x f x e =,()1ln 22x g x =+,则()x f x e '=,()1g x x'=,曲线()y f x =在点A 处的切线斜率为()ln f m m '=,曲线()y g x =在点B 处的切线斜率为1212122m m g e e --⎛⎫'= ⎪⎝⎭,令()12ln 2m f m g e -⎛⎫''= ⎪⎝⎭,即1212m m e -=,即1221m me -=, 则12m =满足方程1221m me -=,所以,m ∃使得曲线()y f x =在A 处的切线平行于曲线()y g x =在B 处的切线,B 选项正确;构造函数()()()1ln22xx F x f x g x m e m =-+=-+-,可得()1x F x e x'=-, 函数()1xF x e x '=-在()0,∞+上为增函数,由于120F e ⎛⎫'=< ⎪⎝⎭,()110F e -'=>,则存在1,12t ⎛⎫∈⎪⎝⎭,使得()10t F t e t '=-=,可得ln t t =-,当0x t <<时,()0F x '<;当x t >时,()0F x '>.()()min 1111ln ln ln 2ln 22222t t t F x F t e m e t m t m t ∴==-+-=-++-=+++-13ln 2ln 2022m m >+-=++>,所以,函数()()()F x f x g x m =-+没有零点,C 选项错误;设曲线()y f x =在点A 处的切线与曲线()y g x =相切于点()(),C n g n , 则曲线()y f x =在点A 处的切线方程为()ln ln my m ex m -=-,即()1ln y mx m m =+-,同理可得曲线()y g x =在点C 处的切线方程为11ln 22n y x n =+-,所以,()111ln ln 22m nn m m ⎧=⎪⎪⎨⎪-=-⎪⎩,消去n 得()11ln ln 202m m m --++=,令()()11ln ln 22G x x x x =--++,则()111ln ln x G x x x x x-'=--=-, 函数()y G x '=在()0,∞+上为减函数,()110G '=>,()12ln 202G '=-<,则存在()1,2s ∈,使得()1ln 0G s s s'=-=,且1s s e =. 当0x s <<时,()0G x '>,当x s >时,()0G x '<.所以,函数()y G x =在()2,+∞上为减函数,()5202G =>,()17820ln 202G =-<, 由零点存在定理知,函数()y G x =在()2,+∞上有零点, 即方程()11ln ln 202m m m --++=有解. 所以,m ∃使得曲线()y f x =在点A 处的切线也是曲线()y g x =的切线. 故选:ABD. 【点睛】本题考查导数的综合应用,涉及函数的最值、零点以及切线问题,计算量较大,属于难题.2.函数ln ()xf x x=,则下列说法正确的是( ) A .(2)(3)f f >B.ln π>C .若()f x m =有两个不相等的实根12x x 、,则212x x e <D .若25,x y x y =、均为正数,则25x y < 【答案】BD 【分析】求出导函数,由导数确定函数日单调性,极值,函数的变化趋势,然后根据函数的性质判断各选项.由对数函数的单调性及指数函数单调性判断A ,由函数()f x 性质判断BC ,设25x y k ==,且,x y 均为正数,求得252ln ,5ln ln 2ln 5x k y k ==,再由函数()f x 性质判断D .【详解】由ln (),0x f x x x=>得:21ln ()xf x x -'=令()0f x '=得,x e =当x 变化时,(),()f x f x '变化如下表:故,ln ()xf x x=在(0,)e 上递增,在(,)e +∞上递减,()f e e =是极大值也是最大值,x e >时,x →+∞时,()0f x →,且x e >时()0f x >,01x <<时,()0f x <,(1)0f =,A .1132ln 2(2)ln 2,(3)ln 32f f ===66111133223232(3)(2)f f ⎛⎫⎛⎫>∴>∴> ⎪ ⎪⎝⎭⎝⎭,故A 错B .e e π<,且()f x 在(0,)e 单调递增ln f f π∴<<<∴>,故:B 正确 C .()f x m =有两个不相等的零点()()1212,x x f x f x m ∴==不妨设120x e x <<<要证:212x x e <,即要证:221222,()e e x x e ef x x x<>∴<在(0,)e 单调递增,∴只需证:()212e f x f x ⎛⎫< ⎪⎝⎭即:()222e f x f x ⎛⎫<⎪⎝⎭只需证:()2220e f x f x ⎛⎫-< ⎪⎝⎭……① 令2()(),()e g x f x f x e x ⎛⎫=-> ⎪⎝⎭,则2211()(ln 1)g x x e x '⎛⎫=-- ⎪⎝⎭当x e >时,2211ln 1,()0()x g x g x e x'>>∴>∴在(,)e +∞单调递增 ()22()0x e g x g e >∴>=,即:()2220e f x f x ⎛⎫-> ⎪⎝⎭这与①矛盾,故C 错D .设25x y k ==,且,x y 均为正数,则25ln ln log ,log ln 2ln 5k kx k y k ==== 252ln ,5ln ln 2ln 5x k y k ∴== 1152ln 2ln 5ln 2,ln 525==且1010111153222525⎛⎫⎛⎫⎛⎫ ⎪>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ln 2ln 52502525ln 2ln 5x y ∴>>∴<∴<,故D 正确. 故选:BD . 【点睛】关键点点睛:本题考查用导数研究函数的单调性、极值,函数零点等性质,解题关键是由导数确定函数()f x 的性质.其中函数值的大小比较需利用单调性,函数的零点问题中有两个变量12,x x ,关键是进行转化,利用零点的关系转化为一个变量,然后引入新函数进行证明.3.设函数3()(,)f x x ax b a b R =++∈,下列条件中,使得()y f x =有且仅有一个零点的是( ) A .1,2a b == B .3,3a b =-=- C .0,2a b >< D .0,0a b <>【答案】ABC 【分析】求导2()3f x x a '=+,分0a ≥和0a <进行讨论,当0a ≥时,可知函数单调递增,有且只有一个零点;当0a <时,讨论函数的单调性,要使函数有一个零点,则需比较函数的极大值与极小值与0的关系,再验证选项即可得解. 【详解】3()f x x ax b =++,求导得2()3f x x a '=+当0a ≥时,()0f x '≥,()f x ∴单调递增,当x →-∞时,()f x →-∞;当x →+∞时,()f x →+∞;由零点存在性定理知,函数()f x 有且只有一个零点,故A ,C 满足题意;当0a <时,令()0f x '=,即230x a +=,解得1x =2x =当x 变化时,()'f x ,()f x 的变化情况如下表:()f x 极大值 极小值故当3ax -=-,函数()f x 取得极大值2333333a a a a a a f a b b ⎛⎫-----=-+=-+ ⎪ ⎪⎝⎭, 当3a x -=,函数()f x 取得极小值2333333a a a a a a f a b b ⎛⎫-----=++=+ ⎪ ⎪⎝⎭又当x →-∞时,()f x →-∞;当x →+∞时,()f x →+∞; 要使函数()f x 有且只有一个零点,作草图或则需0303a f a f ⎧⎛--<⎪ ⎪⎝⎨-⎪<⎪⎩,即20332033a a b a a b ⎧-<⎪⎪⎨-⎪<⎪⎩,即2033a ab -<<,B 选项,3,3a b =-=-,满足上式,故B 符合题意;则需0303a f a f ⎧⎛-->⎪ ⎪⎝⎨-⎪>⎪⎩,即20332033a a b a a b ⎧->⎪⎪⎨-⎪>⎪⎩,即2033a ab ->>,D 选项,0,0a b <>,不一定满足,故D 不符合题意; 故选:ABC 【点睛】思路点睛:本题考查函数的零点问题,如果函数()y f x =在区间[,]a b 上的图像是连续不断的一条曲线,并且有()()0f a f b <,那么,函数()y f x =在区间(),a b 内有零点,即存在(),c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的根,考查学生的逻辑推理与运算能力,属于较难题.4.定义在(0,)+∞上的函数()f x 的导函数为()'f x ,且()()f x f x x'<,则对任意1x 、2(0,)x ∈+∞,其中12x x ≠,则下列不等式中一定成立的有( )A .()()()1212f x x f x f x +<+B .()()()()21121212x xf x f x f x f x x x +<+ C .()1122(1)x x f f <D .()()()1212f x x f x f x <【答案】ABC 【分析】构造()()f x g x x=,由()()f x f x x '<有()0g x '<,即()g x 在(0,)+∞上单调递减,根据各选项的不等式,结合()g x 的单调性即可判断正误.【详解】 由()()f x f x x '<知:()()0xf x f x x'-<, 令()()f x g x x =,则()()()20xf x f x g x x'-='<, ∴()g x 在(0,)+∞上单调递减,即122112121212()()()()0()g x g x x f x x f x x x x x x x --=<-- 当120x x ->时,2112()()x f x x f x <;当120x x -<时,2112()()x f x x f x >; A :121()()g x x g x +<,122()()g x x g x +<有112112()()x f x x f x x x +<+,212212()()x f x x f x x x +<+,所以()()()1212f x x f x f x +<+; B:由上得21121212()()()()x f x x x x f x x x -<-成立,整理有()()()()21121212x xf x f x f x f x x x +<+; C :由121x >,所以111(2)(1)(2)(1)21x x x f f g g =<=,整理得()1122(1)x x f f <; D :令121=x x 且121x x >>时,211x x =,12111()()()()g x g x f x f x =,12()(1)(1)g x x g f ==,有121()()g x x g x >,122()()g x x g x <,所以无法确定1212(),()()g x x g x g x 的大小. 故选:ABC 【点睛】思路点睛:由()()f x f x x '<形式得到()()0xf x f x x'-<, 1、构造函数:()()f x g x x =,即()()()xf x f x g x x'-'=. 2、确定单调性:由已知()0g x '<,即可知()g x 在(0,)+∞上单调递减.3、结合()g x 单调性,转化变形选项中的函数不等式,证明是否成立.5.已知函数()1ln f x x x x=-+,给出下列四个结论,其中正确的是( ) A .曲线()y f x =在1x =-处的切线方程为10x y ++= B .()f x 恰有2个零点C .()f x 既有最大值,又有最小值D .若120x x >且()()120f x f x +=,则121=x x 【答案】BD 【分析】本题首先可根据()10f -=以及13f判断出A 错误,然后根据当0x >时的函数单调性、当0x <时的函数单调性、()10f -=以及()10f =判断出B 正确和C 错误,最后根据()()120f x f x +=得出()121f x f x ⎛⎫=⎪⎝⎭,根据函数单调性即可证得121=x x ,D 正确. 【详解】函数()1ln f x x x x=-+的定义域为()(),00,-∞⋃+∞, 当0x >时,()1ln f x x x x=-+,()2221111x x f x x x x -+-'=--=;当0x <时,1ln f xxx x,()2221111x x f x x x x -+-'=--=, A 项:1ln 1110f ,22111131f,则曲线()y f x =在1x =-处的切线方程为031y x ,即33y x =--,A 错误;B 项:当0x >时,222215124x x x f xx x ,函数()f x 是减函数,当0x <时,222215124x x x f xx x ,函数()f x 是减函数,因为()10f -=,()10f =,所以函数()f x 恰有2个零点,B 正确; C 项:由函数()f x 的单调性易知,C 错误; D 项:当1>0x 、20x >时, 因为()()120f x f x +=,所以1222222221111ln lnf x f x x x x fx x x x , 因为()f x 在()0,∞+上为减函数,所以121x x =,120x x >, 同理可证得当10x <、20x <时命题也成立,D 正确, 故选:BD. 【点睛】本题考查函数在某点处的切线求法以及函数单调性的应用,考查根据导函数求函数在某点处的切线以及函数单调性,导函数值即切线斜率,若导函数值大于0,则函数是增函数,若导函数值小于0,则函数是减函数,考查函数方程思想,考查运算能力,是难题.6.在单位圆O :221x y +=上任取一点()P x y ,,圆O 与x 轴正向的交点是A ,将OA 绕原点O 旋转到OP 所成的角记为θ,若x ,y 关于θ的表达式分别为()x fθ=,()y g θ=,则下列说法正确的是( )A .()x f θ=是偶函数,()y g θ=是奇函数;B .()x f θ=在()0,π上为减函数,()y g θ=在()0,π上为增函数;C .()()1fg θθ+≥在02πθ⎛⎤∈ ⎥⎝⎦,上恒成立;D .函数()()22t f g θθ=+的最大值为2.【答案】ACD【分析】依据三角函数的基本概念可知cos x θ=,sin y θ=,根据三角函数的奇偶性和单调性可判断A 、B ;根据辅助角公式知()()4f g πθθθ⎛⎫+=+ ⎪⎝⎭,再利用三角函数求值域可判断C ;对于D ,2cos sin2tθθ=+,先对函数t 求导,从而可知函数t 的单调性,进而可得当1sin 2θ=,cos 2θ=时,函数t 取得最大值,结合正弦的二倍角公式,代入进行运算即可得解. 【详解】由题意,根据三角函数的定义可知,x cos θ=,y sin θ=, 对于A ,函数()cos fθθ=是偶函数,()sin g θθ=是奇函数,故A 正确;对于B ,由正弦,余弦函数的基本性质可知,函数()cos f θθ=在()0,π上为减函数,函数()sin g θθ=在0,2π⎛⎫⎪⎝⎭为增函数,在,2ππ⎛⎫⎪⎝⎭为减函数,故B 错误;对于C ,当0θπ⎛⎤∈ ⎥2⎝⎦,时,3,444πππθ⎛⎤+∈ ⎥⎝⎦()()cos sin 4f g πθθθθθ⎛⎫+=+=+∈ ⎪⎝⎭,故C 正确;对于D ,函数()()222cos sin2t fg θθθθ=+=+,求导22sin 2cos22sin 2(12sin )2(2sin 1)(sin 1)t θθθθθθ'=-+=-+-=--+, 令0t '>,则11sin 2θ-<<;令0t '<,则1sin 12θ<<, ∴函数t 在06,π⎡⎤⎢⎥⎣⎦和5,26ππ⎡⎤⎢⎥⎣⎦上单调递增,在5,66ππ⎛⎫⎪⎝⎭上单调递减,当6πθ=即1sin 2θ=,cos θ=时,函数取得极大值1222t =⨯=又当2θπ=即sin 0θ=,cos 1θ=时,212012t =⨯+⨯⨯=,所以函数()()22t f g θθ=+取得最大值2,故D 正确.故选:ACD. 【点睛】方法点睛:考查三角函数的值域时,常用的方法:(1)将函数化简整理为()()sin f x A x ωϕ=+,再利用三角函数性质求值域; (2)利用导数研究三角函数的单调区间,从而求出函数的最值.7.已知函数()ln f x x mx =-有两个零点1x 、2x ,且12x x <,则下列结论不正确的是( ) A .10m e<<B .21x x -的值随m 的增大而减小C .101x <<D .2x e >【答案】C 【分析】由()0f x =得出ln xm x =,构造函数()ln x g x x=,利用导数分析函数()g x 的单调性与极值,数形结合可判断ACD 选项的正误;任取1m 、210,m e ⎛⎫∈ ⎪⎝⎭,且12m m <,设()()121g g m ξξ==,其中121e ξξ<<<;设()()122g g m ηη==,其中121e ηη<<<,利用函数()g x 的单调性结合不等式的基本性质得出2121ξξηη->-,可判断B 选项的正误. 【详解】令()0f x =,可得ln x m x =,构造函数()ln x g x x=,定义域为()0,∞+,()1ln x g x x-'=. 当0x e <<时, ()0g x '>,此时函数()g x 单调递增;当x e >时,()0g x '<,此时函数()g x 单调递减.所以,()()max 1g x g e e==,如下图所示:由图象可知,当10m e <<时,直线y m =与函数()ln x g x x=的图象有两个交点,A 选项正确; 当1x >时,()0g x >,由图象可得11x e <<,2x e >,C 选项错误,D 选项正确; 任取1m 、210,m e ⎛⎫∈ ⎪⎝⎭,且12m m <,设()()121g g m ξξ==,其中121e ξξ<<<;设()()122g g m ηη==,其中121e ηη<<<.由于函数()g x 在区间()1,e 上单调递增,且()()11g g ξη<,11ξη∴<;函数()g x 在区间(),e +∞上单调递减,且()()22g g ξη<,22ξη∴>.由不等式的基本性质可得1212ξξηη-<-,则2121ξξηη->-.所以,21x x -的值随m 的增大而减小,B 选项正确.故选:C.【点睛】在利用导数研究函数的零点问题个数中,可转化为判定()m g x =有两个实根时实数m 应满足的条件,并注意()g x 的单调性、奇偶性、最值的灵活应用.另外还可作出函数()y g x =的大致图象,直观判定曲线交点个数,但应注意严谨性,进行必要的论证.8.对于函数2ln ()x f x x =,下列说法正确的是( )A .()f x 在x =12eB .()f x 有两个不同的零点C .f f f <<D .若()21f x k x <-在()0,∞+上恒成立,则2e k >【答案】ACD【分析】 求得函数的导数312ln ()-'=x f x x,根据导数的符号,求得函数的单调区间和极值,可判定A 正确;根据函数的单调性和()10f =,且x >()0f x >,可判定B 不正确;由函数的单调性,得到f f >,再结合作差比较,得到f f >,可判定C 正确;分离参数得到()221ln 1x k f x x x +>+=在()0,∞+上恒成立,令()2ln 1x g x x +=,利用导数求得函数()g x 的单调性与最值,可判定D 正确. 【详解】 由题意,函数2ln ()x f x x =,可得312ln ()(0)x f x x x -'=>,令()0f x '=,即312ln 0x x -=,解得x =当0x <<()0f x '>,函数()f x 在上单调递增;当x >()0f x '<,函数()f x 在)+∞上单调递减,所以当x =()f x 取得极大值,极大值为12f e=,所以A 正确; 由当1x =时,()10f =,因为()f x 在上单调递增,所以函数()f x 在上只有一个零点,当x >()0f x >,所以函数在)+∞上没有零点,综上可得函数在(0,)+∞只有一个零点,所以B 不正确;由函数()f x 在)+∞上单调递减,可得f f >,由于ln 2ln ,42f f ππ====,则2ln ln 2ln ln 22444f f ππππππ-=-=-,因为22ππ>,所以0f f ->,即f f >,所以f f f <<,所以C 正确;由()21f x k x<-在()0,∞+上恒成立,即()221ln 1x k f x x x +>+=在()0,∞+上恒成立, 设()2ln 1x g x x +=,则()32ln 1x g x x--'=, 令()0g x '=,即32ln 10x x --=,解得x = 所以当0x<<()0g x '>,函数()g x 在上单调递增; 当x>()0g x '<,函数()g x 在)+∞上单调递减, 所以当x=()g x 取得最大值,最大值为22e e g e =-=, 所以2e k >,所以D 正确. 故选:ACD.【点睛】本题主要考查导数在函数中的综合应用,以及恒成立问题的求解,着重考查了转化与化归思想、逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.9.已知函数()()()221x f x x e a x =-+-有两个零点,则a 的可能取值是( ) A .1-B .0C .1D .2 【答案】CD【分析】求出()f x 的导数,讨论a 的范围,结合函数的单调性和零点存在性定理可判断求出.【详解】解:∵函数()()()221x f x x e a x =-+-,∴()()()()()12112x x f x x e a x x e a '=-+-=-+, ①若0a =,那么()()0202xf x x e x =⇔-=⇔=, 函数()f x 只有唯一的零点2,不合题意;②若0a >,那么20x e a +>恒成立,当1x <时,()0f x '<,此时函数为减函数;当1x >时,()0f x '>,此时函数为增函数;此时当1x =时,函数()f x 取极小值e -,由()20f a =>,可得:函数()f x 在1x >存在一个零点;当1x <时,x e e <,210x -<-<,∴()()()()()222121x f x x e a x x e a x =-+->-+- ()()211a x e x e =-+--,令()()2110a x e x e -+--=的两根为1t ,2t ,且12t t <,则当1x t <,或2x t >时,()()()2110f x a x e x e >-+-->,故函数()f x 在1x <存在一个零点;即函数()f x 在R 上存在两个零点,满足题意;③若02e a -<<,则()ln 2ln 1a e -<=, 当()ln 2x a <-时,()1ln 21ln 10x a e -<--<-=,()ln 2220a x e a e a -+<+=,即()()()120x f x x e a '=-+>恒成立,故()f x 单调递增, 当()ln 21a x -<<时,10x -<,()ln 2220a x e a e a -+>+=,即()()()120x f x x e a '=-+<恒成立,故()f x 单调递减,当1x >时,10x ->,()ln 2220a x e a e a -+>+=,即()()(1)20x f x x e a '=-+>恒成立,故()f x 单调递增, 故当()ln 2x a =-时,函数取极大值,由()()()()()2ln 2ln 222ln 21f a a a a a ⎡⎤⎡⎤-=---+--⎣⎦⎣⎦ (){}2ln 2210a a ⎡⎤⎣⎦=--+<得:函数()f x 在R 上至多存在一个零点,不合题意;④若2e a =-,则()ln 21a -=, 当()1ln 2x a <=-时,10x -<,()ln 2220a x e a e a -+<+=,即()()()120x f x x e a '=-+>恒成立,故()f x 单调递增, 当1x >时,10x ->,()ln 2220a x e a e a -+>+=,即()()()120x f x x e a '=-+>恒成立,故()f x 单调递增,故函数()f x 在R 上单调递增,函数()f x 在R 上至多存在一个零点,不合题意;⑤若 2e a <-,则()ln 2ln 1a e ->=, 当1x <时,10x -<,()ln 2220a x e a e a -+<+=,即()()()120x f x x e a '=-+>恒成立,故()f x 单调递增, 当()1ln 2x a <<-时,10x ->,()ln 2220a x e a e a -+<+=, 即()()()120x f x x e a '=-+<恒成立,故()f x 单调递减, 当()ln 2x a >-时,10x ->,()ln 2220a x e a e a -+>+=,即()()()120x f x x e a '=-+>恒成立,故()f x 单调递增,故当1x =时,函数取极大值,由()10f e =-<得:函数()f x 在R 上至多存在一个零点,不合题意;综上所述,a 的取值范围为()0,∞+,故选:CD.【点睛】本题考查利用导数研究函数的零点问题,属于较难题.10.已知函数()21,0log ,0kx x f x x x +≤⎧=⎨>⎩,下列是关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的判断,其中正确的是( )A .当0k >时,有3个零点B .当0k <时,有2个零点C .当0k >时,有4个零点D .当0k <时,有1个零点【答案】CD【分析】令y =0得()1f f x =-⎡⎤⎣⎦,利用换元法将函数分解为f (x )=t 和f (t )=﹣1,作出函数f (x )的图象,利用数形结合即可得到结论.【详解】令()10y f f x =+=⎡⎤⎣⎦,得()1f f x =-⎡⎤⎣⎦,设f (x )=t ,则方程()1f f x =-⎡⎤⎣⎦等价为f (t )=﹣1,①若k >0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有两个根其中t 2<0,0<t 1<1,由f (x )=t 2<0,此时x 有两解,由f (x )=t 1∈(0,1)知此时x 有两解,此时共有4个解,即函数y =f [f (x )]+1有4个零点.②若k <0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有一个根t1,其中0<t1<1,由f(x)=t1∈(0,1),此时x只有1个解,即函数y=f[f(x)]+1有1个零点.故选:CD.【点睛】本题考查分段函数的应用,考查复合函数的零点的判断,利用换元法和数形结合是解决本题的关键,属于难题.。

2021年高考数学高考数学压轴题 导数及其应用多选题分类精编含答案

2021年高考数学高考数学压轴题 导数及其应用多选题分类精编含答案

2021年高考数学高考数学压轴题 导数及其应用多选题分类精编含答案一、导数及其应用多选题1.设函数()ln xf x x=,()ln g x x x =,下列命题,正确的是( )A .函数()f x 在()0,e 上单调递增,在(),e +∞单调递减B .不等关系33e e ππππ<<<成立C .若120x x <<时,总有()()()22212122a x x g x g x ->-恒成立,则1a ≥D .若函数()()2h x g x mx =-有两个极值点,则实数()0,1m ∈【答案】AC 【分析】利用函数的单调性与导数的关系可判断A 选项的正误;由函数()f x 在区间(),e +∞上的单调性比较3π、e π的大小关系,可判断B 选项的正误;分析得出函数()()22s x g x ax=-在()0,∞+上为减函数,利用导数与函数单调性的关系求出a 的取值范围,可判断C 选项的正误;分析出方程1ln 2xm x+=在()0,∞+上有两个根,数形结合求出m 的取值范围,可判断D 选项的正误. 【详解】对于A 选项,函数()ln x f x x =的定义域为()0,∞+,则()21ln xf x x -'=. 由()0f x '>,可得0x e <<,由()0f x '>,可得x e >.所以,函数()f x 在()0,e 上单调递增,在(),e +∞单调递减,A 选项正确; 对于B 选项,由于函数()ln xf x x=在区间(),e +∞上单调递减,且4e π>>, 所以,()()4f f π>,即ln ln 44ππ>,又ln 41ln 213ln 22043236--=-=>, 所以,ln ln 4143ππ>>,整理可得3e ππ>,B 选项错误; 对于C 选项,若120x x <<时,总有()()()22212122a x x g x g x ->-恒成立,可得()()22112222g x ax g x ax ->-,构造函数()()2222ln s x g x ax x x ax =-=-,则()()12s x s x >,即函数()s x 为()0,∞+上的减函数,()()21ln 20s x x ax '=+-≤对任意的()0,x ∈+∞恒成立,即1ln xa x+≥对任意的()0,x ∈+∞恒成立,令()1ln x t x x +=,其中0x >,()2ln xt x x'=-. 当01x <<时,()0t x '>,此时函数()t x 单调递增; 当1x >时,()0t x '<,此时函数()t x 单调递减.所以,()()max 11t x t ==,1a ∴≥,C 选项正确;对于D 选项,()()22ln h x g x mx x x mx =-=-,则()1ln 2h x x mx '=+-,由于函数()h x 有两个极值点,令()0h x '=,可得1ln 2xm x+=, 则函数2y m =与函数()t x 在区间()0,∞+上的图象有两个交点, 当1x e>时,()0t x >,如下图所示:当021m <<时,即当102m <<时,函数2y m =与函数()t x 在区间()0,∞+上的图象有两个交点.所以,实数m 的取值范围是10,2⎛⎫ ⎪⎝⎭,D 选项错误. 故选:AC. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.2.对于函数()2ln 1f x x ax x a =+--+,其中a R ∈,下列4个命题中正确命题有( )A .该函数定有2个极值B .该函数的极小值一定不大于2C .该函数一定存在零点D .存在实数a ,使得该函数有2个零点【答案】BD 【分析】求出导函数,利用导数确定极值,结合零点存在定理确定零点个数. 【详解】函数定义域是(0,)+∞,由已知2121()2x ax f x x a x x+-'=+-=,280a ∆=+>,2210x ax +-=有两个不等实根12,x x ,但12102x x =-<,12,x x 一正一负.由于定义域是(0,)+∞,因此()0f x '=只有一个实根,()f x 只有一个极值,A 错; 不妨设120x x <<,则20x x <<时,()0f x '<,()f x 递减,2x x >时,()0f x '>,()f x 递增.所以2()f x 是函数的极小值.222210x ax +-=,22212x a x -=,22222()ln 1f x x ax x a =+--+=222222222222212112ln 12ln 2x x x x x x x x x -+---+=-+--+,设21()2ln 2g x x x x x =-+--+,则22111()22(1)(2)g x x x x x x'=-+-+=-+, 01x <<时,()0g x '>,()g x 递增,1x >时,()0g x '<,()g x 递减,所以()g x 极大值=(1)2g =,即()2g x ≤,所以2()2f x ≤,B 正确; 由上可知当()f x 的极小值为正时,()f x 无零点.C 错;()f x 的极小值也是最小值为2222221()2ln 2f x x x x x =-+--+, 例如当23x =时,173a =-,2()0f x <,0x →时,()f x →+∞,又2422217171714()21()03333f e e e e e =--++=-+>(217()3e >, 所以()f x 在(0,3)和(3,)+∞上各有一个零点,D 正确. 故选:BD . 【点睛】思路点睛:本题考查用导数研究函数的极值,零点,解题方法是利用导数确定函数的单调性,极值,但要注意在函数定义域内求解,对零点个数问题,注意结合零点存在定理,否则不能确定零点的存在性.3.设函数()()()1f x x x x a =--,则下列结论正确的是( ) A .当4a =-时,()f x 在11,2⎡⎤-⎢⎥⎣⎦上的平均变化率为194B .当1a =时,函数()f x 的图像与直线427y =有2个交点 C .当2a =时,()f x 的图像关于点()1,0中心对称D .若函数()f x 有两个不同的极值点1x ,2x ,则当2a ≥时,()()120f x f x +≤ 【答案】BCD 【分析】运用平均变化率的定义可分析A ,利用导数研究()f x 的单调性和极值,可分析B 选项,证明()()20f x f x +-=可分析C 选项,先得出1x ,2x 为方程()23210x a x a -++=的两个实数根,结合韦达定理可分析D 选项. 【详解】对于A ,当4a =-时,()()()14f x x x x =-+,则()f x 在11,2⎡⎤-⎢⎥⎣⎦上的平均变化率为()()()119123192221412⎛⎫⨯-⨯--⨯-⨯ ⎪⎝⎭=---,故A 错误;对于B ,当1a =时,()()23212f x x x x x x =-=-+,()()()2341311f x x x x x '=-+=--,可得下表:因为327f ⎛⎫= ⎪⎝⎭,()10f =,()42227f =>,结合()f x 的单调性可知, 方程()427f x =有两个实数解,一个解为13,另一个解在()1,2上,故B 正确; 对于C ,当2a =时,()()()()()()()231211111f x x x x x x x x ⎡⎤=--=---=---⎣⎦,则有()()()()()()33211110f x f x x x x x +-=---+---=,故C 正确; 对于D ,()()()1f x x x x a =--,()()()()()2121321f x x x a x x a x a x a '=--+--=-++,令()0f x '=,可得方程()23210x a x a -++=,因为()()22412130a a a ∆=-+=-+>,且函数()f x 有两个不同的极值点1x ,2x ,所以1x ,2x 为方程()23210x a x a -++=的两个实数根,则有()12122132x x a a x x ⎧+=+⎪⎪⎨⎪=⎪⎩,则()()()()()()1211122211f x f x x x x a x x x a +=--+--()()()()33221212121x x a x x a x x =+-++++()()()()()22212112212121212x x x x x x a x x x x a x x ⎡⎤=+-++++-++⎣⎦()()()22211221212221233a x x x x x x x x a ⎡⎤=+-+-+++⎢⎥⎣⎦ ()()()()()21242212113327a a a x x a a --⎡⎤=+-++=-+⋅⎢⎥⎣⎦因为2a ≥,所以()()120f x f x +≤,故D 正确; 故选:BCD . 【点睛】关键点点睛:本题考查利用导数研究函数的单调性,平均变化率,极值等问题,本题的关键是选项D ,利用根与系数的关系,转化为关于a 的函数,证明不等式.4.经研究发现:任意一个三次多项式函数32()(0)f x ax bx cx d a =+++≠的图象都只有一个对称中心点()()00,x f x ,其中0x 是()0f x ''=的根,()'f x 是()f x 的导数,()f x ''是()'f x 的导数.若函数32()f x x ax x b =+++图象的对称点为(1,2)-,且不等式(ln 1)x e e mx x -+32()3ef x x x e x ⎡⎤≥--+⎣⎦对任意(1,)x ∈+∞恒成立,则( )A .3a =B .1b =C .m 的值可能是e -D .m 的值可能是1e-【答案】ABC 【分析】求导得()62f x x a ''=+,故由题意得()1620f a ''=-+=-,()1112f a b -=-+-+=,即3,1a b ==,故()3231f x x x x =+++.进而将问题转化为()1ln 1e x x e x e m x --++<+,由于1x e x >+,故ln ln 1ee x x x x e e x e x --+=≥-+,进而得()1ln ln 1ln 1e x x e x e e x ee x x --++--≥=-++,即m e ≤-,进而得ABC 满足条件.【详解】由题意可得()1112f a b -=-+-+=,因为()2321x ax f x =++',所以()62f x x a ''=+,所以()1620f a ''=-+=-,解得3,1a b ==,故()3231f x x x x =+++.因为1x >,所以()()32ln []13xeee mx xf x x x e x -+≥--+等价于()1ln 1e x x e x e m x --++≤+. 设()()10xg x e x x =-->,则()10xg x e '=->,从而()g x 在()0,∞+上单调递增.因为()00g =,所以()0g x >,即1x e x >+, 则ln ln 1ee x xxx e e x e x --+=≥-+(当且仅当x e =时,等号成立),从而()1ln ln 1ln 1e x x e x e e x e e x x --++--≥=-++,故m e ≤-.故选:ABC. 【点睛】本题解题的关键在于根据题意得()3231f x x x x =+++,进而将不等式恒成立问题转化为()1ln 1e x x e x e m x --++≤+恒成立问题,再结合1x e x >+得ln ln 1ee x xxx e e x e x --+=≥-+,进而得m e ≤-.考查运算求解能力与化归转化思想,是难题.5.已知函数()21ln 2f x ax ax x =-+的图象在点()()11,x f x 处与点()()22,x f x 处的切线均平行于x 轴,则( )A .()f x 在1,上单调递增B .122x x +=C .()()121212x x x x f x f x ++++的取值范围是7,2ln 24⎛⎫-∞-- ⎪⎝⎭D .若163a =,则()f x 只有一个零点 【答案】ACD 【分析】求导,根据题意进行等价转化,得到a 的取值范围;对于A ,利用导数即可得到()f x 在()1,+∞上的单调性;对于B ,利用根与系数的关系可得121x x =+;对于C ,化简()()121212x x x x f x f x ++++,构造函数,利用函数的单调性可得解;对于D ,将163a =代入()f x ',令()0f x '=,可得()f x 的单调性,进而求得()f x 的极大值小于0,再利用零点存在定理可得解. 【详解】 由题意可知,函数()f x 的定义域为()0,∞+,且()211ax ax ax a x x xf -+=-+=',则1x ,2x 是方程210ax ax -+=的两个不等正根,则212401a a x x a ⎧∆=->⎪⎨=>⎪⎩,解得4a >, 当()1,x ∈+∞时,函数210y ax ax =-+>,此时()0f x '>,所以()f x 在()1,+∞上单调递增,故A 正确;因为1x ,2x 是方程210ax ax -+=的两个不等正根,所以121x x =+,故B 错误; 因为()()221212121112221111ln ln 22x x x x f x f x x ax ax x ax ax a ++++=+++-++- 1112111ln 1ln 22a a a a a a a a⎛⎫=+++--=--+ ⎪⎝⎭, 易知函数()11ln 2h a a a a=--+在()4,+∞上是减函数, 则当4a >时,()()742ln 24h a h <=--, 所以()()121212x x x x f x f x ++++的取值范围是7,2ln 24⎛⎫-∞-- ⎪⎝⎭,故C 正确;当163a =时,()1616133f x x x '=-+,令()0f x '=,得14x =或34, 则()f x 在10,4⎛⎫ ⎪⎝⎭上单调递增,在13,44⎛⎫⎪⎝⎭上单调递减,在3,4⎛⎫+∞ ⎪⎝⎭上单调递增, 所以()f x 在14x =取得极大值,且104f ⎛⎫< ⎪⎝⎭,()2ln 20f =>, 所以()f x 只有一个零点,故D 正确.故选:ACD. 【点睛】关键点点睛:导数几何意义的应用主要抓住切点的三个特点: ①切点坐标满足原曲线方程; ②切点坐标满足切线方程;③切点的横坐标代入导函数可得切线的斜率.6.已知函数()e sin xf x a x =+,则下列说法正确的是( )A .当1a =-时,()f x 在0,单调递增B .当1a =-时,()f x 在()()0,0f 处的切线为x 轴C .当1a =时,()f x 在()π,0-存在唯一极小值点0x ,且()010f x -<<D .对任意0a >,()f x 在()π,-+∞一定存在零点 【答案】AC 【分析】结合函数的单调性、极值、最值及零点,分别对四个选项逐个分析,可选出答案. 【详解】对于A ,当1a =-时,()e sin x f x x =-,()e cos xf x x '=-, 因为()0,x ∈+∞时,e 1,cos 1xx >≤,即0fx,所以()f x 在0,上单调递增,故A 正确;对于B ,当1a =-时,()e sin xf x x =-,()e cos xf x x '=-,则()00e sin01f =-=,()00e cos00f '=-=,即切点为0,1,切线斜率为0,故切线方程为1y =,故B 错误;对于C ,当1a =时,()e sin x f x x =+,()e cos x f x x '+=,()e sin xf x x '=-', 当()π,0x ∈-时,sin 0x <,e 0x >,则()e sin 0xx f x -'=>'恒成立,即()e cos x f x x '+=在()π,0-上单调递增,又ππ22ππe cos e 220f --⎛⎫⎛⎫'-=-= ⎪ ⎪⎝⎭⎝⎭+>,3π3π443π3πe cos e442f --⎛⎫⎛⎫'-=-= ⎪ ⎪⎝⎭⎝-⎭+,因为123π3π421e e 2e ---⎛⎫=<⎪⎭< ⎝,所以3π43πe 024f -⎛⎫'-= ⎪-⎭<⎝,所以存在唯一03ππ,42x ⎛⎫∈-- ⎪⎝⎭,使得()00f x '=成立,所以()f x 在()0π,x -上单调递减,在()0,0x 上单调递增,即()f x 在()π,0-存在唯一极小值点0x ,由()000e cos 0xf x x +'==,可得()000000πe sin cos sin 4x f x x x x x ⎛⎫=+=-+=- ⎪⎝⎭,因为03ππ,42x ⎛⎫∈-- ⎪⎝⎭,所以0π3ππ,44x ⎛⎫-∈-- ⎪⎝⎭,则()00π4f x x ⎛⎫=- ⎪⎝⎭()1,0∈-,故C 正确;对于选项D ,()e sin xf x a x =+,()π,x ∈-+∞,令()e sin 0xf x a x =+=,得1sin ex xa -=, ()sin ex xg x =,()π,x ∈-+∞,则()πcos sin 4e e x xx x x g x ⎛⎫- ⎪-⎝⎭'==, 令0g x ,得πsin 04x ⎛⎫-= ⎪⎝⎭,则ππ4x k =+()1,k k ≥-∈Z ,令0g x,得πsin 04x ⎛⎫-> ⎪⎝⎭,则π5π2π,2π44x k k ⎛⎫∈++ ⎪⎝⎭()1,k k ≥-∈Z ,此时函数()g x 单调递减, 令0g x,得πsin 04x ⎛⎫-< ⎪⎝⎭,则5π9π2π,2π44x k k ⎛⎫∈++ ⎪⎝⎭()1,k k ≥-∈Z ,此时函数()g x 单调递增, 所以5π2π4x k =+()1,k k ≥-∈Z 时,()g x 取得极小值,极小值为5π5π2π2π445π5π2π5π4s 42in si πe e 4n k k g k k ++⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭++()1,k k ≥-∈Z , 在()g x 的极小值中,3π4sin 3π45π5π42π4eg g -⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝+⎭-最小,当3ππ,4x ⎛⎫∈--⎪⎝⎭时,()g x 单调递减,所以函数()g x的最小值为3π3π445πsin 3π144eg --⎛⎫-==- ⎪⎝⎭,当3π411a--<-时,即3π40a -<<时,函数()g x 与1=-y a无交点,即()f x 在()π,-+∞不存在零点,故D 错误.故选:AC. 【点睛】本题考查利用导数研究函数的极值、零点、最值,及切线方程的求法,考查学生的推理能力与计算求解能力,属于难题.7.已知函数()()()221x f x x e a x =-+-有两个零点,则a 的可能取值是( ) A .1- B .0 C .1 D .2【答案】CD 【分析】求出()f x 的导数,讨论a 的范围,结合函数的单调性和零点存在性定理可判断求出. 【详解】解:∵函数()()()221x f x x e a x =-+-, ∴()()()()()12112xx f x x e a x x e a '=-+-=-+,①若0a =,那么()()0202xf x x e x =⇔-=⇔=,函数()f x 只有唯一的零点2,不合题意; ②若0a >,那么20x e a +>恒成立, 当1x <时,()0f x '<,此时函数为减函数; 当1x >时,()0f x '>,此时函数为增函数; 此时当1x =时,函数()f x 取极小值e -,由()20f a =>,可得:函数()f x 在1x >存在一个零点; 当1x <时,x e e <,210x -<-<,∴()()()()()222121x f x x e a x x e a x =-+->-+-()()211a x e x e =-+--,令()()2110a x e x e -+--=的两根为1t ,2t ,且12t t <, 则当1x t <,或2x t >时,()()()2110f x a x e x e >-+-->, 故函数()f x 在1x <存在一个零点;即函数()f x 在R 上存在两个零点,满足题意; ③若02ea -<<,则()ln 2ln 1a e -<=,当()ln 2x a <-时,()1ln 21ln 10x a e -<--<-=,()ln 2220a x e a e a -+<+=,即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,当()ln 21a x -<<时,10x -<,()ln 2220a x e a e a -+>+=,即()()()120xf x x e a '=-+<恒成立,故()f x 单调递减,当1x >时,10x ->,()ln 2220a x e a e a -+>+=, 即()()(1)20xf x x e a '=-+>恒成立,故()f x 单调递增,故当()ln 2x a =-时,函数取极大值,由()()()()()2ln 2ln 222ln 21f a a a a a ⎡⎤⎡⎤-=---+--⎣⎦⎣⎦(){}2ln 2210a a ⎡⎤⎣⎦=--+<得:函数()f x 在R 上至多存在一个零点,不合题意; ④若2ea =-,则()ln 21a -=, 当()1ln 2x a <=-时,10x -<,()ln 2220a x e a e a -+<+=, 即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,当1x >时,10x ->,()ln 2220a x e a e a -+>+=,即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,故函数()f x 在R 上单调递增,函数()f x 在R 上至多存在一个零点,不合题意;⑤若2ea <-,则()ln 2ln 1a e ->=, 当1x <时,10x -<,()ln 2220a x e a e a -+<+=, 即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,当()1ln 2x a <<-时,10x ->,()ln 2220a x e a e a -+<+=, 即()()()120xf x x e a '=-+<恒成立,故()f x 单调递减,当()ln 2x a >-时,10x ->,()ln 2220a x e a e a -+>+=, 即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,故当1x =时,函数取极大值,由()10f e =-<得:函数()f x 在R 上至多存在一个零点,不合题意;综上所述,a 的取值范围为()0,∞+, 故选:CD. 【点睛】本题考查利用导数研究函数的零点问题,属于较难题.8.已知()2sin x f x x x π=--.( )A .()f x 的零点个数为4B .()f x 的极值点个数为3C .x 轴为曲线()y f x =的切线D .若()12()f x f x =,则12x x π+=【答案】BC 【分析】首先根据()0f x '=得到21cos xx π-=,分别画出21xy π=-和cos y x =的图像,从而得到函数的单调性和极值,再依次判断选项即可得到答案. 【详解】()21cos xf x x π'=--,令()0f x '=,得到21cos xx π-=.分别画出21xy π=-和cos y x =的图像,如图所示:由图知:21cos xx π-=有三个解,即()0f x '=有三个解,分别为0,2π,π. 所以(),0x ∈-∞,()21cos 0xf x x π'=-->,()f x 为增函数,0,2x π⎛⎫∈ ⎪⎝⎭,()21cos 0x f x x π'=--<,()f x 为减函数,,2x ππ⎛⎫∈ ⎪⎝⎭,()21cos 0x f x x π'=-->,()f x 为增函数,(),x π∈+∞,()21cos 0xf x x π'=--<,()f x 为减函数.所以当0x =时,()f x 取得极大值为0,当2x π=时,()f x 取得极小值为14π-,当x π=时,()f x 取得极大值为0,所以函数()f x 有两个零点,三个极值点,A 错误,B 正确.因为函数()f x 的极大值为0,所以x 轴为曲线()y f x =的切线,故C 正确. 因为()f x 在(),0-∞为增函数,0,2π⎛⎫⎪⎝⎭为减函数, 所以存在1x ,2x 满足1202x x π<<<,且()()12f x f x =,显然122x x π+<,故D 错误.故选:BC 【点睛】本题主要考查导数的综合应用,考查利用导数研究函数的零点,极值点和切线,属于难题.9.已知函数()21,0log ,0kx x f x x x +≤⎧=⎨>⎩,下列是关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的判断,其中正确的是( ) A .当0k >时,有3个零点 B .当0k <时,有2个零点 C .当0k >时,有4个零点 D .当0k <时,有1个零点【答案】CD 【分析】令y =0得()1f f x =-⎡⎤⎣⎦,利用换元法将函数分解为f (x )=t 和f (t )=﹣1,作出函数f (x )的图象,利用数形结合即可得到结论. 【详解】令()10y f f x =+=⎡⎤⎣⎦,得()1f f x =-⎡⎤⎣⎦,设f (x )=t ,则方程()1f f x =-⎡⎤⎣⎦等价为f (t )=﹣1,①若k >0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有两个根其中t 2<0,0<t 1<1,由f (x )=t 2<0,此时x 有两解,由f (x )=t 1∈(0,1)知此时x 有两解,此时共有4个解, 即函数y =f [f (x )]+1有4个零点.②若k <0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有一个根t 1,其中0<t 1<1,由f (x )=t 1∈(0,1),此时x 只有1个解,即函数y =f [f (x )]+1有1个零点. 故选:CD .【点睛】本题考查分段函数的应用,考查复合函数的零点的判断,利用换元法和数形结合是解决本题的关键,属于难题.10.关于函数()sin x f x e a x =+,(),x π∈-+∞,下列结论正确的有( ) A .当1a =时,()f x 在()0,(0)f 处的切线方程为210x y -+= B .当1a =时,()f x 存在惟一极小值点0x C .对任意0a >,()f x 在(),π-+∞上均存在零点 D .存在0a <,()f x 在(),π-+∞有且只有一个零点 【答案】ABD 【分析】逐一验证,选项A ,通过切点求切线,再通过点斜式写出切线方程;选项B ,通过导数求出函数极值并判断极值范围,选项C 、D ,通过构造函数,将零点问题转化判断函数的交点问题. 【详解】对于A :当1a =时,()sin xf x e x =+,(),x π∈-+∞,所以(0)1f =,故切点为()0,1,()cos x f x e x '=+,所以切线斜(0)2k f '==,故直线方程为()120y x -=-,即切线方程为:210x y -+=,故选项A 正确; 对于B :当1a =时,()sin xf x e x =+,(),x π∈-+∞,()cos x f x e x '=+,()()sin 0,,xf x e x x π''=->∈-+∞恒成立,所以()f x '单调递增,又202f π⎛⎫'=>⎪⎝⎭, 3344332cos 0442f e e ππππ--⎛⎫⎛⎫'-=+-=-< ⎪ ⎪⎝⎭⎝⎭,所以存在03,42x ππ⎛⎫∈-- ⎪⎝⎭,使得()00f x '=, 即00cos 0xe x +=,则在()0,x π-上,()0f x '<,()f x 单调递减,在()0,x +∞上,()0f x '>,()f x 单调递增, 所以存在惟一极小值点0x ,故选项B 正确;对于 C 、D :()sin xf x e a x =+,(),x π∈-+∞,令()sin 0xf x e a x =+=得:1sin x x a e-=, 则令sin ()xxF x e =,(),x π∈-+∞,)cos sin 4()x x x x x F x e e π--'==,令()0F x '=,得:4x k ππ=+,1k ≥-,k Z ∈,由函数)4y x π=-图象性质知:52,244x k k ππππ⎛⎫∈++ ⎪⎝⎭)04x π->,sin ()x x F x e =单调递减,52,2244x k k πππππ⎛⎫∈+++ ⎪⎝⎭)04x π-<,sin ()x x F x e =单调递增,所以当524x k ππ=+,1k ≥-,k Z ∈时,()F x 取得极小值, 即当35,,44x ππ=-时,()F x 取得极小值, 又354435sin sin 44eeππππ-⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭<<,即3544F F ππ⎛⎫⎛⎫-<< ⎪⎪⎝⎭⎝⎭,又因为在3,4ππ⎛⎫-- ⎪⎝⎭,sin ()x x F x e =单调递减,所以343()42F x F e ππ⎛⎫≥=- ⎪⎝⎭, 所以24x k ππ=+,0k ≥,k Z ∈时,()F x 取得极大值,即当944x ππ=、, 时,()F x 取得极大值.又9449sin sin 44e e ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<<,即()442F x F eππ⎛⎫≤=⎪⎝⎭,当(),x π∈-+∞时,344()22e F x e ππ-≤≤,所以当3412e a π-<-,即34a e π>时, ()f x 在(),π-+∞上无零点,所以选项C 不正确;当341e a π-=时,即4a e π=时, 1=-y a 与sin x xy e=的图象只有一个交点,即存在0a <,()f x 在(),π-+∞有且只有一个零点, 故选项D 正确. 故选:ABD 【点睛】本题考查函数的极值、切线、零点的问题,属于较难题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A. HF //BE B.三棱锥的体积VB1BMN 4
C.直线 MN 与平面 A1B1BA 所成的角为 45 D. D1G : GC1 1: 3
【答案】ABD 【分析】
面面平行性质定理可得出 A 正确;等体积法求得 B 正确;直线 MN 与平面 A1B1BA 所成的角为
B1MN ,求其正切值不等于 1 即可得出 C 错误;利用面面平行性质定理和中位线求出 D1G, GC1 长
内切球半径及侧面面积的关系求内切球半径 r,进而求内切球表面积,判断 C 的正误. 【详解】 A:构建如下图所示的空间直角坐标系:
则有: A(0,0, 2), M (1, 2, 2), B(0, 2,0), D(2,0,0) , ∴ AM (1, 2, 0), DB (2, 2, 0) , cos AM , DB AM DB 2 10
B1N B1M
4 3
1
,故错误;
对于 D.同 A 选项证明方法一样可证的 GC1 //B1M ,
因为
E
为棱 CC1 上的中点, C1 为棱 B1N
GC1 =
上的中点,所以
1 2
B1M
3 2
所以
D1G=
1 2
,所以
D1G
:
GC1
1:
3
,故正确.
故选:ABD 【点睛】 求体积的常用方法: (1)直接法:对于规则的几何体,利用相关公式直接计算; (2)等体积法:选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一 个面可作为三棱锥的底面进行等体积变换; (3)割补法:首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的 几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算.
行的平面内,由平面 A1BD// 平面 B1D1C ,知满足 A1P// 平面 B1D1C 的点 P 在 BD 上,则 A1P 长的
最大值为 A1B 2 ,则 C 不正确;
对选项 D,由以上推理可知,点 P 既在以 A 为圆心,半径为 1 的小圆圆弧上,又在线段 BD 上,即
与 B 或 D 重合,不妨取点 B,则平面 A1PC1 截正方体外接球所得截面为 A1BC1 的外接圆,利用
2021 年高考数学压轴题 100 题精选含答案
一、立体几何多选题
1.如图,在棱长为 2 的正方体 ABCD ABCD 中,M 为 BC 边的中点,下列结论正确的有( )
10 A. AM 与 DB 所成角的余弦值为 10
9 B.过三点 A 、 M 、 D 的正方体 ABCD ABCD 的截面面积为 2
则 HP=x,易得
3
2
R
2
,解得
x
2 3
,舍去;
故 O 在平面 BCED 下方,如图②所示: 设 ON=x,外接球的半径为 R,过 O 作 A'H 的垂线,垂足为 P,
42 x2 3 x2
则 HP=x,易得
3
2
R2
,
x
解得
2 3,
R2 16 4 4 37 R 2 37

9 9,
3 ,故 D 正确.
故选:ABD.
【点睛】 本题考查立体几何中的折叠问题,涉及二面角问题,异面直线所成的角,用到线面、面面垂直的判 定与性质及外接球的球心的性质和有关计算,余弦定理等,属综合性较强的题目,关键是利用线面 垂直,面面垂直的判定和性质进行空间关系和结构的判定,注意球心在四棱锥的底面上方和下方的 讨论与验证.
连接 DN,易得 DN‖EC,DN=EC=4, ∠A'DN 就是直线 A'D 与 CE 所成的角,
DN=DA'=4,A'N=A'M=2 3 ,
42 42 12 5
cos∠A'DN= 2 4 4 8 ,故 B 正确;
A'D=DB=4,A'B= AN2 BN2 12 16 2 7 ,
∴ AD2 DB2 AB2 ,∴A'D 与 BD 不垂直,故 C 错误’
S 13 23 2 9
∴梯形的面积为 2
2 2 ,故正确.
C:如下图知:四面体 ACBD 的体积为正方体体积减去四个直棱锥的体积,
V 841 18 8

32
3 ,而四面体的棱长都为 22 ,有表面积为
S 4 1 2 2 2 2 sin 8 3
2
3

18 3r 8 r 3
4 r2 4
A1F
: FA
1: 2 ,所以 B1M
3 2
A1B1
3

又 E 为棱 CC1 上的中点,所以 B1N 4 ,
VB1 BMN
所以
VN B1BMΒιβλιοθήκη 1 31 22
3
4
4
,故正确;
对于 C.由题意及图形可判定直线 MN 与平面 A1B1BA 所成的角为 B1MN ,
tan B1MN
结合 B 选项可得
5.已知正方体 ABCD A1B1C1D1 的棱长为 2,点 O 为 A1D1 的中点,若以 O 为球心, 6 为半径的
【答案】ABD
【分析】
选项 A,B 可利用球的截面小圆的半径来判断;由平面 A1BD// 平面 B1D1C ,知满足 A1P// 平面 B1D1C
的点 P 在 BD 上, A1P 长的最大值为
2r A1P 2 ;结合以上条件点 P 与 B 或 D 重合,利用 sin 60 ,求
r 6 出 3 ,进而求出面积.
| AM || DB | 5 8 10 ,故正确. B:若 N 为 CC 的中点,连接 MN,则有 MN / / AD ,如下图示,
∴梯形 AMND’为过三点 A 、 M 、 D 的正方体 ABCD ABCD 的截面,
32 而 MN 2, AD 2 2, AM DN 5 ,可得梯形的高为 2 ,
∵ A' M ∩MN=M,∴CD⊥平面 A'MN,
又∵CD⊂平面 ABDC,∴平面 A'MN⊥平面 ABDC, 在平面 A'MN 中作 A'H⊥MN,则 A'H⊥平面 BCED, ∵二面角 A'-DE-B 为 60°,∴∠A'EF=60°,
∵正三角形 ABC 中,AB=8,∴AN= 4 3 ,∴A'M=2 3 ,∴A'H=A'Msin60°=3,故 A 正确;
| AM || DB | 为 AM 与
DB 所成角的余弦值判断 A 的正误;同样设 P(x, y,0) 结合向量夹角的坐标表示,且由等角的余弦
2 y 2 15 值相等可得 x2 y2 4 3 5 ,进而判断 P 的轨迹知 D 的正误;由立方体的截面为梯形,
分别求 MN, AD, AM , DN ,进而得到梯形的高即可求面积,判断 B 的正误;由四面体的体积与
【详解】
对 A 选项,如下图:由 A1P 3 ,知点 P 在以 A1 为球心,半径为 3 的球上,又因为 P 在底面 ABCD 内(含边界),底面截球可得一个小圆,由 A1A 底面 ABCD,知点 P 的轨迹是在底面上以 A 为圆心 的小圆圆弧,半径为 r A1P2 A1A2 2 ,则只有唯一一点 C 满足,故 A 正确;
度即可得出 D 正确.
【详解】
解:对于 A.在正方体 ABCD A1B1C1D1 中平面 ADA1D1 // 平面 BCB1C1 , 又平面 ADA1D1 平面 BMN HF ,平面 BCB1C1 平面 BMN BE ,
有平面与平面平行的性质定理可得 HF //BE ,故正确;
对于
B.因为
对于平面eab于是bfab90abf但六边形abfpqh为正六边形120abf矛盾所以补齐八个角构成棱长为2的正方体则该二十四等边体的体积为取正方形acpm对角线交点即为该二十四等边体外接球的球心其半径为因为pn在平面ebfn内射影为ns所以pn与平面ebfn所成角即为pnspspn点睛本题考查了正方体的性质考查了直线与平面所成角问题考查了球的体积与表面积计算问题
C.四面体 ACBD 的内切球的表面积为 3
D . 正 方 体 ABCD ABCD 中 , 点 P 在 底 面 ABCD ( 所 在 的 平 面 ) 上 运 动 并 且 使
MAC PAC ,那么点 P 的轨迹是椭圆
【答案】AB 【分析】
cos AM , DB AM DB
构建空间直角坐标系,由异面直线方向向量的夹角
3.在棱长为 1 的正方体 ABCD A1B1C1D1 中,P 为底面 ABCD 内(含边界)一点.( )
A.若 A1P 3 ,则满足条件的 P 点有且只有一个
B.若 A1P 2 ,则点 P 的轨迹是一段圆弧
C.若 A1P// 平面 B1D1C ,则 A1P 长的最小值为 2
2 D.若 A1P 2 且 A1P// 平面 B1D1C ,则平面 A1PC1 截正方体外接球所得截面的面积为 3
易得 NB=NC=ND=NG=4,∴N 为底面梯形 BCED 的外接圆的圆心, 设四棱锥 A'-BCED 的外接球的球心为 O,则 ON⊥平面 BCED,且 OA'=OC, 若 O 在平面 BCED 上方,入图①所示: 设 ON=x,外接球的半径为 R,过 O 作 A'H 的垂线,垂足为 P,
42 x2 3 x2
A(0, 0, 2), M ( 2 , 3 2 , 2),C(0, 2 2, 0)
构建如下空间直角坐标系,
22
, 若 P(x, y,0) , 则
AM ( 2 , 3 2 , 0), AC (0, 2 2, 2), AP (x, y, 2)
22

cos MAC AM AC 6 15

| AM || AC | 5 12 5 ,
相关文档
最新文档