总结近三年小升初数学考试大纲及题型复习过程
小升初数学考试大纲

小升初数学考试大纲以下内容是近三年内重点名校(小升初)会考的题型:一:数的认识专题一:整数的认识专题二:数的整除专题三:小数的认识专题四:分数和百分数专题五:正数和负数专题六:量的计量二:四则运算专题一:四则运算的定义和法则专题二:运算定律和简便计算专题三:四则混合运算三:方程复习专题一:用字母表示数专题二:简易方程四:比和比例专题一:比的意义和性质专题二:比例的意义和性质专题三:正比例和反比例五:空间和图形专题一:线和角专题二:平面图形专题三:立体图形专题四:图形的位置和变化六:简单统计专题一:统计表和统计图专题二:可能性和不确定性七:综合应用专题一:一般应用题和复杂应用题专题二:分数和百分数的应用题专题三:列方程解应用题专题四:比和比例应用题小升初奥数题目主要有下面类型一、计算1.四则混合运算繁分数⑴运算顺序⑵分数、小数混合运算技巧一般而言:①加减运算中,能化成有限小数的统一以小数形式;②乘除运算中,统一以分数形式。
⑶带分数与假分数的互化⑷繁分数的化简2.简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序①运算定律的综合运用②连减的性质③连除的性质④同级运算移项的性质⑤增减括号的性质⑥变式提取公因数3.估算求某式的整数部分:扩缩法4.比较大小①通分a. 通分母b. 通分子②跟“中介”比③利用倒数性质若,则c>b>a.。
形如:,则。
5.定义新运算6.特殊数列求和运用相关公式:例如:1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n二、数论1.奇偶性问题奇奇=偶奇×奇=奇奇偶=奇奇×偶=偶偶偶=偶偶×偶=偶2.位值原则形如:=100a+10b+c3.数的整除特征:整除数特征1..末尾是0、2、4、6、82. 各数位上数字的和是3的倍数3. 末尾是0或54. 各数位上数字的和是9的倍数5.奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数10和25 末两位数是4(或25)的倍数8和125 末三位数是8(或125)的倍数7、11、13 末三位数与前几位数的差是7(或11或13)的倍数4.整除性质①如果c|a、c|b,那么c|(a b)。
小学升初中的数学知识复习方法

小学升初中的数学知识复习方法升入初中是每个小学生都要经历的重要节点。
而数学作为一门基础学科,在初中阶段起到了至关重要的作用。
为了顺利适应初中数学学习,小学生们需要在升学前对数学知识进行复习。
本文将介绍一些适用于小学升初中的数学知识复习方法,帮助小学生们事半功倍地备战初中数学。
一、复习基础知识在小学阶段,学生主要学习了加减乘除、分数、小数、面积等基础数学知识。
为了顺利升入初中,小学生们首先需要对这些基础知识进行全面的复习。
可以通过做题、整理复习笔记等方式,巩固基本概念、运算方法和解题思路。
二、学习初中数学课程大纲在小学数学的基础上,初中数学课程会进一步拓展和深化。
因此,小学生们还需要提前熟悉初中数学的课程大纲,了解即将学习的内容。
可以通过查阅相关教材和课程指南,了解初中数学的重点和难点,为即将开始的学习做好准备。
三、做题巩固知识点做题是巩固数学知识的有效方式。
小学生们可以选择一些适合自己水平的习题,通过反复练习,熟悉各类题型和解题方法。
可以从简单题开始,逐渐过渡到复杂题目,增加自己的挑战性。
同时,要注意做题的方法和步骤,培养良好的解题习惯。
四、积累解题技巧初中数学解题需要运用一定的技巧和方法。
小学生们可以通过学习解题技巧,提高自己的问题解决能力。
例如,可以学习代数方程的解法、几何图形的构造方法等。
通过积累和练习,学生们能够更加熟练地应用这些技巧来解决实际问题。
五、参加数学讲座和培训班为了更好地备战初中数学,小学生们可以积极参加数学讲座和培训班。
这些活动和课程可以帮助学生们了解数学的应用领域,提高数学思维能力,并且向学生们介绍一些高中和大学阶段的数学知识,让学生们有一个更广阔的数学视野。
六、与同学互动学习在复习数学知识时,与同学进行互动学习是很有益处的。
可以与同学们组织小组讨论、合作解题,相互提问和解答问题,共同进步。
通过与同学的互动,可以加深对数学知识的理解和记忆,丰富解题思路,更好地为初中数学做准备。
小升初最全的数学复习提纲一篇所有知识点全搞定

小升初最全的数学复习提纲一篇所有知识点全搞定小升初数学复习提纲一、整数:1.四则运算2.整数的比较3.整数的倍数与因数4.整数的奇偶性5.整数的约数与倍数6.整数之间的积与商的关系二、分数:1.分数的定义与性质2.分数的四则运算3.分数的化简与比较4.分数与整数的加减运算5.分数与整数的乘法运算6.分数与整数的除法运算三、小数:1.小数的定义与性质2.小数的读法与写法3.小数的四则运算4.小数与分数的相互转化5.小数的比较与排序6.小数的应用问题四、初等代数:1.一元一次方程的求解2.一元一次方程的应用问题3.一元二次方程的求解4.一元二次方程的应用问题5.一元一次不等式的解集表示6.一元一次不等式的应用问题五、几何:1.平面图形的名称与性质2.平面图形的周长与面积3.三角形的分类与性质4.三角形的内角求解5.直角三角形的勾股定理与应用6.平行四边形的性质与判定六、数据分析:1.数据的收集与整理2.数据的图表表示3.数据的中位数与众数4.数据的平均数与范围5.数据的统计与分析6.数据问题的解决方法七、空间与立体图形:1.立体图形的名称与性质2.立体图形的表面积与体积3.直方体、正方体与长方体的性质4.圆柱、圆锥与圆球的性质5.空间中的位置关系与运动6.空间图形的查找与匹配八、解决问题的方法与思路:1.理解问题与分析问题2.制定解决方案与设定计划3.反思并检查解决过程4.使用数学方法解决问题5.运用逻辑思维解决问题6.综合运用数学知识解决问题以上是小升初数学的复习提纲,涵盖了整数、分数、小数、初等代数、几何、数据分析、空间与立体图形以及解决问题的方法与思路等知识点。
建议学生按照提纲逐一进行复习,并结合相关练习题进行巩固。
希望能够帮助到你,祝你考试顺利!。
小升初数学考试大纲

小升初数学考试大纲以下内容是近三年内重点名校(小升初)会考的题型:题型分类分数比例说明数论10-12%基础部分的掌握图形18-20%对于图形中的边长,面积,体积,角度(简单)的熟练掌握综合应用题36-40%此类题将是整个小学奥数的综合能力测试,也是拿分重点。
数学原理10-12%基本是初中一二年级才能涉及到的数学原理,只有经过奥数培训的学生,才有可能了解的一:数的认识专题一:整数的认识专题二:数的整除专题三:小数的认识专题四:分数和百分数专题五:正数和负数专题六:量的计量二:四则运算专题一:四则运算的定义和法则专题二:运算定律和简便计算专题三:四则混合运算三:方程复习专题一:用字母表示数专题二:简易方程四:比和比例专题一:比的意义和性质专题二:比例的意义和性质专题三:正比例和反比例五:空间和图形专题一:线和角专题二:平面图形专题三:立体图形专题四:图形的位置和变化六:简单统计专题一:统计表和统计图专题二:可能性和不确定性七:综合应用专题一:一般应用题和复杂应用题专题二:分数和百分数的应用题专题三:列方程解应用题专题四:比和比例应用题小升初奥数题目主要有下面类型一、计算1.四则混合运算繁分数⑴运算顺序⑵分数、小数混合运算技巧一般而言:①加减运算中,能化成有限小数的统一以小数形式;②乘除运算中,统一以分数形式。
⑶带分数与假分数的互化⑷繁分数的化简2.简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序①运算定律的综合运用②连减的性质③连除的性质④同级运算移项的性质⑤增减括号的性质⑥变式提取公因数3.估算求某式的整数部分:扩缩法4.比较大小①通分a.通分母b.通分子②跟“中介”比③利用倒数性质若,则c>b>a.。
形如:,则。
5.定义新运算6.特殊数列求和运用相关公式:例如:1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n二、数论1.奇偶性问题奇奇=偶奇×奇=奇奇偶=奇奇×偶=偶偶偶=偶偶×偶=偶2.位值原则形如:=100a+10b+c3.数的整除特征:整除数特征1..末尾是0、2、4、6、82.各数位上数字的和是3的倍数3.末尾是0或54.各数位上数字的和是9的倍数5.奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数10和25末两位数是4(或25)的倍数8和125末三位数是8(或125)的倍数7、11、13末三位数与前几位数的差是7(或11或13)的倍数4.整除性质①如果c|a、c|b,那么c|(a b)。
2024小升初数学专题总复习讲义(含考试题及答案)

A.36÷1.8÷2 B.36×1.8÷2 C.36÷1.8×0.5 D.36×1.8×0.5
【解析】本题考察小数四则混合运算。首先用36除以1.8,求出这个数是多少;然后用它
2024小升初数学专题总复习讲义(含考试题及答案)
专题一 数的运算
考点扫描 1 . 四则运算的意义 1 整数加法、小数加法、分数加法的意义:把两个数合成一个数的运算; 2 整数减法、小数减法、分数减法的意义:已知两个数的和与其中的一个加数,求另一个 加数的运算; 3 整数乘法的意义:求几个相同加数的和的简便运算; 4 小数乘法的意义:小数乘整数与整数乘法的意义相同;一个数乘小数,就是求这个数的 十分之几、百分之几……是多少; 5 整数乘分数的意义:一个数乘分数,就是求这个数的几分之几是多少; 6 分数乘整数的意义:分数乘整数,就是求几个相同分数的和的简便运算; 7 整数除法、小数除法、分数除法的意义:已知两个因数的积与其中的一个因数,求另一 个因数的运算。 2 . 四则运算的计算方法 1 加减法的计算方法
除法的运算性质(除数不为0):
a÷(b×c)=a÷b÷c
a÷(b÷c)=a÷b×c
(a+b)÷c=a÷c+b÷c
(a-b)÷c=a÷c-b÷c
5.四则混合运算的顺序
四则运算分为两级:加法和减法叫做第一级运算;乘法和除法叫做第二级运算。
(1)在没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运
,再和第一个数相乘,它们的积不变。即:a×b×c=(a×b)×c=a×(b×c)
乘法分配律:两个数的和与一个数相乘,等于把这两个数分别与这个数相乘,再把两个积
加起来。即:(a+b)×c=a×c+b×c;a×(b+c)=a×b+a×c
小升初数学考试大纲

五、 行程问题
1. 相遇问题
路程和=速度和×相遇时间
2. 追及问题
路程差=速度差×追及时间
3. 流水行船
顺水速度=船速+水速
逆水速度=船速-水速
船速=(顺水速度+逆水速度)÷2
水速=(顺水速度-逆水速度)÷2
4. 多次相遇
线型路程: 甲乙共行全程数=相遇次数×2-1
环型路程: 甲乙共行全程数=相遇次数
⑴周期性问题
①
年月日、星期几问题
②
余数的应用
⑵数列问题
①
等差数列
通项公式 an=a1+(n-1)d
求项数: n=
求和:
S=
②
等比数列
求和:
S=
③
裴波那契数列
⑶策略问题
①
抢报 30
②
放硬币
⑷最值问题
①
最短线路
a.一个字符阵组的分线读法
b.在格子路线上的最短走法数
②
最优化问题
a.统筹方法
b.烙饼问题
十、
六、 计数问题
1. 加法原理:分类枚举
2. 乘法原理:排列组合
3. 容斥原理:
①
总数量=A+B+C-(AB+AC+BC)+ABC
②
常用:总数量=A+B-AB
4. 抽屉原理:
至多至少问题
5. 握手问题
在图形计数中应用广泛
①
角、线段、三角形,
②
长方形、梯形、平行四边形
③
正方形
七、 分数问题
1. 量率对应
全商(亦简称为商)。用带余数除式又可以表示为 a÷b=q……r, 0≤r<b a=b×q+r
小升初考试大纲数学

小升初考试大纲数学 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】小升初数学考试大纲小升初数学择校考试经常会出现在试题概括有哪些以下内容是近三年内重点名校(小升初)会考的题型:小学六年级奥数题目主要有下面类型一、计算1.四则混合运算繁分数⑴运算顺序⑵分数、小数混合运算技巧一般而言:①加减运算中,能化成有限小数的统一以小数形式;②乘除运算中,统一以分数形式。
⑶带分数与假分数的互化⑷繁分数的化简2.简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序①运算定律的综合运用②连减的性质③连除的性质④同级运算移项的性质⑤增减括号的性质⑥变式提取公因数形如:3.估算求某式的整数部分:扩缩法4.比较大小①通分a. 通分母b. 通分子②跟“中介”比③利用倒数性质若,则c>b>a.。
形如:,则。
5.定义新运算6.特殊数列求和运用相关公式:例如:1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n二、数论1.奇偶性问题奇奇=偶奇×奇=奇奇偶=奇奇×偶=偶偶偶=偶偶×偶=偶2.位值原则形如: =100a+10b+c3.数的整除特征:整除数特征2 末尾是0、2、4、6、83 各数位上数字的和是3的倍数5 末尾是0或59 各数位上数字的和是9的倍数11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数4和25 末两位数是4(或25)的倍数8和125 末三位数是8(或125)的倍数7、11、13 末三位数与前几位数的差是7(或11或13)的倍数4.整除性质①如果c|a、c|b,那么c|(a b)。
②如果bc|a,那么b|a,c|a。
③如果b|a,c|a,且(b,c)=1,那么bc|a。
④如果c|b,b|a,那么c|a.⑤a个连续自然数中必恰有一个数能被a整除。
5.带余除法一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r<b,使得a=b×q+r当r=0时,我们称a能被b整除。
(完整版)小学数学大纲

总结近三年小升初数学考试大纲及题型以下内容是近三年内(小升初)会考的题型:题型分类分数比例说明数论10-12% 基础部分的掌握图形18-20% 对于图形中的边长,面积,体积,角度(简单)的熟练掌握综合应用36-40% 此类题将是整个小学奥数的综合能力测试,也是拿分重点。
题基本是初中一二年级才能涉及到的数学原理,只有经过奥数培训数学原理10-12%的学生,才有可能了解的一、计算1.四则混合运算繁分数⑴运算顺序⑵分数、小数混合运算技巧一般而言:①加减运算中,能化成有限小数的统一以小数形式;②乘除运算中,统一以分数形式。
⑶带分数与假分数的互化⑷繁分数的化简2.简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序①运算定律的综合运用②连减的性质③连除的性质④同级运算移项的性质⑤增减括号的性质⑥变式提取公因数形如:3.估算求某式的整数部分:扩缩法4.比较大小①通分a。
通分母b。
通分子②跟“中介”比③利用倒数性质5.定义新运算6.特殊数列求和运用相关公式二、数论1.奇偶性问题2.位值原则3.数的整除特征4.整除性质5.带余除法6。
**分解定理7。
约数个数与约数和定理8。
同余定理9.完全平方数性质10.孙子定理(中国剩余定理)11.辗转相除法12.数论解题的常用方法:枚举、归纳、反证、构造、配对、估计三、几何图形四、典型应用题1.植树问题①开放型与封闭型②间隔与株数的关系2.方阵问题外层边长数-2=内层边长数(外层边长数-1)×4=外周长数外层边长数2-中空边长数2=实面积数3.列车过桥问题①车长+桥长=速度×时间②车长甲+车长乙=速度和×相遇时间③车长甲+车长乙=速度差×追及时间列车与人或骑车人或另一列车上的司机的相遇及追及问题车长=速度和×相遇时间车长=速度差×追及时间4.年龄问题差不变原理5.鸡兔同笼假设法的解题思想6.牛吃草问题原有草量=(牛吃速度-草长速度)×时间7.平均数问题8.盈亏问题分析差量关系9.和差问题10.和倍问题11.差倍问题12.逆推问题还原法,从结果入手13.代换问题列表消元法等价条件代换五、行程问题1.相遇问题路程和=速度和×相遇时间2.追及问题路程差=速度差×追及时间3.流水行船顺水速度=船速+水速逆水速度=船速-水速船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷24.多次相遇线型路程:甲乙共行全程数=相遇次数×2-1环型路程:甲乙共行全程数=相遇次数其中甲共行路程=单在单个全程所行路程×共行全程数5.环形跑道6.行程问题中正反比例关系的应用路程一定,速度和时间成反比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总结近三年小升初数学考试大纲及题型
小学六年级题目主要有下面类型
一、计算
1.四则混合运算繁分数
⑴运算顺序⑵分数、小数混合运算技巧一般而言:①加减运算中,能化成有限小数的统一以小数形式;
②乘除运算中,统一以分数形式。
⑶带分数与假分数的互化⑷繁分数的化简
2.简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序①运算定律的综合运用②连减的性质③连除的性质④同级运算移项的性质⑤增减括号的性质⑥变式提取公因数形如:3.估算求某式的整数部分:扩缩法4.比较大小①通分a。
通分母b。
通分子②跟“中介”比③利用倒数性质5.定义新运算6.特殊数列求和运用相关公式
二、数论
1.奇偶性问题2.位值原则3.数的整除特征4.整除性质5.带余除法6。
唯一分解定理7。
约数个数与约数和定理8。
同余定理9.完全平方数性质10.孙子定理(中国剩余定理)11.辗转相除法12.数论解题的常用方法:枚举、归纳、反证、构造、配对、估计
三、几何图形
四、典型应用题
1.植树问题①开放型与封闭型②间隔与株数的关系
2.方阵问题外层边长数-2=内层边长数(外层边长数-1)×4=外周长数外层边长数2-中空边长数2=实面积数
3.列车过桥问题①车长+桥长=速度×时间②车长甲+车长乙=速度和×相遇时间③车长甲+车长乙=速度差×追及时间列车与人或骑车人或另一列车上的司机的相遇及追及问题车长=速度和×相遇时间车长=速度差×追及时间
4.年龄问题差不变原理5.鸡兔同笼假设法的解题思想
6.牛吃草问题原有草量=(牛吃速度-草长速度)×时间7.平均数问题8.盈亏问题分析差量关系9.和差问题10.和倍问题11.差倍问题
12.逆推问题还原法,从结果入手13.代换问题列表消元法等价条件代换
五、行程问题
1.相遇问题路程和=速度和×相遇时间2.追及问题路程差=速度差×追及时间
3.流水行船顺水速度=船速+水速逆水速度=船速-水速船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2
4.多次相遇线型路程:甲乙共行全程数=相遇次数×2-1环型路程:甲乙共行全程数=相遇次数其中甲共行路程=单在单个全程所行路程×共行全程数
5.环形跑道
6.行程问题中正反比例关系的应用路程一定,速度和时间成反比。
速度一定,路程和时间成正比。
时间一定,路程和速度成正比。
7.钟面上的追及问题。
①时针和分针成直线;②时针和分针成直角。
8.结合分数、工程、和差问题的一些类型。
9.行程问题时常运用“时光倒流”和“假定看成”的思考方法。
六、计数问题
1.加法原理:分类枚举2.乘法原理:排列组合
3.容斥原理4.抽屉原理:至多至少问题
5.握手问题在图形计数中应用广泛
七、分数问题
1.量率对应2.以不变量为“1”3.利润问题4.浓度问题倒三角原理例:5.工程问题①合作问题②水池进出水问题6.按比例分配
八、方程解题九、找规律十、算式谜
1.填充型2.替代型3.填运算符号4.横式变竖式5.结合数论知识点
十一、数阵问题
1.相等和值问题2.数列分组⑴知行列数,求某数⑵知某数,求行列数
3.幻方⑴奇阶幻方问题:杨辉法罗伯法⑵偶阶幻方问题:双偶阶:对称交换法单偶阶:同心方阵法
十二、二进制1.二进制计数法①二进制位值原则②二进制数与十进制数的互相转化③二进制的运算2.其它进制(十六进制)
十三、一笔画
1.一笔画定理:⑴一笔画图形中只能有0个或两个奇点;⑵两个奇点进必须从一个奇点进,另一个奇点出;
2.哈密尔顿圈与哈密尔顿链3.多笔画定理笔画数
十四、逻辑推理1.等价条件的转换2.列表法3.对阵图竞赛问题,涉及体育比赛常识
十五、火柴棒问题1.移动火柴棒改变图形个数2.移动火柴棒改变算式,使之成立
十六、智力问题1.突破思维定势2.某些特殊情境问题
十七、解题方法(结合杂题的处理)
1.代换法2.消元法3.倒推法4.假设法5.反证法6.极值法7.设数法8.整体法9.画图法10.列表法11.排除法12.染色法13.构造法14.配对法15.列方程⑴方程⑵不定方程⑶不等方程。