小升初奥数重点题型讲解分析
数学专项复习小升初奥数板块讲解

数学专项复习小升初奥数板块讲解对于即将面临小升初的同学们来说,奥数的学习和复习是提升数学能力、拓展思维的重要环节。
在这篇文章中,我们将对小升初奥数的几个常见板块进行详细讲解,帮助大家更好地应对考试。
一、计算板块计算是数学的基础,在奥数中更是占据重要地位。
1、简便运算简便运算要求同学们熟练掌握运算定律,如加法交换律、结合律,乘法交换律、结合律、分配律等。
例如:计算 25×32×125,可以将 32拆分成 4×8,然后运用乘法结合律进行计算,即 25×4×8×125 =(25×4)×(8×125)= 100×1000 = 100000。
2、分数计算分数的计算需要同学们掌握通分、约分的方法。
比如:计算 1/2 +1/3 + 1/6,先通分得到 3/6 + 2/6 + 1/6 = 6/6 = 1。
3、小数计算在小数计算中,要注意小数点的位置。
例如:025×48,可以将 48拆分成 4 + 08,然后分别与 025 相乘,即 025×4 + 025×08 = 1 + 02= 12。
二、数论板块数论是研究整数性质的数学分支。
1、整除特征要熟悉常见数的整除特征,比如能被 2 整除的数的个位是偶数,能被 3 整除的数各位数字之和能被 3 整除等。
通过这些特征可以快速判断一个数能否被另一个数整除。
2、质数与合数理解质数和合数的概念,知道 2 是唯一的偶质数。
掌握质因数分解的方法,这在解决一些问题时非常有用。
3、最大公因数和最小公倍数学会用短除法求两个或多个数的最大公因数和最小公倍数。
例如,求 12 和 18 的最大公因数和最小公倍数,通过短除法可以得到最大公因数是 6,最小公倍数是 36。
三、几何板块几何图形的认识和计算是小升初奥数的重点之一。
1、平面图形(1)三角形要掌握三角形的面积公式(面积=底×高÷2),以及三角形内角和为 180 度。
数学专项复习小升初典型奥数之牛吃草问题

数学专项复习小升初典型奥数之牛吃草问题在小升初的数学学习中,奥数一直是备受关注的重点,而牛吃草问题作为其中的一个典型题型,常常让同学们感到困惑。
今天,我们就来深入探讨一下牛吃草问题,帮助大家掌握这类题目的解题方法。
一、什么是牛吃草问题牛吃草问题又称为消长问题或牛顿牧场问题,最早是由牛顿提出的。
这类问题通常描述的是这样一个场景:一片草地,草在不断地生长,而牛在吃草。
由于草的生长速度和牛吃草的速度不同,所以需要我们通过一些已知条件来求出在特定时间内草的总量或者牛吃草的天数等。
例如:有一片草地,每天都匀速长出新草。
这片草地可供 10 头牛吃 20 天,或者可供 15 头牛吃 10 天。
那么,可供 25 头牛吃几天?二、牛吃草问题的特点1、存在两个变量:一是草的生长速度,它是不断变化的;二是牛吃草的速度,通常是固定的。
2、涉及到时间因素:问题中会给出不同数量的牛吃草的不同时间。
3、最终要求出特定条件下的结果,如草可供多少头牛吃多少天,或者多少头牛在特定时间内吃完草。
三、牛吃草问题的解题思路1、设未知数首先,我们设每头牛每天吃草量为“1”份,草每天生长的速度为“x”份。
2、找等量关系根据题目中给出的不同数量的牛吃草的时间,我们可以列出两个关于草总量的等式。
以前面提到的例子为例,10 头牛吃 20 天,草的总量就是 10×20 =200 份;15 头牛吃 10 天,草的总量就是 15×10 = 150 份。
因为草在生长,所以 20 天的草总量比 10 天的草总量多出来的部分就是 20 10 = 10 天生长出来的草量,由此我们可以列出方程:200 150 = 10x解得 x = 5,即草每天生长 5 份。
3、求出原有草量知道了草的生长速度,我们可以求出原有草量。
以 10 头牛吃 20 天为例,20 天草生长了 5×20 = 100 份,那么原有草量就是 200 100 = 100 份。
【小学奥数】小升初奥数题及解析(三篇)

小升初奥数题及解析(三篇)【本文概要】在解奥数题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过表面,抓住问题的实质,将问题转化成自己熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
以下是本文整理的《小升初奥数题及解析(三篇)》相关资料,希望帮助到您。
【篇一】小升初奥数题及解析1、中午12时,校准A、B、C三钟。
当天下午A钟6点时,B钟5点50分;B钟7点时,C钟7点20分。
那么当晚C钟11点时,A钟是几点几分?解析:A钟走6个小时(即360分钟)的同时,B钟走了5小时50分钟=350分钟,可知A与B的速度比为36:35。
B钟走了7个小时(即420分钟)的同时,C钟走了7小时20分钟=440分钟,可知B与C的速度比为42:44=21:22。
现在C钟共走了11个小时(即660分钟),B钟应该走660÷22×21=630分钟,A钟应该走630÷35×36=648分钟=10小时48分钟,所以A钟应该是10点48分。
2、在16点16分0秒时,钟表盘上时针和分针的夹角是多少度?解析:分针走一圈是60分钟,共走了360度,因此分针一分钟走360÷60=6度。
时针60分钟只走一个刻度(即30度),一分钟走30÷60=0。
5度。
16点整的时候,时针指向“4”的位置,分针指向“12”的位置,相差120度。
16分钟里,分针追上时针16×(6-0.5)=88度,夹角还差120-88=32度。
【篇二】小升初奥数题及解析1、*、李强和小莉、小芳是两对夫妻,四人的年龄和是132岁。
丈夫都比自己的妻子大5岁,李强比小芳大6岁。
小莉多少岁?解析:若妻子都增加5岁,那么四人的年龄和为132+5×2=142岁,因此两个丈夫的年龄和是142÷2=71岁。
由条件可以知道,李强的妻子是小莉,*的妻子是小芳。
六年级下小升初典型奥数之行程问题

六年级下小升初典型奥数之行程问题在小学六年级的数学学习中,行程问题一直是一个重点和难点,也是小升初奥数考试中经常出现的题型。
今天,咱们就来好好探讨一下这类问题。
行程问题主要涉及速度、时间和路程这三个量之间的关系。
基本的公式就是:路程=速度×时间。
而常见的行程问题类型有相遇问题、追及问题、流水行船问题等等。
咱们先来说说相遇问题。
比如说,甲从 A 地出发,速度是每小时 5千米;乙从 B 地出发,速度是每小时 3 千米。
A、B 两地相距 16 千米,两人相向而行,问经过多长时间两人相遇。
解决这个问题,我们可以先算出两人的速度和,也就是 5 + 3 = 8千米/小时。
然后用总路程除以速度和,就能得到相遇时间:16÷8 = 2小时。
再来看一个稍微复杂点的相遇问题。
甲、乙两人分别从 A、B 两地同时出发,相向而行。
甲每小时走 4 千米,乙每小时走 6 千米,经过 3 小时两人相遇。
A、B 两地相距多远?这时候我们就可以先算出甲 3 小时走的路程是 4×3 = 12 千米,乙 3 小时走的路程是 6×3 = 18 千米。
然后把两人走的路程相加,12 + 18= 30 千米,就是 A、B 两地的距离。
接下来是追及问题。
比如甲在乙前面 10 千米处,甲的速度是每小时 3 千米,乙的速度是每小时 5 千米,问乙多长时间能追上甲。
因为乙的速度比甲快,所以每小时乙能比甲多走 5 3 = 2 千米。
而两人一开始的距离差是 10 千米,所以追上甲需要的时间就是 10÷2 = 5 小时。
再看一个例子,甲、乙两人同时同向出发,甲在前,乙在后。
甲每小时走 2 千米,乙每小时走 5 千米。
出发 4 小时后,乙追上甲。
一开始两人相距多远?我们先算出乙 4 小时走的路程是 5×4 = 20 千米,甲 4 小时走的路程是 2×4 = 8 千米。
因为乙追上了甲,所以一开始两人的距离差就是乙比甲多走的路程,即 20 8 = 12 千米。
小学奥数小升初常考题型植树问题例题讲解+练习,类型全

植树问题要想了解植树中的数学并学会怎样解决植树问题,首先要牢记三要素:①总路线长、②间距(棵距)长、③棵数、只要知道这三个要素中任意两个要素.就可以求出第三个。
1、不封闭路线①若题目中要求在植树的线路两端都植树,则棵数比段数多1.全长、棵数、段长三者之间的关系是:棵数 = 段数 + 1 = 全长÷段长 + 1 全长 = 段长×(棵数 - 1)段长 = 全长÷(棵数 - 1)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、段长之间的关系就为:全长 = 段长×棵数;棵数 = 全长÷段长;段长 = 全长÷棵数。
③如果植树路线的两端都不植树,则棵数就比②中还少1棵。
棵数 = 段数– 1 = 全长÷段长 - 1 段长 = 全长÷(棵数 + 1)。
2、封闭的植树路线棵数 = 段数 = 周长÷段长一、不封闭路线的植树问题例1 有一条公路长900米,在公路的一侧从头到尾每隔10米栽一根电线杆(两端要栽),问需栽多少根电线杆?分析:要以两颗电线杆之间的距离作为分段标准,公路全长可分为若干段,由于公路两端都要求栽杆,所以电线杆的根数比分成的段数多1解:以10米为一段,公路全长可以分成900÷10 = 90(段)共需电线杆根数:90 + 1 = 91(根)答:需栽电线杆91根。
例2、马路一边每相隔9米栽有一棵柳树.从第一棵树记起,张军乘汽车5分钟共看到501棵树.问汽车每小时走多少千米?由题意,我们看的出最终要求的是车的速度,关于车的量我们已经知道了时间,利用速度 = 路程÷时间,我们不难发现,只要求出汽车5分钟行走的路程即可。
路程从哪来?从树来,张军5分钟看到501棵树就意味着5分钟车行驶路程即为第1棵树到第501棵树的距离,只要求出这段路的长度就容易求出汽车速度.解: 5分钟汽车共走:9×(501 - 1)= 4 500(米)汽车每分钟走: 4 500÷5 = 900(米)汽车每小时走: 900×60 = 54 000(米)= 54(千米)列综合算式为:9×(501 - 1)÷5×60÷1 000 = 54 (千米)答:汽车每小时走54千米。
广州小升初奥数必考题型

广州小升初奥数必考题型1. 引言小升初奥数考试是广州小学生升入初中的一项重要考试。
奥数是指数学竞赛,广州小升初奥数考试主要考察学生在数学方面的基本知识和解题能力。
在备战小升初奥数考试时,了解必考题型是非常重要的。
本文将详细介绍广州小升初奥数必考题型,并提供解题思路和技巧。
2. 必考题型2.1. 选择题选择题是小升初奥数考试中常见的题型之一。
在选择题中,考生需要从多个选项中选择一个正确答案。
常见的选择题类型包括单选题和多选题。
2.1.1. 单选题单选题是最基本的选择题类型。
在单选题中,考生需要从几个选项中选择一个正确答案。
解题时,需要仔细阅读题目,理解题意,然后根据题目给出的条件进行推理和计算,最终选择正确的答案。
例如:已知 a = 2,b = 3,c = 4,d = 5,下列哪个等式成立?A. a + b = cB. b - c = dC. a * b = cD. c / d = a解题思路:根据题目给出的条件,我们可以将每个选项代入等式中进行验证。
通过计算可知,选项C成立,因此答案为C。
2.1.2. 多选题多选题是在单选题的基础上增加了选项的数量,考生需要从多个选项中选择一个或多个正确答案。
解题时,需要仔细分析题目,理解题意,然后根据题目给出的条件进行推理和计算,最终选择正确的答案。
例如:已知 a = 2,b = 3,c = 4,d = 5,下列哪些等式成立?A. a + b = cB. b - c = dC. a * b = cD. c / d = a解题思路:根据题目给出的条件,我们可以将每个选项代入等式中进行验证。
通过计算可知,选项A和C成立,因此答案为A和C。
2.2. 填空题填空题是小升初奥数考试中常见的题型之一。
在填空题中,考生需要根据题目给出的条件,填写正确的答案。
解题时,需要仔细阅读题目,理解题意,然后根据题目给出的条件进行推理和计算,最终填写正确的答案。
例如:已知 a + b = 7,a - b = 3,求 a 和 b 的值。
六年级下小升初典型奥数之复杂和差倍问题

六年级下小升初典型奥数之复杂和差倍问题在小学六年级的数学学习中,和差倍问题是一个重要的知识点,也是小升初考试中经常出现的题型。
而复杂和差倍问题更是对同学们的思维能力提出了更高的挑战。
今天,咱们就一起来深入探讨一下这类问题。
首先,咱们得弄清楚什么是和差倍问题。
简单来说,和差问题就是已知两个数的和与差,求这两个数分别是多少;和倍问题是已知两个数的和以及它们之间的倍数关系,求这两个数;差倍问题则是已知两个数的差以及它们的倍数关系,求这两个数。
那复杂和差倍问题又复杂在哪里呢?通常,它可能涉及多个数量之间的关系,或者条件不是那么直接明确,需要我们通过仔细分析和推理来找出关键信息。
咱们来看一道典型的例题:“甲、乙、丙三个数的和是 180,甲是乙的 2 倍,乙是丙的 3 倍,求甲、乙、丙三个数分别是多少?”这道题中,我们可以设丙为 x,因为乙是丙的 3 倍,所以乙就是 3x,而甲又是乙的 2 倍,那么甲就是 6x。
根据甲、乙、丙三个数的和是180,我们可以列出方程:x + 3x + 6x = 18010x = 180x = 18这样就能算出丙是 18,乙是 3×18 = 54,甲是 6×18 = 108。
再来看另一道题:“果园里苹果树、梨树和桃树共有 360 棵,苹果树比梨树多 20 棵,桃树的棵数是苹果树的 2 倍,三种树各有多少棵?”这道题里,我们可以先设梨树有x 棵,那么苹果树就有x +20 棵,桃树就是 2×(x + 20)棵。
根据三种树的总数是 360 棵,可以列出方程:x +(x + 20) + 2×(x + 20) = 360x + x + 20 + 2x + 40 = 3604x + 60 = 3604x = 300x = 75所以梨树有 75 棵,苹果树有 75 + 20 = 95 棵,桃树有 2×95 = 190 棵。
解决复杂和差倍问题,关键是要理清数量之间的关系。
小升初典型奥数题及详细答案解析

13、幼儿园买来的苹果是梨的3倍,吃掉10个梨和6个苹果后,还有节果
正好是梨的5倍。原来买来苹果和梨共多少个?
14、在一个圆里画一个最大的正方形,已知圆的面积是628平方厘米,求正方形的面积。
15、一个时钟的时针长20厘米,如果走一昼夜,那么它的尖端所走过的路程有多长?时针所扫过的面积有多大 ?
33、圆锥形容器中装有2升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?
34、六年级(1)班原来有学生54人,男生占全班人数的5/9,后来男生转走了几人,这时男生占全班的13/25,问 男生转走了几人?
35、某船在睁水中的速度是每小时15千米,它从上游甲地开往下游乙是共用8小时,水速每小时3千米,它从乙 地返回甲地用。小时?
8×9=72,
20×3+12=72
正符合题中条件。
答:甲、乙、丙三个数分别是8、9、20。
8、在800米环岛上,每隔50米插一面彩旗,后来又增加了一些彩旗,就把彩旗的间隔缩短了,起点的彩旗不动 ,重新插后发现,一共有四面彩旗没动问现在的彩旗间隔多少米?
【答案解析】:800米环岛每隔50米插一面彩旗,共插800÷50=16根,重新插完后,有4根没动,而这4根中的 任意相邻的两根间的距离为50×(16÷4)=200米,重新插完后每相邻的两根彩旗间的距离与50的最小公倍数是200,并 且这个距离一定小于50米.现在间隔为40米。
10、一块正方体木块,体积是1331立方厘米。这块正方体木块的棱长是多少厘米?(适于六年级)
11、李明是个集邮爱好者。他收集的小型张是邮票总数的十一分之一,后来他又收集到十五张小型张,这时小 型张是邮票总数的九分之一,李明一共收集邮票多少张
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初奥数重点题型讲解分析
小升初奥数重点题型讲解分析
1、(盈亏问题)王老师发笔记本给学生们,每人6本则剩下41本,每人8本则差29本。
求有多少个学生?有多少个笔记本
2、(还原问题)便民水果店卖芒果,第一次卖掉总数的一半多2个,第二次卖掉剩下的一半多1个,第三次卖掉第二次卖后剩下的一半少1个,这时只剩下11个芒果。
求水果店里原来一共有多少个芒果
3、置换问题)学校买回6张桌子和6把椅子共用去192元。
已知3张桌子的价钱和5把椅子的价钱相等,每张桌子和每把椅子各是多少元
4、(最佳安排)烤面包的架子上一次最多只能烤两个面包,烤一个面包每面需要2分钟,那么烤三个面包最少需要多少分钟
5、(归一问题)工程队计划用60人5天修好一条长4800米的公路,实际上增加了20人,每人每天比计划多修了4米,实际修完这条路少用了几天
6、(相遇问题)甲、乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车距中点40千米处相遇。
东西两地相距多少千米
7、(追及问题)大客车和小轿车同地、同方向开出,大客车每小时行60千米,小轿车每小时行84千米,大客车出发2小时后小轿车才出发,几小时后小轿车追上大客车
8、(和倍问题)小李有邮票30枚,小刘有邮票15枚,小刘把邮票给小李多少枚后,小李的邮票枚数是小刘的8倍
9、(差倍问题)同学们为希望工程捐款,六年级捐款数是二年级的3倍,如果从六年级捐款钱数中取出160元放入二年级,那么六年级的捐款钱数比二年级多40元,两个年级分别捐款多少元
10、(和差问题)一只两层书架共放书72本,若从上层中拿出9本给下层,上层还比下层多4本,上下层各放书多少本
11、(周期问题)2006年7月1日是星期六,求10月1日是星
期几
12、(鸡兔同笼问题)小丽买回0、8元一本和0、4元一本的练习本共50本,付出人民币32元。
0、8元一本的练习本有多少本
13、(年龄问题)5年前父亲的年龄是儿子的7倍。
15年后父亲的'年龄是儿子的二倍,父亲和儿子今年各是多少岁
14、(油和桶问题)一桶油连桶共重18千克,用去油的一半后,连桶还重9、75千克,原有油多少千克?桶重多少千克
15、(和倍)青青农场一共养鸡、鸭、鹅共12100只,鸭的只数是鸡的2倍,鹅的只数是鸭的4倍,问鸡、鸭、鹅各有多少只
16、(鸡兔同笼)实验小学举行数学竞赛,每做对一题得9分,做错一题倒扣3分,共有12道题,小旺得了84分,小旺做错了几道题
17、(相遇问题)甲、乙两人同时从相距2000米的两地相向而行,甲每分钟行55米,乙每分钟行45米,如果一只狗与甲同时同向而行,每分钟行120米,遇到乙后,立即回头向甲跑去,遇到甲再向乙跑去。
这样不断来回,直到甲和乙相遇为止,狗共行了多少米
18、(过桥问题)列车通过一座长2700米的大桥,从车头上桥到车尾离桥共用了3分钟。
已知列车的速度是每分钟1000米,列车车身长多少米
19、(错车问题)一列客车车长280米,一列货车车长200米,在平行的轨道上相向而行,从两个车头相遇到车尾相离经过20秒。
如果两车同向而行,货车在前,客车在后,从客车头遇到货车尾再到客车尾离开货车头经过120秒。
客车的速度和货车的速度分别是多少
20、(行船问题)客轮和货轮从甲、乙两港同时相向开出,6小时后客轮与货轮相遇,但离两港中点还有6千米。
已知客轮在静水中的速度是每小时30千米,货轮在静水中的速度是每小时24千米。
求水流速度是多少。