2024年广东中考倒计时

合集下载

2024年中考英语复习计划

2024年中考英语复习计划

2024年中考英语复习计划2024年中考英语复习计划(精选14篇)2024年中考英语复习计划篇1清华大学附属中学教师陈健荣中考临近,初三生目前已结束了第二轮的全面复习,进入考前倒计时阶段。

英语冲刺阶段要听、读、背结合起来复习。

在最后阶段,考生要坚持听力练习不放松。

听力这种题型比较特殊,几天不听就会感到生疏,影响答题能力,因此调整并保持听力状态很重要。

考生每天要安排10—15分钟练习听力,采用多听英文广播的方式就不错。

考生要坚持天天阅读。

在读懂、正确理解的基础上,才能准确作答,提高阅读能力就要坚持每天限时阅读。

同时,考生要提高自己的阅读速度,不断分析、总结和掌握阅读技巧,在选择阅读材料时要注意内容和文体的多样性,要原汁原味,不宜过难也不要过易,以《考试说明》为准。

如考生可精选《初中生英语园地》、《英语周报》、《学英语》等报纸杂志上的材料,还可读一些不太复杂的英语原著。

考生还要抽时间背诵重点句型及例句。

中考试题中,基本句型无处不在。

熟记一些典型例句,对做题有很大帮助。

尤其是作文,如果能掌握大量例句,较容易在短时间内提高成绩。

所以,提高写作水平的一个途径就是背诵一定数量的范文,也可背一些好的句子,重点背文章过渡用的连词和短语。

写作文要避免单调地使用一种句型,要特别注意开头一两句和结尾一两句不能有语法错误。

考生写文章要有亮点,学会巧妙地从考卷的单选、完形及阅读理解中化用好句子。

2024年中考英语复习计划篇2一.复习工作的目标复习课是一种必不可少的课堂教学模式,复习课要达到复习巩固复习并进一步深化学知识的目的对已学过内容进行综合,归类,转化和辨别,挖掘知识的内在联系,把所学的知识融会贯通起来,使学生对知识的掌握更加准确,从而提高运用语言的能力。

在初中阶段的英语教学中,初二年级的分化现象往往十分突出,直接影响着学生在整个中学阶段的英语成绩,同时也阻碍了初中英语教学质量的提高。

因此,如何防止分化,大面积提高教学质量,使学生在初中阶段获得较好的成绩,更好的迎接初三的课程,是我们接下去复习工作的重点:让每一个学生在原有的基础上有所提高,获得成功感。

浙江省2024年中考到计时计划表

浙江省2024年中考到计时计划表

浙江省2024年中考到计时计划表
考试时间为6月第3周的星期六和星期日(2024.6.16-17)
还有天
2023年9月,新学期开始,我们需要调整心态,制定合理的锻炼计划,实现劳逸结合。

2023年10月,一些学校可能会组织初三的第一次月考。

2023年11月,是期中考试的时间,通常由学校自己出题。

2023年12月,期中考试之后,初三学科的学习将会加快进度,开始进行期末复习。

2024年1月,进行期末考试,进入寒假。

寒假期间,我们要利用这段时间进行学习。

2024年2月底进入初三第二学期
2024年3月中考各项报名(包括体育,实验等),体育考试在4月2024年3月,调整心态,进行第二轮的复习,并准备参加体育中考。

2024年4月,实验中考,体育中考
2024年5月,进行体育中考的补考,填报志愿
2024年6月,参加中考,进行中考成绩查询。

一般来说,可以在6月底查询中考成绩,成绩一般在中考后的一二周左右公布。

同时进行各个批次的招生录取。

各个批次的录取时间可能在6月底完成。

2024年广东省广州市中考数学真题卷含答案解析

2024年广东省广州市中考数学真题卷含答案解析

2024年广州市初中学业水平考试数学试卷共8页,25小题,满分120分.考试用时120分钟.注意事项:1.答题前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的圆珠笔或钢笔填写自己的考生号、姓名;将自己的条形码粘贴在答题卡的“条形码粘贴处”.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试卷上.3.非选择题答案必须用黑色字迹的圆珠笔或钢笔写在答题卡各题目指定区域内的相应位置上,涉及作图的题目,用2B铅笔画图;如需改动,先划掉原来的答案,然后再写上新的答案,改动后的答案也不能超出指定的区域;不准使用铅笔(作图除外)、涂改液和修正带.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)-,1-,0,10中,最小的数是()1.四个数10A.10-B.1-C.0D.102.下列图案中,点O为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O对称的是()A. B. C. D.3.若0a ≠,则下列运算正确的是()A.235a a a += B.325a a a ⋅=C.235a a a ⋅= D.321a a ÷=4.若ab <,则()A.33a b +>+ B.22a b ->- C.a b -<- D.22a b<5.为了解公园用地面积x (单位:公顷)的基本情况,某地随机调查了本地50个公园的用地面积,按照04x <≤,48x <≤,812x <≤,1216x <≤,1620x <≤的分组绘制了如图所示的频数分布直方图,下列说法正确的是()A.a 的值为20B.用地面积在812x <≤这一组的公园个数最多C.用地面积在48x <≤这一组的公园个数最少D.这50个公园中有一半以上的公园用地面积超过12公顷6.某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆.设该车企去年5月交付新车x 辆,根据题意,可列方程为()A.1.2110035060x += B.1.2110035060x -=C.1.2(1100)35060x +=D.110035060 1.2x -=⨯7.如图,在ABC 中,90A ∠=︒,6AB AC ==,D 为边BC 的中点,点E ,F 分别在边AB ,AC 上,AE CF =,则四边形AEDF 的面积为()A.18B.C.9D.8.函数21y ax bx c =++与2k y x=的图象如图所示,当()时,1y ,2y 均随着x 的增大而减小.A.1x <-B.10x -<<C.02x <<D.1x >9.如图,O 中,弦AB 的长为点C 在O 上,OC AB ⊥,30ABC ∠=︒.O 所在的平面内有一点P ,若5OP =,则点P 与O 的位置关系是()A.点P 在O 上B.点P 在O 内C.点P 在O 外D.无法确定10.如图,圆锥的侧面展开图是一个圆心角为72︒的扇形,若扇形的半径l 是5,则该圆锥的体积是()A.311π8B.11π8C.26πD.26π3第二部分非选择题(共90分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.如图,直线l 分别与直线a ,b 相交,a b ,若171∠=︒,则2∠的度数为______.12.如图,把1R ,2R ,3R 三个电阻串联起来,线路AB 上的电流为I ,电压为U ,则123U IR IR IR =++.当120.3R =,231.9R =,347.8R =, 2.2I =时,U 的值为______.13.如图,ABCD Y 中,2BC =,点E 在DA 的延长线上,3BE =,若BA 平分EBC ∠,则DE =______.14.若2250a a --=,则2241a a -+=______.15.定义新运算:()()200a b a a b a b a ⎧-≤⎪⊗=⎨-+>⎪⎩例如:224(2)40-⊗=--=,23231⊗=-+=.若314x ⊗=-,则x 的值为______.16.如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数(0)k y x x =>的图象上,(1,0)A ,(0,2)C .将线段AB 沿x 轴正方向平移得线段A B ''(点A 平移后的对应点为A '),A B ''交函数(0)k y x x =>的图象于点D ,过点D 作DE y ⊥轴于点E ,则下列结论:①2k =;②OBD 的面积等于四边形ABDA '的面积;③A E '的最小值是;④B BD BB O ''∠=∠.其中正确的结论有______.(填写所有正确结论的序号)三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.解方程:1325x x=-.18.如图,点E ,F 分别在正方形ABCD 的边BC ,CD 上,3BE =,6EC =,2CF =.求证:ABE ECF △△∽.19.如图,Rt ABC △中,90B Ð=°.(1)尺规作图:作AC 边上的中线BO (保留作图痕迹,不写作法);(2)在(1)所作的图中,将中线BO 绕点O 逆时针旋转180︒得到DO ,连接AD ,CD .求证:四边形ABCD 是矩形.20.关于x 的方程2240x x m -+-=有两个不等的实数根.(1)求m 的取值范围;(2)化简:2113|3|21m m m m m ---÷⋅-+.21.善于提问是应用人工智能解决问题的重要因素之一.为了解同学们的提问水平,对A ,B 两组同学进行问卷调查,并根据结果对每名同学的提问水平进行评分,得分情况如下(单位:分):A 组75788282848687889395B 组75778083858688889296(1)求A 组同学得分的中位数和众数;(2)现从A 、B 两组得分超过90分的4名同学中随机抽取2名同学参与访谈,求这2名同学恰好来自同一组的概率.22.2024年6月2日,嫦娥六号着陆器和上升器组合体(简称为“着上组合体”)成功着陆在月球背面.某校综合实践小组制作了一个“着上组合体”的模拟装置,在一次试验中,如图,该模拟装置在缓速下降阶段从A 点垂直下降到B 点,再垂直下降到着陆点C ,从B 点测得地面D 点的俯角为36.87︒,17AD =米,10BD =米.(1)求CD 的长;(2)若模拟装置从A 点以每秒2米的速度匀速下降到B 点,求模拟装置从A 点下降到B 点的时间.(参考数据:sin36.870.60︒≈,cos36.870.80︒≈,tan 36.870.75︒≈)23.一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y 和脚长x 之间近似存在一个函数关系,部分数据如下表:脚长(cm)x …232425262728…身高(cm)y …156163170177184191…(1)在图1中描出表中数据对应的点(,)x y ;(2)根据表中数据,从(0)y ax b a =+≠和(0)k y k x=≠中选择一个函数模型,使它能近似地反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x 的取值范围);(3)如图2,某场所发现了一个人的脚印,脚长约为25.8cm ,请根据(2)中求出的函数解析式,估计这个人的身高.24.如图,在菱形ABCD 中,120C ∠=︒.点E 在射线BC 上运动(不与点B ,点C 重合),AEB △关于AE 的轴对称图形为AEF △.(1)当30BAF ∠=︒时,试判断线段AF 和线段AD 的数量和位置关系,并说明理由;(2)若6AB =+,O 为AEF △的外接圆,设O 的半径为r .①求r 的取值范围;②连接FD ,直线FD 能否与O 相切?如果能,求BE 的长度;如果不能,请说明理由.25.已知抛物线232:621(0)G y ax ax a a a =--++>过点()1,2A x 和点()2,2B x ,直线2:l y m x n =+过点(3,1)C ,交线段AB 于点D ,记CDA 的周长为1C ,CDB △的周长为2C ,且122C C =+.(1)求抛物线G 的对称轴;(2)求m 的值;(3)直线l 绕点C 以每秒3︒的速度顺时针旋转t 秒后(045)t ≤<得到直线l ',当l AB '∥时,直线l '交抛物线G 于E ,F 两点.①求t 的值;②设AEF △的面积为S ,若对于任意的0a >,均有S k ≥成立,求k 的最大值及此时抛物线G 的解析式.2024年广州市初中学业水平考试数学试卷共8页,25小题,满分120分.考试用时120分钟.注意事项:1.答题前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的圆珠笔或钢笔填写自己的考生号、姓名;将自己的条形码粘贴在答题卡的“条形码粘贴处”.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试卷上.3.非选择题答案必须用黑色字迹的圆珠笔或钢笔写在答题卡各题目指定区域内的相应位置上,涉及作图的题目,用2B铅笔画图;如需改动,先划掉原来的答案,然后再写上新的答案,改动后的答案也不能超出指定的区域;不准使用铅笔(作图除外)、涂改液和修正带.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)-,1-,0,10中,最小的数是()1.四个数10- B.1- C.0 D.10A.10【答案】A【解析】【分析】本题考查了有理数的大小比较,解题关键是掌握有理数大小比较法则:正数大于零,负数小于零,正数大于一切负数;两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.【详解】解:101010,-<-<<∴最小的数是10-,故选:A.2.下列图案中,点O 为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O 对称的是()A. B. C. D.【答案】C【解析】【分析】本题考查了图形关于某点对称,掌握中心对称图形的性质是解题关键.根据对应点连线是否过点O 判断即可.【详解】解:由图形可知,阴影部分的两个三角形关于点O 对称的是C ,故选:C .3.若0a ≠,则下列运算正确的是()A.235a a a += B.325a a a ⋅=C.235a a a ⋅= D.321a a ÷=【答案】B【解析】【分析】本题考查了分式的乘法,同底数幂乘法与除法,掌握相关运算法则是解题关键.通分后变为同分母分数相加,可判断A 选项;根据同底数幂相乘,底数不变,指数相加,可判断B 选项;根据分式乘法法则计算,可判断C 选项;根据同底数幂除法,底数不变,指数相减,可判断D 选项.【详解】解:A 、32523666a a a a a +=+=,原计算错误,不符合题意;B 、325a a a ⋅=,原计算正确,符合题意;C 、2236a a a ⋅=,原计算错误,不符合题意;D 、32a a a ÷=,原计算错误,不符合题意;故选:B .4.若a b <,则()A.33a b +>+ B.22a b ->- C.a b -<- D.22a b<【答案】D【解析】【分析】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.根据不等式的基本性质逐项判断即可得.【详解】解:A .∵a b <,∴33a b +<+,则此项错误,不符题意;B .∵a b <,∴22a b -<-,则此项错误,不符题意;C .∵a b <,∴a b ->-,则此项错误,不符合题意;D .∵a b <,∴22a b <,则此项正确,符合题意;故选:D .5.为了解公园用地面积x (单位:公顷)的基本情况,某地随机调查了本地50个公园的用地面积,按照04x <≤,48x <≤,812x <≤,1216x <≤,1620x <≤的分组绘制了如图所示的频数分布直方图,下列说法正确的是()A.a 的值为20B.用地面积在812x <≤这一组的公园个数最多C.用地面积在48x <≤这一组的公园个数最少D.这50个公园中有一半以上的公园用地面积超过12公顷【答案】B【解析】【分析】本题考查的是从频数分布直方图获取信息,根基图形信息直接可得答案.【详解】解:由题意可得:5041612810a =----=,故A 不符合题意;用地面积在812x <≤这一组的公园个数有16个,数量最多,故B 符合题意;用地面积在04x <≤这一组的公园个数最少,故C 不符合题意;这50个公园中有20个公园用地面积超过12公顷,不到一半,故D 不符合题意;故选B6.某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆.设该车企去年5月交付新车x 辆,根据题意,可列方程为()A.1.2110035060x +=B.1.2110035060x -=C.1.2(1100)35060x += D.110035060 1.2x -=⨯【答案】A【解析】【分析】本题考查了一元一次方程的应用,找出题目中的数量关系是解题关键.设该车企去年5月交付新车x 辆,根据“今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆”列出方程即可.【详解】解:设该车企去年5月交付新车x 辆,根据题意得:1.2110035060x +=,故选:A .7.如图,在ABC 中,90A ∠=︒,6AB AC ==,D 为边BC 的中点,点E ,F 分别在边AB ,AC 上,AE CF =,则四边形AEDF 的面积为()A.18B.92C.9D.2【答案】C【解析】【分析】本题考查等腰直角三角形的性质以及三角形全等的性质与判定,掌握相关的线段与角度的转化是解题关键.连接AD ,根据等腰直角三角形的性质以及AE CF =得出ADE CDF V V ≌,将四边形AEDF 的面积转化为三角形ADC 的面积再进行求解.【详解】解:连接AD ,如图:∵90BAC ∠=︒,6AB AC ==,点D 是BC 中点,AE CF=∴45,BAD B C AD BD DC∠=∠=∠=︒==∴ADE CDF V V ≌,∴12AED ADF CFD ADF ADC ABC AEDF S S S S S S S =+=+==四边形△△△△△△又∵166182ABC S =⨯⨯= ∴1=92ABC AEDF S S =四边形故选:C8.函数21y ax bx c =++与2k y x =的图象如图所示,当()时,1y ,2y 均随着x 的增大而减小.A.1x <- B.10x -<< C.02x << D.1x >【答案】D【解析】【分析】本题考查了二次函数以及反比例函数的图象和性质,利用数形结合的思想解决问题是关键.由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于在一、三象限内,且2y 均随着x 的增大而减小,据此即可得到答案.【详解】解:由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于一、三象限内,且在每一象限内2y 均随着x 的增大而减小,∴当1x >时,1y ,2y 均随着x 的增大而减小,故选:D .9.如图,O 中,弦AB 的长为43点C 在O 上,OC AB ⊥,30ABC ∠=︒.O 所在的平面内有一点P ,若5OP =,则点P 与O 的位置关系是()A.点P 在O 上B.点P 在O 内C.点P 在O 外D.无法确定【答案】C【解析】【分析】本题考查了垂径定理,圆周角定理,点与圆的位置关系,锐角三角函数,掌握圆的相关性质是解题关键.由垂径定理可得AD =60AOC ∠=︒,再结合特殊角的正弦值,求出O 的半径,即可得到答案.【详解】解:如图,令OC 与AB 的交点为D ,OC 为半径,AB 为弦,且OC AB ⊥,12A D AB ∴==,30ABC =︒∠ 260AOC ABC ∴∠=∠=︒,在ADO △中,90ADO ∠=︒,60AOD ∠=︒,AD =sin AD AOD OA ∠=,4sin 6032AD OA ∴===︒,即O 的半径为4,54OP => ,∴点P 在O 外,故选:C.10.如图,圆锥的侧面展开图是一个圆心角为72︒的扇形,若扇形的半径l 是5,则该圆锥的体积是()A.π8B.π8C. D.π3【答案】D【解析】【分析】本题考查了弧长公式,圆锥的体积公式,勾股定理,理解 圆锥的底面周长与侧面展开图扇形的弧长相等是解题关键,设圆锥的半径为r ,则圆锥的底面周长为2r π,根据弧长公式得出侧面展开图的弧长为2π=,进而得出1r =,再利用勾股定理,求出圆锥的高,再代入体积公式求解即可.【详解】解:设圆锥的半径为r ,则圆锥的底面周长为2r π,圆锥的侧面展开图是一个圆心角为72︒的扇形,且扇形的半径l 是5,∴扇形的弧长为7252180ππ⨯=, 圆锥的底面周长与侧面展开图扇形的弧长相等,22r ππ∴=,1r ∴=,∴=∴圆锥的体积为2126133π⨯⨯=,故选:D .第二部分非选择题(共90分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.如图,直线l 分别与直线a ,b 相交,a b ,若171∠=︒,则2∠的度数为______.【答案】109︒【解析】【分析】本题考查的是平行线的性质,邻补角的含义,先证明1371∠=∠=︒,再利用邻补角的含义可得答案.【详解】解:如图,∵a b ,171∠=︒,∴1371∠=∠=︒,∴21803109∠=︒-∠=︒;故答案为:109︒12.如图,把1R ,2R ,3R 三个电阻串联起来,线路AB 上的电流为I ,电压为U ,则123U IR IR IR =++.当120.3R =,231.9R =,347.8R =, 2.2I =时,U 的值为______.【答案】220【解析】【分析】本题考查了代数式求值,乘法运算律,掌握相关运算法则,正确计算是解题关键.根据123U IR IR IR =++,将数值代入计算即可.【详解】解:123U IR IR IR =++ ,当120.3R =,231.9R =,347.8R =, 2.2I =时,()20.3 2.231.9 2.247.8 2.220.331.947.8 2.2220U =⨯+⨯+⨯=++⨯=,故答案为:220.13.如图,ABCD Y 中,2BC =,点E 在DA 的延长线上,3BE =,若BA 平分EBC ∠,则DE =______.【答案】5【解析】【分析】本题考查了平行四边形的性质,等腰三角形的判定和性质,掌握平行四边形的性质是解题关键.由平行四边形的性质可知,2AD BC ==,BC AD ∥,进而得出BAE EBA ∠=∠,再由等角对等边的性质,得到3BE AE ==,即可求出DE 的长.【详解】解:在ABCD Y 中,2BC =,2AD BC ∴==,BC AD ∥,CBA BAE ∴∠=∠,BA 平分EBC ∠,CBA EBA ∴∠=∠,BAE EBA ∴∠=∠,3BE AE ∴==,235DE AD AE ∴=+=+=,故答案为:5.14.若2250a a --=,则2241a a -+=______.【答案】11【解析】【分析】本题考查了因式分解,提取公因式,得出条件的等价形式是解题关键.由2250a a --=,得225a a -=,根据提公因式法分解因式得()22241221a a a a -+=-+,代入可得答案.【详解】解:2250a a --= ,225a a ∴-=,()2224122125111a a a a ∴-+=-+=⨯+=,故答案为:11.15.定义新运算:()()200a b a a b a b a ⎧-≤⎪⊗=⎨-+>⎪⎩例如:224(2)40-⊗=--=,23231⊗=-+=.若314x ⊗=-,则x 的值为______.【答案】12-或74【解析】【分析】本题考查了一元二次方程的应用,一元一次方程的应用,解题的关键是明确新运算的定义.根据新定义运算法则列出方程求解即可.【详解】解:∵()()200a b a a b a b a ⎧-≤⎪⊗=⎨-+>⎪⎩,而314x ⊗=-,∴①当0x ≤时,则有2314x -=-,解得,12x =-;②当0x >时,314x -+=-,解得,74x =综上所述,x 的值是12-或74,故答案为:12-或74.16.如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数(0)k y x x=>的图象上,(1,0)A ,(0,2)C .将线段AB 沿x 轴正方向平移得线段A B ''(点A 平移后的对应点为A '),A B ''交函数(0)k y x x =>的图象于点D ,过点D 作DE y ⊥轴于点E ,则下列结论:①2k =;②OBD 的面积等于四边形ABDA '的面积;③A E '的最小值是2;④B BD BB O ''∠=∠.其中正确的结论有______.(填写所有正确结论的序号)【答案】①②④【解析】【分析】由()1,2B ,可得122k =⨯=,故①符合题意;如图,连接OB ,OD ,BD ,OD 与AB 的交点为K ,利用k 的几何意义可得OBD 的面积等于四边形ABDA '的面积;故②符合题意;如图,连接A E ',证明四边形A DEO '为矩形,可得当OD 最小,则A E '最小,设()2,0D x x x ⎛⎫> ⎪⎝⎭,可得A E '的最小值为2,故③不符合题意;如图,设平移距离为n ,可得()1,2B n '+,证明B BD A OB ''' ∽,可得B BD B OA '''∠=∠,再进一步可得答案.【详解】解:∵(1,0)A ,(0,2)C ,四边形OABC 是矩形;∴()1,2B ,∴122k =⨯=,故①符合题意;如图,连接OB ,OD ,BD ,OD 与AB 的交点为K ,∵1212AOB A OD S S '==⨯= ,∴BOK AKDA S S '= 四边形,∴BOK BKD BKD AKDA S S S S '+=+ 四边形,∴OBD 的面积等于四边形ABDA '的面积;故②符合题意;如图,连接A E ',∵DE y ⊥轴,90DA O EOA ''∠=∠=︒,∴四边形A DEO '为矩形,∴A E OD '=,∴当OD 最小,则A E '最小,设()2,0D x x x ⎛⎫> ⎪⎝⎭,∴2224224OD x x x x =+≥⋅⋅=,∴2OD ≥,∴A E '的最小值为2,故③不符合题意;如图,设平移距离为n ,∴()1,2B n '+,∵反比例函数为2y x=,四边形A B CO ''为矩形,∴90BB D OA B '''∠=∠=︒,21,1D n n ⎛⎫+ ⎪+⎝⎭,∴BB n '=,1OA n '=+,22211n B D n n '=-=++,2A B ''=,∴2112n BB n B D n OA n A B ''+==='''+,∴B BD A OB ''' ∽,∴B BD B OA '''∠=∠,∵B C A O ''∥,∴CB O A OB '''∠=∠,∴B BD BB O ''∠=∠,故④符合题意;故答案为:①②④【点睛】本题考查的是反比例函数的图象与性质,平移的性质,矩形的判定与性质,相似三角形的判定与性质,勾股定理的应用,作出合适的辅助线是解本题的关键.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.解方程:1325x x=-.【答案】3x =【解析】【分析】本题考查的是解分式方程,掌握分式方程的解法是解题关键,注意检验.依次去分母、去括号、移项、合并同类项求解,检验后即可得到答案.【详解】解:1325x x=-,去分母得:()325x x =-,去括号得:615x x =-,移项得:615x x -=-,合并同类项得:515x -=-,解得:3x =,经检验,3x =是原方程的解,∴该分式方程的解为3x =.18.如图,点E ,F 分别在正方形ABCD 的边BC ,CD 上,3BE =,6EC =,2CF =.求证:ABE ECF △△∽.【答案】见解析【解析】【分析】本题考查了正方形的性质,相似三角形的判定,掌握相似三角形的判定定理是解题关键.根据正方形的性质,得出90B C ∠=∠=︒,9AB CB ==,进而得出AB BE EC CF=,根据两边成比例且夹角相等的两个三角形相似即可证明.【详解】解:3BE = ,6EC =,9BC ∴=,四边形ABCD 是正方形,9AB CB ∴==,90B C ∠=∠=︒,9362AB EC == ,32BE CF =,AB BE EC CF∴=又90B C ∠=∠=︒ ,ABE ECF ∴∽ .19.如图,Rt ABC △中,90B Ð=°.(1)尺规作图:作AC 边上的中线BO (保留作图痕迹,不写作法);(2)在(1)所作的图中,将中线BO 绕点O 逆时针旋转180︒得到DO ,连接AD ,CD .求证:四边形ABCD 是矩形.【答案】(1)作图见解析(2)证明见解析【解析】【分析】本题考查的是作线段的垂直平分线,矩形的判定,平行四边形的判定与性质,旋转的性质;(1)作出线段AC 的垂直平分线EF ,交AC 于点O ,连接BO ,则线段BO 即为所求;(2)先证明四边形ABCD 为平行四边形,再结合矩形的判定可得结论.【小问1详解】解:如图,线段BO 即为所求;【小问2详解】证明:如图,∵由作图可得:AO CO =,由旋转可得:BO DO =,∴四边形ABCD 为平行四边形,∵90ABC ∠=︒,∴四边形ABCD 为矩形.20.关于x 的方程2240x x m -+-=有两个不等的实数根.(1)求m 的取值范围;(2)化简:2113|3|21m m m m m ---÷⋅-+.【答案】(1)3m >(2)2-【解析】【分析】本题考查的是一元二次方程根的判别式,分式的混合运算,掌握相应的基础知识是解本题的关键;(1)根据一元二次方程根的判别式建立不等式解题即可;(2)根据(1)的结论化简绝对值,再计算分式的乘除混合运算即可.【小问1详解】解:∵关于x 的方程2240x x m -+-=有两个不等的实数根.∴()()224140m ∆=--⨯⨯->,解得:3m >;【小问2详解】解:∵3m >,∴2113|3|21m m m m m ---÷⋅-+()()1123311m m m m m m -+--=⋅⋅--+2=-;21.善于提问是应用人工智能解决问题的重要因素之一.为了解同学们的提问水平,对A ,B 两组同学进行问卷调查,并根据结果对每名同学的提问水平进行评分,得分情况如下(单位:分):A 组75788282848687889395B组75778083858688889296(1)求A组同学得分的中位数和众数;(2)现从A、B两组得分超过90分的4名同学中随机抽取2名同学参与访谈,求这2名同学恰好来自同一组的概率.【答案】(1)A组同学得分的中位数为85分,众数为82分;(2)1 3【解析】【分析】本题考查了中位数与众数,列表法或树状图法求概率,掌握相关知识点是解题关键.(1)根据中位数和众数的定义求解即可;(2)由题意可知,A、B两组得分超过90分的同学各有2名,画树状图法求出概率即可.【小问1详解】解:由题意可知,每组学生人数为10人,∴中位数为第5、6名同学得分的平均数,∴A组同学得分的中位数为8486852+=分,82分出现了两次,次数最多,∴众数为82分;【小问2详解】解:由题意可知,A、B两组得分超过90分的同学各有2名,令A组的2名同学为1A、2A,B组的2名同学为1B、2B,画树状图如下:由树状图可知,共有12种等可能的情况,其中这2名同学恰好来自同一组的情况有4种,∴这2名同学恰好来自同一组的概率41123=.22.2024年6月2日,嫦娥六号着陆器和上升器组合体(简称为“着上组合体”)成功着陆在月球背面.某校综合实践小组制作了一个“着上组合体”的模拟装置,在一次试验中,如图,该模拟装置在缓速下降阶段从A 点垂直下降到B 点,再垂直下降到着陆点C ,从B 点测得地面D 点的俯角为36.87︒,17AD =米,10BD =米.(1)求CD 的长;(2)若模拟装置从A 点以每秒2米的速度匀速下降到B 点,求模拟装置从A 点下降到B 点的时间.(参考数据:sin36.870.60︒≈,cos36.870.80︒≈,tan 36.870.75︒≈)【答案】(1)CD 的长约为8米;(2)模拟装置从A 点下降到B 点的时间为4.5秒.【解析】【分析】本题考查了解直角三角形的应用——仰俯角问题,灵活运用锐角三角函数求边长是解题关键.(1)过点B 作BE CD ∥交AD 于点E ,根据余弦值求出CD 的长即可;(2)先由勾股定理,求出AC 的长,再利用正弦值求出BC 的长,进而得到AB 的长,然后除以速度,即可求出下降时间.【小问1详解】解:如图,过点B 作BE CD ∥交AD 于点E ,由题意可知,36.87DBE ∠=︒,36.87BDC ∴∠=︒,在BCD △中,90C ∠=︒,10BD =米,cos CD BDC BD∠= ,cos 36.87100.808CD BD ∴=⋅︒≈⨯≈米,即CD 的长约为8米;【小问2详解】解:17AD =Q 米,8CD =米,15AC ∴=米,在BCD △中,90C ∠=︒,10BD =米,sin BC BDC BD∠= ,sin 36.87100.606BC BD ∴=⋅︒≈⨯≈米,1569AB AC BC ∴=-=-=米,模拟装置从A 点以每秒2米的速度匀速下降到B 点,∴模拟装置从A 点下降到B 点的时间为92 4.5÷=秒,即模拟装置从A 点下降到B 点的时间为4.5秒.23.一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y 和脚长x 之间近似存在一个函数关系,部分数据如下表:脚长(cm)x …232425262728…身高(cm)y …156163170177184191…(1)在图1中描出表中数据对应的点(,)x y ;(2)根据表中数据,从(0)y ax b a =+≠和(0)k y k x=≠中选择一个函数模型,使它能近似地反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x 的取值范围);(3)如图2,某场所发现了一个人的脚印,脚长约为25.8cm ,请根据(2)中求出的函数解析式,估计这个人的身高.【答案】(1)见解析(2)75y x =-(3)175.6cm【解析】【分析】本题考查了函数的实际应用,正确理解题意,选择合适的函数模型是解题关键.(1)根据表格数据即可描点;(2)选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系,将点()()23,156,24,163代入即可求解;(3)将25.8cm 代入75y x =-代入即可求解;【小问1详解】解:如图所示:【小问2详解】解:由图可知:y 随着x 的增大而增大,因此选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系,将点()()23,156,24,163代入得:1562316324a b a b =+⎧⎨=+⎩,解得:75a b =⎧⎨=-⎩∴75y x =-【小问3详解】解:将25.8cm 代入75y x =-得:725.85175.6cmy =⨯-=∴估计这个人身高175.6cm24.如图,在菱形ABCD 中,120C ∠=︒.点E 在射线BC 上运动(不与点B ,点C 重合),AEB △关于AE 的轴对称图形为AEF △.(1)当30BAF ∠=︒时,试判断线段AF 和线段AD 的数量和位置关系,并说明理由;(2)若6AB =+,O 为AEF △的外接圆,设O 的半径为r .①求r 的取值范围;②连接FD ,直线FD 能否与O 相切?如果能,求BE 的长度;如果不能,请说明理由.【答案】(1)AF AD =,AF AD⊥(2)①3r ≥+;②12【解析】【分析】(1)由菱形的性质可得120BAD C ∠=∠=︒,AB AD =,再结合轴对称的性质可得结论;(2)①如图,设AEF △的外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ,证明ABC 为等边三角形,,,,A E F C 共圆,2120AOE AFE ∠=∠=︒,O 在BD 上,30AEO EAO ∠=∠=︒,过O 作OJ AE ⊥于J ,当AE BC ⊥时,AE 最小,则AO 最小,再进一步可得答案;②如图,以A 为圆心,AC 为半径画圆,可得,,,B C F D 在A 上,延长CA 与A 交于L ,连接DL ,证明18030150CFD ∠=︒-︒=︒,可得60OFC ∠=︒,OCF △为等边三角形,证明1203090BAF ∠=︒-︒=︒,可得:45BAE FAE ∠=∠=︒,BE EF =,过E 作EM AF ⊥于M ,再进一步可得答案.【小问1详解】解:AF AD =,AF AD ⊥;理由如下:∵在菱形ABCD 中,120C ∠=︒,∴120BAD C ∠=∠=︒,AB AD =,∵30BAF ∠=︒,∴1203090FAD ∠=︒-︒=︒,∴AF AD ⊥,由对折可得:AB AF =,∴AF AD =;【小问2详解】解:①如图,设AEF △的外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ,∵四边形ABCD 为菱形,120BCD ∠=︒,∴AC BD ⊥,60BCA ∠=︒,BA BC =,∵ABC 为等边三角形,∴60ABC AFE ACB ∠=∠=︒=∠,∴,,,A E F C 共圆,2120AOE AFE ∠=∠=︒,O 在BD 上,∵AO OE =,∴30AEO EAO ∠=∠=︒,过O 作OJ AE ⊥于J ,∴AJ EJ =,3AO AJ =,∴3AO AE =,当AE BC ⊥时,AE 最小,则AO 最小,∵6AB =+60ABC ∠=︒,∴(sin 60692AE AB =⋅︒=+⨯=,∴()3933AO =+=+;∴r 的取值范围为3r ≥+;②DF 能为O 的切线,理由如下:如图,以A 为圆心,AC 为半径画圆,∵AB AC AF AD ===,∴,,,B C F D 在A 上,延长CA 与A 交于L ,连接DL ,同理可得ACD 为等边三角形,∴60CAD ∠=︒,∴30CLD ∠=︒,∴18030150CFD ∠=︒-︒=︒,∵DF 为O 的切线,∴90OFD ∠=︒,∴60OFC ∠=︒,∵OC OF =,∴OCF △为等边三角形,∴60COF ∠=︒,∴1302CAF COF ∠=∠=︒,∴603030DAF ︒-︒=︒∠=,∴1203090BAF ∠=︒-︒=︒,由对折可得:45BAE FAE ∠=∠=︒,BE EF =,过E 作EM AF ⊥于M ,∴设AM EM x ==,∵60EFM ∠=︒,∴33FM EM x ==,∴63x x +=+解得:x =∴63FM =⨯=,∴212BE EF FM ===.【点睛】本题考查的是轴对称的性质,菱形的性质,等边三角形的判定与性质,圆周角定理的应用,锐角三角函数的应用,勾股定理的应用,切线的性质,本题难度很大,作出合适的辅助线是解本题的关键.25.已知抛物线232:621(0)G y ax ax a a a =--++>过点()1,2A x 和点()2,2B x ,直线2:l y m x n =+过点(3,1)C ,交线段AB 于点D ,记CDA 的周长为1C ,CDB △的周长为2C ,且122C C =+.(1)求抛物线G 的对称轴;(2)求m 的值;(3)直线l 绕点C 以每秒3︒的速度顺时针旋转t 秒后(045)t ≤<得到直线l ',当l AB '∥时,直线l '交抛物线G 于E ,F 两点.①求t 的值;②设AEF △的面积为S ,若对于任意的0a >,均有S k ≥成立,求k 的最大值及此时抛物线G 的解析式.【答案】(1)对称轴为直线:3x =;(2)1m =±(3)①15t =,②k的最大值为,抛物线G 为262y x x =-+;【解析】【分析】(1)直接利用对称轴公式可得答案;(2)如图,由122C C =+,可得A 在B 的左边,2AD AC CD CD BC BD ++=+++,证明CA CB =,可得2AD BD =+,设(),2D p ,建立1212232x x p x x p +=⨯⎧⎨-=-+⎩,可得:4p =,()4,2D ,再利用待定系数法求解即可;(3)①如图,当l AB '∥时,与抛物线交于,E F ,由直线y x n =+,可得45DCF ∠=︒,可得345t =,从而可得答案;②计算()1122AEF A E S EF y y EF =⋅-= ,当1y =时,可得22620x x a a --+=,则126x x +=,2122x x a a =-+,可得12EF x x =-==,可得当1a =时,EF 的最小值为,再进一步求解可得答案.【小问1详解】。

2024年中考动员大会领导发言稿(二篇)

2024年中考动员大会领导发言稿(二篇)

2024年中考动员大会领导发言稿各位同学:大家好!在这春风和煦、万物复苏的美好时节,我们齐聚一堂,在庄严的五星红旗下,共同召开朱阳一中____年中招百日冲刺誓师大会。

在此,我谨代表学校,向全体毕业班的同学们致以最诚挚的祝愿和殷切的期望,并向奋战在中招冲刺一线的九年级全体教师表示崇高的敬意和衷心的感谢!当前,我们正处于____年中招倒计时的关键时刻,距离中考仅剩百日。

在此,我呼吁全体同学,以更加饱满的热情、更加坚定的信念、更加勤奋的努力和更加执着的付出,迎难而上,争创佳绩,用你们的精彩表现传承朱阳一中的光荣传统,用你们的中考佳绩续写朱阳一中的新辉煌!同学们,九年磨一剑,百日铸辉煌。

如果将初中三年比作一场三千米的长跑,那么此刻你们已跑完最后一个弯道,距离终点仅百米之遥。

在家长的殷切期盼中,在老师的辛勤培育下,在同学们的耕耘与憧憬中,你们即将迎来丰收的季节——____年中招。

面对这场考试,你们承载着父母的期望和全校师生的希望。

我坚信,有全校师生、各位家长的鼎力支持,有毕业班教师的无私奉献,有同学们勤奋刻苦的学习,你们三年的汗水与付出,定将在六月结出最甜美的果实。

我期待在六月的校园里,看到你们笑脸绽放,凯歌高奏。

在接下来的百日冲刺中,我希望同学们从以下几个方面努力:一、明确责任,坚定目标。

目标指引方向,行动决定未来。

同学们要清晰地认识到自己肩负的责任,明确中考目标,坚定信念,为实现梦想而努力奋斗。

二、调整心态,准确定位。

良好的心态是成功的关键。

同学们要结合自身实际,分析优势与不足,调整心态,合理规划复习计划,以最佳状态迎接中考。

三、合理安排,讲究方法。

学习需要方法,刻苦不等于蛮干。

同学们要找到适合自己的高效学习方法,养成良好的学习习惯,提高学习效率,确保复习效果。

四、敢于竞争,勇于拼搏。

中考不仅是知识、能力和实力的比拼,更是意志、态度和情感的较量。

同学们要发扬“亮剑”精神,敢于竞争,顽强拼搏,夺取胜利。

2024年广东省广州市花都区初三一模数学试题含答案解析

2024年广东省广州市花都区初三一模数学试题含答案解析

2024年广东省广州市花都区中考一模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.-2的倒数是()A.-2B.12-C.12D.22.下列图形中,是中心对称图形的是()A.B.C.D.【答案】D【分析】本题主要考查了中心对称图形,解答本题的关键是掌握中心对称的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.根据中心对称图形的定义逐项判断即可.【详解】解:选项A、B、C均不能找到这样的一个点,使图形绕某一点旋转180︒后与原来的图形重合,所以不是中心对称图形;选项D能找到这样的一个点,使图形绕某一点旋转180︒后与原来的图形重合,所以是中心对称图形.故选:D .3.数学上一般把n a a a a a ⋅⋅⋅⋅ 个记为( )A .na B .n a +C .na D .a n 【答案】A【分析】根据乘方的意义解答即可.【详解】解:数学上一般把n a a a a a ⋅⋅⋅⋅ 个记为n a .故选A .【点睛】本题考查了乘方的意义,一般地,n 个相同的因数a 相乘,即...a a a a ⋅⋅⋅计作n a ,这种求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在n a 中,a 叫做底数,n 叫做指数.4.下列计算正确的是( )A .()232639ab a b =B .236a a a ⋅=C .523a a -=D .()222ab a b +=+【答案】A【分析】本题考查实数的运算,利用积的乘方法则,同底数幂乘法法则,合并同类项法则及完全平方公式逐项判断即可.熟练掌握相关运算法则是解题的关键.【详解】解:A 、()232639ab a b =,则A 符合题意;B 、235a a a ⋅=,则B 不符合题意;C 、523a a a -=,则C 不符合题意;D 、()2222a b a b ab +=++,则D 不符合题意;故选:A .5.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( )A .a b>B .0a b ->C .0a b -<D .0ab <6.如图,已知:四个边长为1的小正方形拼成一个大正方形,A、B、O是小正方形顶点, 的半径为1,P是O上的点,且位于右上方的小正方形内,则APBO∠等于()A.30︒B.45︒C.60︒D.90︒7.一次函数y=kx+b中,y随x的增大而减小,b<0,则这个函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【分析】先根据一次函数的增减性判断出k的符号,再由一次函数的图象与系数的关系即可得出结论.【详解】解:∵一次函数y=kx+b中,y随x的增大而减小,∴k<0.∵b<0,∴此函数的图象经过第二、三、四象限,不经过第一象限.故选:A.【点睛】本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.8.如图,在平行四边形ABCD中,AC、BD相交于点O,下列结论:①OA=OC;②∠BAD =∠BCD;③AC⊥BD;④∠BAD+∠ABC=180°中,正确的个数有()A.1个B.2个C.3个D.4个【答案】C【详解】试题分析:根据平行四边形的性质依次分析各选项即可作出判断.∵平行四边形ABCD∴OA=OC,∠BAD=∠BCD,∠BAD+∠ABC=180°,但无法得到AC⊥BD故选C.考点:平行四边形的性质点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.AC=米,则坡面AB的长度是9.如图,河堤横断面迎水坡AB的坡度i=30()A.B.30米C.米D.10米10.已知关于x 的一元二次方程()22110k k x x -++=有两个实数根1x ,2x ,且满足()()12112x x ++=,则k 的值是( )A .1k =-B .1k =C .2k =-D .1k =或2k =-二、填空题11有意义,则a 的值可以是 .(写出一个即可)【答案】3(答案不唯一)【分析】本题考查二次根式有意义的条件,根据被开方数不小于零的条件进行解题即可.掌握被开方数不小于零的条件是解题的关键.【详解】解:由题意可知-≥a30a≤解得3故答案为:3(答案不唯一)12.因式分解:2218x-= .【答案】2(x+3)(x﹣3)【分析】先提公因式2后,再利用平方差公式分解即可.【详解】2218x-=2(x2-9)=2(x+3)(x-3).故答案为:2(x+3)(x﹣3)【点睛】考点:因式分解.13.某校九年级(1)班对全班50名学生进行了“一周(按7天计算)做家务劳动时间(单位:小时)”的统计,并整理成频率分布表如下:一周做家务劳动时间(单位:小时)012345频率0.10.10.20.30.20.1①该班学生一周做家务劳动时间为3小时的有名同学;②该班学生一周做家务劳动时间的中位数为小时.【答案】15 3【分析】本题考查了频数分布表的知识,解题的关键是能够读懂统计表并从中整理出进一步解题的有关信息.(1)根据频率=频数÷总数,可求出一周做家务劳动时间为3小时的学生数量;(2)根据中位数的定义把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,即可求出答案.【详解】解:(1)0.35015÷=(名),故答案为:15.(2)根据题意可知共50人,其中第25和第26人的平均数是中位数,将数据从小到大排列,第25个和第26个为3、3,+÷=,所以这组数据的中位数为:(33)23故答案为:3.14.如图,带有刻度的直尺结合数轴作图,已知图中的虚线相互平行,若点A 在数轴上表示的数是2-,则点B 在数轴上表示的数是 .15.某盏路灯照射的空间可以看成如图所示的圆锥,它的高A O =8米,母线AB 与底面半径O B 的夹角为α,tanα=43,则圆锥的底面积是 平方米.(结果保留π)16.如图,在Rt ABC △中,AC BC =,90ACB ∠=︒,O 为斜边AB 的中点,P 为ABC 形外一点,60BPC ∠=︒,①若2AC =,则OC = ;②若PB =PO =PC 的值为 .∵AC BC =,ACB ∠∴222AB AC ==∵O 为斜边AB 的中点,∴OC AB ⊥,12OC =故答案为:2;(2)∵OC AB ⊥,OC则:63,BP CP OP OP '===∴2214PP OP OP ''=+=,∵90,60COB CPB ∠=︒∠=︒,∴36090OCP OBP ∠+∠=︒-︒∴36090OCP OCP '∠+∠=︒-︒三、解答题17.解不等式组:()31512x x x x ⎧-+≤⎪⎨>-⎪⎩【答案】23x -<≤【分析】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.如图,在正方形ABCD 中,CE ⊥DF .若CE=10cm ,求DF 的长.【答案】10cm【分析】先根据条件判定两三角形全等,再对应三角形全等条件求解.【详解】解:∵CE ⊥DF ,∴∠CDF+∠DCE=90°,又∵∠DCB=∠DCE+∠BCE=90°,∴∠CDF=∠BCE ,在正方形ABCD 中又∵BC=CD ,∠EBC=∠FCD=90°,∴△BCE ≌△CDF (ASA ),∴CE=DF ,∵CE=10cm ,∴DF=10cm .【点睛】本题考查了三角形全等的判定和性质,正方形对的性质,一般以考查三角形全等的方法为主,判定两个三角形全等,再对应三角形全等条件求解.19.为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动,根据活动要求,每班需要2名宣传员,某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.(1)“甲、乙同学都被选为宣传员”是_______事件:(填“必然”、“不可能”或“随机”)(2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.共有12种等可能的结果,其中选中的两名同学恰好是甲,丁的结果数为所以选中的两名同学恰好是甲,丁的概率2 12 ==【点睛】本题考查的是事件的含义,利用画树状图求解随机事件的概率,20.《九章算术》是我国古代重要的数学专著之一,全书共收集了246个数学问题,分为九章,内容涵盖了算术、代数、几何等多个领域.其中记录的一道题译为现代文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天:如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马速度的2倍,求规定时间是多少天.经检验:7x =是原方程的解,且符合题意,答:规定时间是7天.21.已知224442a a T a a ⎛⎫+-=-÷ ⎪+⎝⎭(1)化简T .(2)若a 为二次函数2245y x x =-+的最小值,求此时的T 值.22.数学中的轴对称就像镜子一样,可以展现出图形对称的美,初中常见的轴对称图形有:等腰三角形、菱形、圆等.如图,在等腰ABC 中,AB BC =.(1)尺规作图:作ABC 关于直线AC 对称的ADC △(保留作图痕迹,不写作法);(2)连接BD ,交AC 于点O ,若2BD =,四边形ABCD 周长为ABCD 的面积.由作图可知:AD CD ==∵AB BC=∴AD CD AB BC===∴四边形ABCD 为菱形,∵ABC 与ADC △关于直线∴AC BD ⊥,OB OD =,∴112122OB BD ==⨯=,由(1)知四边形ABCD 为菱形,23.如图,Rt ABO △中,90∠=︒ABO ,2AB =,反比例函数8y x=-的图象经过点A .(1)求点A 的坐标.(2)直线CD 垂直平分AO ,交AO 于点C ,交y 轴于点D ,交x 轴于点E ,求线段OE 的长.24.已知抛物线:()230y x bx a =+-≠的对称轴是直线1x =,与x 轴交于A 、B 两点(A 在B 左侧),与y 轴交于C 点.(1)求抛物线的解析式;(2)若点D 在线段BC 上,且CD =,求sin CAD ∠的值;(3)抛物线向右平移m 个单位(1m >),平移后A 、B 的对应点分别是1A 、1B ,点E 在y 轴的负半轴上,且以点O 、1A 、E 为顶点的三角形与OAC 相似.点F 是平移后的抛物线上的一点,若四边形11A EFB 是平行四边形,求m 的值.∴212DG CG CD ===, ∴()1,2D -,∴()231422BD =-+=,AD ∴222BD AD AB +=,∴90ADB ADC ∠=∠=︒,25.【读一读】一般地,学习几何要从作图开始,再观察图形,根据图形的某一类共同特征对图形进行分类(即给一类图形下定义——定义概念便于归类、交流与表达),然后继续研究图形的其它特征、判定方法以及图形的组合、图形之间的关系、图形的计算等问题.课本里对三角形、四边形的研究即遵循着上面的思路.【算一算】当然,在学习几何的不同阶段,可能研究的是几何的部分问题.比如有下面的问题,请你研究.如图,在ABC 中,AB AC =,点M 、N 分别为边AB 、BC 的中点,连接MN .(1)如图1,若90BAC ∠=︒,BC =BMN 绕点B 顺时针旋转α(α为锐角),得到BEF △,当点A 、E 、F 在同一直线上时,AE 与BC 相交于点D ,连接CF 、ME .①填空:BMN ∠=______(填度数),BME 是______三角形(填类别);②求CD 的长.(2)如图2,若90BAC ∠<︒,将BMN 绕点B 顺时针旋转α,得到BEF △,连接AE 、CF .当旋转角α满足0360α︒<<︒,点C 、E 、F 在同一直线上时,利用所提供的图2和备用图探究BAE ∠与ABF ∠的数量关系,并说明理由.∴∠=∠,设∠ABC ACB的中位线,是ABCMN∴ ,MN AC∴∠=∠=,MNB MBNθ将BMN绕点B顺时针旋转∠∴△≌△,MBEEBF MBN∴∠=∠=,EBF EFBθ1802BEF θ∴∠=︒-,点C ,E ,F 在同一直线上,2BEC θ∴∠=,180BEC BAC ∴∠+∠=︒,A ∴,B ,E ,C 在同一个圆上,EAC EBC αθ∴∠=∠=-,(1802)()180BAE BAC EAC θαθαθ∴∠=∠-∠=︒---=︒--,ABF αθ∠=+ ,180BAE ABF ∴∠+∠=︒,如图所示,当F 在EC 上时,BEF BAC ∠=∠ ,BC BC =,A ∴,B ,E ,C 在同一个圆上,设ABC ACB θ∠=∠=,则1802BAC BEF θ∠=∠=︒-,将BMN 绕点B 顺时针旋转α,得到BEF △,设NBF β∠=,则EBM β∠=,则360αβ+=︒,ABF θβ∴∠=-,BFE EBF θ∠=∠= ,EFB FBC FCB ∠=∠+∠,ECB FCB EFB FBC θβ∴∠=∠=∠-∠=-,EBEB =,EAB ECB θβ∴∠=∠=-,BAE ABF ∴∠=∠,综上所述,BAE ABF ∠=∠或180BAE ABF ∠∠=+︒.【点睛】本题属于几何变换综合题,考查了圆周角定理,圆内接四边形对角互补,相似三角形的性质与判定,旋转的性质,中位线的性质与判定,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质,勾股定理,熟练掌握以上知识是解题的关键.。

2024届广东省广州市越秀区知用中学中考二模数学试题含解析

2024届广东省广州市越秀区知用中学中考二模数学试题含解析

2024届广东省广州市越秀区知用中学中考二模数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<12.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C 的圆心坐标为(0,-1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是A.3 B.113C.103D.43.在平面直角坐标系内,点P(a,a+3)的位置一定不在()A.第一象限B.第二象限C.第三象限D.第四象限4.如图,在平面直角坐标系中,△ABC与△A1B1C1是以点P为位似中心的位似图形,且顶点都在格点上,则点P的坐标为()A.(﹣4,﹣3)B.(﹣3,﹣4)C.(﹣3,﹣3)D.(﹣4,﹣4)5.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m,n,则二次函数的图象与x轴有两个不同交点的概率是().A.B.C.D.6.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()A.4.5cm B.5.5cm C.6.5cm D.7cm7.关于x的不等式组312(1)x mx x-<⎧⎨->-⎩无解,那么m的取值范围为( )A.m≤-1 B.m<-1 C.-1<m≤0D.-1≤m<0 8.关于2、6、1、10、6的这组数据,下列说法正确的是()A.这组数据的众数是6 B.这组数据的中位数是1C.这组数据的平均数是6 D.这组数据的方差是109.点A(a,3)与点B(4,b)关于y轴对称,则(a+b)2017的值为()A.0 B.﹣1 C.1 D.72017 10.3--的倒数是()A.13-B.-3 C.3 D.1311.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为()A.2+3B.23C.3+3D.3312.2017年北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌.综合实力稳步提升.全市地区生产总值达到280000亿元,将280000用科学记数法表示为()A.280×103B.28×104C.2.8×105D.0.28×106二、填空题:(本大题共6个小题,每小题4分,共24分.)13.16的算术平方根是.14.如图,将一对直角三角形卡片的斜边AC重合摆放,直角顶点B,D在AC的两侧,连接BD,交AC于点O,取AC,BD的中点E,F,连接EF.若AB=12,BC=5,且AD=CD,则EF的长为_____.15.每一层三角形的个数与层数的关系如图所示,则第2019层的三角形个数为_____.16.已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45º.则图中阴影部分的面积是____________.17.如果点A(-1,4)、B(m,4)在抛物线y=a(x-1)2+h上,那么m的值为_____.18.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2018次变换后,等边△ABC的顶点C的坐标为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.20.(6分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.请根据以上信息,完成下列问题:该班共有学生人;请将条形统计图补充完整;该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.21.(6分)把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字.放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率.22.(8分)如图,一次函数y1=kx+b的图象与反比例函数y2=mx的图象交于A(2,3),B(6,n)两点.分别求出一次函数与反比例函数的解析式;求△OAB的面积.23.(8分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?24.(10分)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=kx交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.求双曲线的解析式;求点C的坐标,并直接写出y1<y2时x的取值范围.25.(10分)列方程解应用题:某景区一景点要限期完成,甲工程队单独做可提前一天完成,乙工程队独做要误期6天,现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,则工程期限为多少天?26.(12分)如图,正六边形ABCDEF在正三角形网格内,点O为正六边形的中心,仅用无刻度的直尺完成以下作图.(1)在图1中,过点O作AC的平行线;(2)在图2中,过点E作AC的平行线.27.(12分)如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4).按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A1B1C1绕点B1逆时针旋转90°,得到△A1B1C1.求点C1在旋转过程中所经过的路径长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】试题分析:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选C.考点:一次函数与一元一次不等式.2、B【解题分析】试题分析:解:当射线AD与⊙C相切时,△ABE面积的最大.连接AC,∵∠AOC=∠ADC=90°,AC=AC,OC=CD,∴Rt△AOC≌Rt△ADC,∴AD=AO=2,连接CD,设EF=x,∴DE2=EF•OE,∵CF=1,∴DE=,∴△CDE∽△AOE,∴=,即=,解得x=,S△ABE===.故选B.考点:1.切线的性质;2.三角形的面积.3、D【解题分析】判断出P的横纵坐标的符号,即可判断出点P所在的相应象限.【题目详解】当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限, 当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,故选D.【题目点拨】本题考查了点的坐标的知识点,解题的关键是由a的取值判断出相应的象限.4、A【解题分析】延长A1A、B1B和C1C,从而得到P点位置,从而可得到P点坐标.【题目详解】如图,点P的坐标为(-4,-3).故选A.【题目点拨】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.5、C【解题分析】分析:本题可先列出出现的点数的情况,因为二次图象开口向上,要使图象与x轴有两个不同的交点,则最低点要小于0,即4n-m2<0,再把m、n的值一一代入检验,看是否满足.最后把满足的个数除以掷骰子可能出现的点数的总个数即可.解答:解:掷骰子有6×6=36种情况.根据题意有:4n-m 2<0,因此满足的点有:n=1,m=3,4,5,6,n=2,m=3,4,5,6,n=3,m=4,5,6,n=4,m=5,6,n=5,m=5,6,n=6,m=5,6,共有17种,故概率为:17÷36=.故选C .点评:本题考查的是概率的公式和二次函数的图象问题.要注意画出图形再进行判断,找出满足条件的点. 6、A【解题分析】试题分析:利用轴对称图形的性质得出PM=MQ ,PN=NR ,进而利用PM=2.5cm ,PN=3cm ,MN=3cm ,得出NQ=MN-MQ=3-2.5=2.5(cm ),即可得出QR 的长RN+NQ=3+2.5=3.5(cm ).故选A .考点:轴对称图形的性质7、A【解题分析】【分析】先求出每一个不等式的解集,然后再根据不等式组无解得到有关m 的不等式,就可以求出m 的取值范围了.【题目详解】()03121x m x x -<⎧⎪⎨->-⎪⎩①②, 解不等式①得:x<m ,解不等式②得:x>-1,由于原不等式组无解,所以m≤-1,故选A.【题目点拨】本题考查了一元一次不等式组无解问题,熟知一元一次不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键.8、A【解题分析】根据方差、算术平均数、中位数、众数的概念进行分析.【题目详解】数据由小到大排列为1,2,6,6,10, 它的平均数为15(1+2+6+6+10)=5, 数据的中位数为6,众数为6,数据的方差=15 [(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.1. 故选A .考点:方差;算术平均数;中位数;众数.9、B【解题分析】根据关于y 轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【题目详解】解:由题意,得a=-4,b=1.(a+b )2017=(-1)2017=-1,故选B .【题目点拨】本题考查了关于y 轴对称的点的坐标,利用关于y 轴对称的点的纵坐标相等,横坐标互为相反数得出a ,b 是解题关键. 10、A【解题分析】 先求出33--=-,再求倒数.【题目详解】 因为33--=- 所以3--的倒数是13-故选A【题目点拨】考核知识点:绝对值,相反数,倒数.11、A【解题分析】设AC =a ,由特殊角的三角函数值分别表示出BC 、AB 的长度,进而得出BD 、CD 的长度,由公式求出tan ∠DAC 的值即可. 【题目详解】设AC =a ,则BC =30AC tan ︒,AB =30ACsin ︒=2a ,∴BD =BA =2a ,∴CD =(a ,∴tan ∠DAC . 故选A. 【题目点拨】本题主要考查特殊角的三角函数值. 12、C 【解题分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【题目详解】将280000用科学记数法表示为2.8×1.故选C . 【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13、4 【解题分析】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根 ∵2(4)16±= ∴16的平方根为4和-4 ∴16的算术平方根为414. 【解题分析】先求出BE 的值,作DM ⊥AB ,DN ⊥BC 延长线,先证明△ADM ≌△CDN (AAS ),得出AM=CN ,DM=DN ,再根据正方形的性质得BM=BN ,设AM=CN=x ,BM=AB-AM=12-x=BN=5+x ,求出x=72,BN=172,根据BD 为正方形的对角线可得出BD=1722, BF=12BD=1742, EF=22BE BF -=742.【题目详解】∵∠ABC=∠ADC , ∴A,B,C,D 四点共圆, ∴AC 为直径, ∵E 为AC 的中点, ∴E 为此圆圆心, ∵F 为弦BD 中点, ∴EF ⊥BD , 连接BE ,∴BE=12AC=1222AB BC +=1222512+=132; 作DM ⊥AB ,DN ⊥BC 延长线,∠BAD=∠BCN, 在△ADM 和△CDN 中,AD DN BAD NCD AMD CND =⎧⎪∠=∠⎨⎪∠=∠⎩, ∴△ADM ≌△CDN (AAS ), ∴AM=CN ,DM=DN , ∵∠DMB=∠DNC=∠ABC=90°, ∴四边形BNDM 为矩形, 又∵DM=DN,∴矩形BNDM 为正方形, ∴BM=BN ,设AM=CN=x ,BM=AB-AM=12-x=BN=5+x , ∴12-x=5+x ,x=72,BN=172, ∵BD 为正方形BNDM 的对角线,∴BN=172,BF=12BD=174,∴74.故答案为74.【题目点拨】本题考查了正方形的性质与全等三角形的性质,解题的关键是熟练的掌握正方形与全等三角形的性质与应用. 15、2. 【解题分析】设第n 层有a n 个三角形(n 为正整数),根据前几层三角形个数的变化,即可得出变化规律“a n =2n ﹣2”,再代入n =2029即可求出结论. 【题目详解】设第n 层有a n 个三角形(n 为正整数),∵a 2=2,a 2=2+2=3,a 3=2×2+2=5,a 4=2×3+2=7,…, ∴a n =2(n ﹣2)+2=2n ﹣2.∴当n =2029时,a 2029=2×2029﹣2=2. 故答案为2. 【题目点拨】本题考查了规律型:图形的变化类,根据图形中三角形个数的变化找出变化规律“a n =2n ﹣2”是解题的关键. 16、(254π-252)cm 2 【解题分析】S阴影=S扇形-S △OBD =90360π 52-12×5×5=225504cm π-. 故答案是:225504cm π-. 17、1【解题分析】根据函数值相等两点关于对称轴对称,可得答案.【题目详解】由点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,得:(﹣1,4)与(m,4)关于对称轴x=1对称,m﹣1=1﹣(﹣1),解得:m=1.故答案为:1.【题目点拨】本题考查了二次函数图象上点的坐标特征,利用函数值相等两点关于对称轴对称得出m﹣1=1﹣(﹣1)是解题的关键.18、(﹣2016+1)【解题分析】据轴对称判断出点C变换后在x轴上方,然后求出点C纵坐标,再根据平移的距离求出点A变换后的横坐标,最后写出即可.【题目详解】解:∵△ABC是等边三角形AB=3﹣1=2,∴点C到x轴的距离为,横坐标为2,∴C(2+1),第2018次变换后的三角形在x轴上方,点C,横坐标为2﹣2018×1=﹣2016,所以,点C的对应点C′的坐标是(﹣2016)故答案为:(﹣2016)【题目点拨】本题考查坐标与图形变化,平移和轴对称变换,等边三角形的性质,读懂题目信息,确定出连续2018次这样的变换得到三角形在x轴上方是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、20°【解题分析】依据三角形内角和定理可得∠FGH=55°,再根据GE平分∠FGD,AB∥CD,即可得到∠FHG=∠HGD=∠FGH=55°,再根据∠FHG是△EFH的外角,即可得出∠EFB=55°-35°=20°.【题目详解】∵∠EFG=90°,∠E=35°,∴∠FGH=55°,∵GE平分∠FGD,AB∥CD,∴∠FHG=∠HGD=∠FGH=55°,∵∠FHG是△EFH的外角,∴∠EFB=55°﹣35°=20°.【题目点拨】本题考查了平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.20、(1)50人;(2)补图见解析;(3)1 10.【解题分析】分析:(1)根据化学学科人数及其所占百分比可得总人数;(2)根据各学科人数之和等于总人数求得历史的人数即可;(3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得.详解:(1)该班学生总数为10÷20%=50人;(2)历史学科的人数为50﹣(5+10+15+6+6)=8人,补全图形如下:(3)列表如下:化学生物政治历史地理化学生物、化学政治、化学历史、化学地理、化学生物化学、生物政治、生物历史、生物地理、生物政治化学、政治生物、政治历史、政治地理、政治历史化学、历史生物、历史政治、历史地理、历史地理化学、地理生物、地理政治、地理历史、地理由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,所以该同学恰好选中化学、历史两科的概率为21= 2010.点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B 的结果数目m,然后利用概率公式求事件A或B的概率.21、见解析,4 9 .【解题分析】画树状图展示所有9种等可能的结果数,找出两次抽取的卡片上的数字都是偶数的结果数,然后根据概率公式求解.【题目详解】解:画树状图为:共有9种等可能的结果数,其中两次抽取的卡片上的数字都是偶数的结果数为4,所以两次抽取的卡片上的数字都是偶数的概率=49.【题目点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.22、(1) 反比例函数的解析式为y=6x,一次函数的解析式为y=﹣12x+1.(2)2.【解题分析】(1)根据反比例函数y2=mx的图象过点A(2,3),利用待定系数法求出m,进而得出B点坐标,然后利用待定系数法求出一次函数解析式;(2)设直线y1=kx+b与x轴交于C,求出C点坐标,根据S△AOB=S△AOC﹣S△BOC,列式计算即可.【题目详解】(1)∵反比例函数y2=mx的图象过A(2,3),B(6,n)两点,∴m=2×3=6n,∴m=6,n=1,∴反比例函数的解析式为y=6x,B的坐标是(6,1).把A(2,3)、B(6,1)代入y1=kx+b,得:2361k bk b+=⎧⎨+=⎩,解得:124kb⎧=-⎪⎨⎪=⎩,∴一次函数的解析式为y=﹣12x+1.(2)如图,设直线y=﹣12x+1与x轴交于C,则C(2,0).S△AOB=S△AOC﹣S△BOC=12×2×3﹣12×2×1=12﹣1=2.【题目点拨】本题考查了待定系数法求反比例函数、一次函数解析式以及求三角形面积等知识,根据已知得出B点坐标以及得出S△AOB=S△AOC﹣S△BOC是解题的关键.23、(1)y=﹣30x+1;(2)每件售价定为55元时,每星期的销售利润最大,最大利润2元;(3)该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.【解题分析】(1) 每星期的销售量等于原来的销售量加上因降价而多销售的销售量, 代入即可求解函数关系式;(2) 根据利润=销售量⨯(销售单价-成本) , 建立二次函数, 用配方法求得最大值.(3) 根据题意可列不等式, 再取等将其转化为一元二次方程并求解, 根据每星期的销售利润所在抛物线开口向下求出满足条件的x的取值范围, 再根据(1) 中一元一次方程求得满足条件的x的取值范围内y的最小值即可.【题目详解】(1)y=300+30(60﹣x)=﹣30x+1.(2)设每星期利润为W元,W=(x﹣40)(﹣30x+1)=﹣30(x﹣55)2+2.∴x=55时,W最大值=2.∴每件售价定为55元时,每星期的销售利润最大,最大利润2元.(3)由题意(x﹣40)(﹣30x+1)≥6480,解得52≤x≤58,当x=52时,销售300+30×8=540,当x=58时,销售300+30×2=360,∴该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.【题目点拨】本题主要考查一次函数的应用和二次函数的应用,注意综合运用所学知识解题.24、(1)24yx=;(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1.【解题分析】【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式;(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.【题目详解】(1)∵点A在直线y1=1x﹣1上,∴设A(x,1x﹣1),过A作AC⊥OB于C,∵AB⊥OA,且OA=AB,∴OC=BC,∴AC=12OB=OC,∴x=1x﹣1,x=1,∴A(1,1),∴k=1×1=4,∴24yx=;(1)∵224y xyx=-⎧⎪⎨=⎪⎩,解得:1122xy=⎧⎨=⎩,2214xy=-⎧⎨=-⎩,∴C(﹣1,﹣4),由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.【题目点拨】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.25、15天【解题分析】试题分析:首先设规定的工期是x天,则甲工程队单独做需(x-1)天,乙工程队单独做需(x+6)天,根据题意可得等量关系:乙工程队干x天的工作量+甲工程队干4天的工作量=1,根据等量关系列出方程,解方程即可.试题解析:设工程期限为x天.根据题意得,x41 x6x-1+= +解得:x=15.经检验x=15是原分式方程的解.答:工程期限为15天.26、(1)作图见解析;(2)作图见解析.【解题分析】试题分析:利用正六边形的特性作图即可.试题解析:(1)如图所示(答案不唯一):(2)如图所示(答案不唯一):27、(1)①见解析;②见解析;(1)1π.【解题分析】(1)①利用点平移的坐标规律,分别画出点A、B、C的对应点A1、B1、C1的坐标,然后描点可得△A1B1C1;②利用网格特点和旋转的性质,分别画出点A1、B1、C1的对应点A1、B1、C1即可;(1)根据弧长公式计算.【题目详解】(1)①如图,△A1B1C1为所作;②如图,△A1B1C1为所作;(1)点C1在旋转过程中所经过的路径长=9042 180ππ⨯=【题目点拨】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移的性质.。

2024年广东省中考数学试卷(含答案)

2024年广东省中考数学试卷(含答案)

2024年广东省初中学业水平考试数学满分120分考试用时120分钟注意事项:1.答题前,考生务必用黑色字迹的签字笔或钢笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号,将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔或钢笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算-5+3的结果是()A.2B.-2C.8D.-8【答案】B【解析】【分析】根据有理数的加法法则,即可求解.【详解】∵-5+3=-(5-3)=-2,故答案是:B.【点睛】本题主要考查有理数的加法法则,掌握“异号两数相加,取绝对值较大的数的符号,并把较大数的绝对值减去较小数的绝对值”是解题的关键.2.下列几何图形中,既是中心对称图形也是轴对称图形的是()A. B. C. D.【答案】C【解析】【分析】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.根据轴对称图形和中心对称图形的定义进行逐一判断即可.【详解】解:A .是轴对称图形,不是中心对称图形,故不符合题意;B .不是轴对称图形,是中心对称图形,故不符合题意;C .既是轴对称图形,又是中心对称图形,故不符合题意;D .是轴对称图形,不是中心对称图形,故不符合题意;故选:C .3.2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为()A.43.8410⨯B.53.8410⨯ C.63.8410⨯ D.538.410⨯【答案】B 【解析】【分析】本题考查了绝对值大于1的科学记数法的表示,解题的关键在于确定a n ,的值.根据绝对值大于1的数,用科学记数法表示为10n a ⨯,其中110a ≤<,n 的值为整数位数少1.【详解】解:384000大于1,用科学记数法表示为10n a ⨯,其中 3.84a =,5n =,∴384000用科学记数法表示为53.8410⨯,故选:B .4.如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为()A.120︒B.90︒C.60︒D.30︒【答案】C 【解析】【分析】本题考查了平行线的性质.熟练掌握平行线的性质是解题的关键.由题意知,AC DE ∥,根据ACE E ∠=∠,求解作答即可.【详解】解:由题意知,AC DE ∥,∴60ACE E ∠=∠=︒,故选:C .5.下列计算正确的是()A.2510a a a ⋅= B.824a a a÷= C.257a a a-+= D.()5210a a =【答案】D 【解析】【分析】本题主要考查了同底数幂乘除法计算,幂的乘方计算,合并同类项,熟知相关计算法则是解题的关键.【详解】解:A 、257a a a ⋅=,原式计算错误,不符合题意;B 、826a a a ÷=,原式计算错误,不符合题意;C 、253a a a -+=,原式计算错误,不符合题意;D 、()5210a a =,原式计算正确,符合题意;故选:D .6.长江是中华民族的母亲河,长江流域孕育出藏羌文化、巴蜀文化、荆楚文化、吴越文化等区域文化.若从上述四种区域文化中随机选一种文化开展专题学习,则选中“巴蜀文化”的概率是()A.14B.13C.12D.34【答案】A 【解析】【分析】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.直接根据概率公式求解即可.【详解】解:根据题意,选中“巴蜀文化”的概率是14,故选:A .7.完全相同的4个正方形面积之和是100,则正方形的边长是()A.2B.5C.10D.20【答案】B 【解析】【分析】本题主要考查了算术平方根的应用,先求出一个正方形的面积,再根据正方形的面积计算公式求出对应的边长即可.【详解】解:∵完全相同的4个正方形面积之和是100,∴一个正方形的面积为100425÷=,∴正方形的边长为5=,故选:B .8.若点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,则()A.321y y y >>B.213y y y >>C.132y y y >> D.312y y y >>【答案】A 【解析】【分析】本题考查了二次函数的图象和性质、二次函数图象上点的坐标特征等知识点,根据二次函数的解析式得出函数图象的对称轴是y 轴(直线0x =),图象的开口向上,在对称轴的右侧,y 随x 的增大而增大,再比较即可.【详解】解∶二次函数2y x =的对称轴为y 轴,开口向上,∴当0x >时,y 随x 的增大而增大,∵点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,且012<<,∴321y y y >>,故选∶A .9.方程233x x=-的解为()A.3x = B.9x =- C.9x = D.3x =-【答案】C 【解析】【分析】把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:233x x=-去分母得:23(3)x x =-,去括号得:239x x =-,移项、合并同类项得:9x -=-,解得:x =9,经检验:x =9是原分式方程的解,故选:C .【点睛】本题考查了解分式方程,利用了转化的思想,解题的关键是解分式方程注意要检验,避免出现增根.10.已知不等式0kx b +<的解集是2x <,则一次函数y kx b =+的图象大致是()A. B. C. D.【答案】B 【解析】【分析】本题考查一次函数与一元一次不等式,解不等式的方法:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量x 的取值范围.找到当2x <函数图象位于x 轴的下方的图象即可.【详解】解∶∵不等式0kx b +<的解集是2x <,∴当2x <时,0y <,观察各个选项,只有选项B 符合题意,故选:B .二、填空题:本大题共5小题,每小题3分,共15分.11.数据2,3,5,5,4的众数是____.【答案】5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.12.关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是______.【答案】3x ≥##3x ≤【解析】【分析】本题主要考查了求不等式组的解集,在数轴上表示不等式组的解集,根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:由数轴可知,两个不等式的解集分别为3x ≥,2x >,∴不等式组的解集为3x ≥,故答案为:3x ≥.13.若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =_______.【答案】1【解析】【分析】由220x x c ++=有两个相等的实数根,可得240b ac ∆=-=进而可解答.【详解】解:∵220x x c ++=有两个相等的实数根,∴24440b ac c ∆=-=-=,∴1c =.故答案为:1.【点睛】本题主要考查根据一元二次方程根的情况求参数,掌握相关知识是解题的关键.14.计算:333a a a -=--_______.【答案】1【解析】【分析】本题主要考查了同分母分式减法计算,根据同分母分式减法计算法则求解即可.【详解】解:331333a a a a a --==---,故答案为:1.15.如图,菱形ABCD 的面积为24,点E 是AB 的中点,点F 是BC 上的动点.若BEF △的面积为4,则图中阴影部分的面积为______.【答案】10【解析】【分析】本题考查了菱形的性质,三角形中线的性质,利用菱形的性质、三角形中线的性质求出6ADE S = ,8ABF S = ,根据ABF △和菱形的面积求出23BF BC =,2BFCF=,则可求出CDF 的面积,然后利用ADE BEF CDF ABCD S S S S S =---阴影菱形 求解即可.【详解】解:连接AF BD 、,∵菱形ABCD 的面积为24,点E 是AB 的中点,BEF △的面积为4,∴1116222ADE ABD ABCD S S S ==⨯=菱形 ,28ABF BEF S S == ,设菱形ABCD 中BC 边上的高为h ,则12ABFABCDBF h S S BC h ⋅=⋅菱形 ,即18224BFBC=,∴23BF BC =,∴2BFCF=,∴12212ABF CDF BF hS BFS CFCF h ⋅===⋅ ,∴4CDF S =△,∴10ADE BEF CDF ABCD S S S S S =---=阴影菱形 ,故答案为:10.三、解答题(一):本大题共3小题,每小题7分,共21分.16.计算:011233-⨯-+.【答案】2【解析】【分析】本题主要考查了实数的运算,零指数幂,负整数指数幂,先计算零指数幂,负整数指数幂和算术平方根,再计算乘法,最后计算加减法即可.【详解】解:011233-⨯-+111233⨯+-=11233=+-2=.17.如图,在ABC 中,90C ∠=︒.(1)实践与操作:用尺规作图法作A ∠的平分线AD 交BC 于点D ;(保留作图痕迹,不要求写作法)(2)应用与证明:在(1)的条件下,以点D 为圆心,DC 长为半径作D .求证:AB 与D 相切.【答案】(1)见解析(2)证明见解析【解析】【分析】本题考查了尺规作角平分线,角平分线的性质定理,切线的判定等知识.熟练上述知识是解题的关键.(1)利用尺规作角平分线的方法解答即可;(2)如图2,作DE AB ⊥于E ,由角平分线的性质定理可得DE DC =,由DE 是半径,DE AB ⊥,可证AB 与D 相切.【小问1详解】解:如图1,AD 即为所作;【小问2详解】证明:如图2,作DE AB ⊥于E ,∵AD 是CAD ∠的平分线,DC AC ⊥,DE AB ⊥,∴DE DC =,∵DE 是半径,DE AB ⊥,∴AB 与D 相切.18.中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN 充电站的平面示意图,矩形ABCD 是其中一个停车位.经测量,60ABQ ∠=︒, 5.4m AB =, 1.6m CE =,GH CD ⊥,GH 是另一个车位的宽,所有车位的长宽相同,按图示并列划定.根据以上信息回答下列问题:(结果精确到0.1m 1.73≈)(1)求PQ 的长;(2)该充电站有20个停车位,求PN 的长.【答案】(1)6.1m (2)66.7m 【解析】【分析】本题主要考查了矩形的性质,解直角三角形的实际应用:(1)先由矩形的性质得到90Q P ∠=∠=︒,再解Rt ABQ 得到273m 10AQ =,接着解直角三角形得到83m 5BC =,进而求出43m 5AP =,据此可得答案;(2)解Rt BCE 得到 3.2m BE =,解Rt ABQ 得到 2.7m BQ =,再根据有20个停车位计算出QM 的长即可得到答案.【小问1详解】解:∵四边形PQMN 是矩形,∴90Q P ∠=∠=︒,在Rt ABQ 中,60ABQ ∠=︒, 5.4m AB =,∴273sin m 10AQ AB ABQ =⋅=∠,30QAB ∠=︒,∵四边形ABCD 是矩形,∴90AD BC BAD BCD ABC BCE =====︒,∠∠∠∠,∴30CBE ∠=︒,∴83m tan 5CE BC CBE ==∠,∴83m 5AD =;∵180309060PAD =︒-︒-︒=︒∠,∴43cos m 5AP AD PAD =⋅=∠,∴3536.1m 10PQ AP AQ =+=≈【小问2详解】解:在Rt BCE 中, 3.2m sin CEBE CBE==∠,在Rt ABQ 中,cos 2.7m BQ AB ABQ =⋅=∠,∵该充电站有20个停车位,∴2066.7m QM QB BE =+=,∵四边形ABCD 是矩形,∴66.7m PN QM ==.四、解答题(二):本大题共3小题,每小题9分,共27分.19.端午假期,王先生计划与家人一同前往景区游玩,为了选择一个最合适的景区,王先生对A 、B 、C 三个景区进行了调查与评估.他依据特色美食、自然风光、乡村民宿及科普基地四个方面,为每个景区评分(10分制).三个景区的得分如下表所示:景区特色美食自然风光乡村民宿科普基地A6879B7787C8866(1)若四项所占百分比如图所示,通过计算回答:王先生会选择哪个景区去游玩?(2)如果王先生认为四项同等重要,通过计算回答:王先生将会选择哪个景区去游玩?(3)如果你是王先生,请按你认为的各项“重要程度”设计四项得分的百分比,选择最合适的景区,并说明理由.【答案】(1)王先生会选择B景区去游玩(2)王先生会选择A景区去游玩(3)最合适的景区是B景区,理由见解析【解析】【分析】本题主要考查了求平均数和求加权平均数:(1)根据加权平均数的计算方法分别计算出三个景区的得分即可得到答案;(2)根据平均数的计算方法分别计算出三个景区的得分即可得到答案;(3)设计对应的权重,仿照(1)求解即可.【小问1详解】⨯+⨯+⨯+⨯=分,解:A景区得分为630%815%740%915%7.15⨯+⨯+⨯+⨯=分,B景区得分为730%715%840%715%7.4⨯+⨯+⨯+⨯=分,C景区得分为830%815%640%615% 6.9<<,∵6.97.157.4∴王先生会选择B景区去游玩;【小问2详解】解:A 景区得分67897.54+++=分,B 景区得分77877.254+++=分,C 景区得分668874+++=分,∵77.257.5<<,∴王先生会选择A 景区去游玩;【小问3详解】解:最合适的景区是B 景区,理由如下:设特色美食、自然风光、乡村民宿及科普基地四个方面的占比分别为30%20%40%10%,,,,A 景区得分为630%820%740%910%7.1⨯+⨯+⨯+⨯=分,B 景区得分为730%720%840%710%7.4⨯+⨯+⨯+⨯=分,C 景区得分为830%820%640%610%7⨯+⨯+⨯+⨯=分,∵77.17.4<<,∴王先生会选择B 景区去游玩.20.广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)【答案】当定价为4.5万元每吨时,利润最大,最大值为312.5万元【解析】【分析】本题主要考查了二次函数的实际应用,设每吨降价x 万元,每天的利润为w 万元,根据利润=每吨的利润⨯销售量列出w 关于x 的二次函数关系式,利用二次函数的性质求解即可.【详解】解:设每吨降价x 万元,每天的利润为w 万元,由题意得,()()5210050w x x =--+25050300x x =-++2150312.52x ⎛⎫=--+ ⎪⎝⎭,∵500-<,∴当12x =时,w 有最大值,最大值为312.5,∴5 4.5x -=,答:当定价为4.5万元每吨时,利润最大,最大值为312.5万元.21.综合与实践【主题】滤纸与漏斗【素材】如图1所示:①一张直径为10cm 的圆形滤纸;②一只漏斗口直径与母线均为7cm 的圆锥形过滤漏斗.【实践操作】步骤1:取一张滤纸;步骤2:按如图2所示步骤折叠好滤纸;步骤3:将其中一层撑开,围成圆锥形;步骤4:将围成圆锥形的滤纸放入如图1所示漏斗中.【实践探索】(1)滤纸是否能紧贴此漏斗内壁(忽略漏斗管口处)?用你所学的数学知识说明.(2)当滤纸紧贴漏斗内壁时,求滤纸围成圆锥形的体积.(结果保留π)【答案】(1)能,见解析(2)31253cm 24【解析】【分析】本题考查了圆锥,解题的关键是:(1)利用圆锥的底面周长=侧面展开扇形的弧长求出圆锥展开图的扇形圆心角,即可判断;(2)利用圆锥的底面周长=侧面展开扇形的弧长,求出滤纸围成圆锥形底面圆的半径,利用勾股定理求出圆锥的高,然后利用圆锥体积公式求解即可.【小问1详解】解:能,理由:设圆锥展开图的扇形圆心角为n ︒,根据题意,得77180nππ⋅=,解得180n =°,∴将圆形滤纸对折,将其中一层撑开,围成圆锥形,此时滤纸能紧贴此漏斗内壁;【小问2详解】解:设滤纸围成圆锥形底面圆的半径为cm r ,高为cm h ,根据题意,得18052180ππr ⨯=,解得52r =,∴h ==,∴圆锥的体积为223115332r h ππ⎛⎫=⨯= ⎪⎝⎭.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22.【知识技能】(1)如图1,在ABC 中,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' .当点E 的对应点E '与点A 重合时,求证:AB BC =.【数学理解】(2)如图2,在ABC 中()AB BC <,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' ,连接A B ',C C ',作A BD ' 的中线DF .求证:2DF CD BD CC ⋅='⋅.【拓展探索】(3)如图3,在ABC 中,4tan 3B =,点D 在AB 上,325AD =.过点D 作DE BC ⊥,垂足为E ,3BE =,323CE =.在四边形ADEC 内是否存在点G ,使得180AGD CGE ∠+∠=︒?若存在,请给出证明;若不存在,请说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)存在,证明见解析【解析】【分析】本题考查了旋转的性质、中位线的性质、外角定理、相似三角形的判定与性质、勾股定理、三角函数,圆内接四边形的对角互补熟练.掌握知识点以及灵活运用是解题的关键.(1)根据中位线的性质、旋转的性质即可证明;(2)利用旋转的性质、外角定理、中位线的性质证明A FD DGC ''△∽△后即可证明;(3)当两圆相交,连接交点与两圆心所构成的四边形为圆内接四边形,其中一组对角互补,即两角之和为180︒.根据圆内接四边形的对角互补,将问题转化为求出两圆的位置关系即可证明.【详解】证明:(1) DE 是ABC 的中位线,∴12DE BC =且12AD DB AB ==.又 ADC △绕点D 按逆时针方向旋转得到A DC ''∴DE AD=∴AB BC =.(2)由题意可知:DC DC '=,DA DA '=,CDC ADA ''∠=∠.作DG CC '⊥,则12CG C G CC ''==且12CDG C DG CDC ''∠=∠=∠,又 BD DA DA '==,∴A BD BA D ''∠=∠.根据外角定理A DA A BD BA D '''∠=∠-∠,∴12BA D A DA ''∠=∠,∴BA D C CG ''∠=∠.又 DB DA '=,DF 是A BD ' 的中位线,∴'DF A B ⊥,∴90A FD '∠=︒,∴A FD DGC ''△∽△,∴DFA DC G CD '='',∴12DF BDCD C C =',∴2DF CD BD CC ⋅='⋅.(3)假设存在点G 使得180AGD CGE ∠+∠=︒,如图分别以AD ,CE 为直径画圆,圆心分别为1O ,2O ,半径分别为r ,R ,则165r =,163R =.过点1O 作1O H BC ⊥于点H ,过点D 作1DF O H ⊥于点F,则有DF BC ∥,四边形DEHF 为长方形,∴190O FD FHB DEB ∠=∠=∠=︒,1O DF DBE ∠=∠,∴1O FD DEB △∽△,∴11O D O FDFDB DE BE ==,11O DDB DE O F=.又 在BDE 中,4·tan 343DE BE B ==⨯=,5BD ===,1516r O D ==,根据勾股定理可得:4DE FH ==,5DB =,∴16425O F =,4825DF EH ==.∴111644 6.5625O H O F =+==,21648256 3.4132575O H R EH =-=-=≈.在12Rt O HO △中,127.39O O =≈.又 16168.553r R +=+≈,∴12O O r R <+,∴两圆有交点,满足180AGD CGE ∠+∠=︒.23.【问题背景】如图1,在平面直角坐标系中,点B ,D 是直线()0y ax a =>上第一象限内的两个动点()OD OB >,以线段BD 为对角线作矩形ABCD ,AD x ∥轴.反比例函数k y x =的图象经过点A .【构建联系】(1)求证:函数k y x=的图象必经过点C .(2)如图2,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E 落在y 轴上,且点B 的坐标为()1,2时,求k 的值.【深入探究】(3)如图3,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E ,A 重合时,连接AC 交BD 于点P .以点O 为圆心,AC 长为半径作O .若OP =O 与ABC 的边有交点时,求k 的取值范围.【答案】(1)证明见解析;(2)163k =;(3)68k ≤≤【解析】【分析】(1)设(),B m ma ,则,k A m m ⎛⎫ ⎪⎝⎭,用含,m k 的代数式表示出,k C am am ⎛⎫ ⎪⎝⎭,再代入k y x =验证即可得解;(2)先由点B 的坐标和k 表示出2DC k =-,再由折叠性质得出2DE BE =,如图,过点D 作DH y ⊥轴,过点B 作BF y ⊥轴,证出DHE EFB ∽,由比值关系可求出24k HF =+,最后由HF DC =即可得解;(3)当O 过点B 时,如图所示,过点D 作DH x 轴交y 轴于点H ,求出k 的值,当O 过点A 时,根据A ,C 关于直线OD 对轴知,O 必过点C ,如图所示,连AO ,CO ,过点D 作DH x 轴交y 轴于点H ,求出k 的值,进而即可求出k 的取值范围.【详解】(1)设(),B m ma ,则,k A m m ⎛⎫ ⎪⎝⎭,∵AD x 轴,∴D 点的纵坐标为k m ,∴将k y m =代入y ax =中得:k m ax =得,∴k x am =,∴,k k D am m ⎛⎫ ⎪⎝⎭,∴,k C am am ⎛⎫ ⎪⎝⎭,∴将k x am =代入k y x=中得出y am =,∴函数k y x =的图象必经过点C ;(2)∵点()1,2B 在直线y ax =上,∴2a =,∴2y x =,∴A 点的横坐标为1,C 点的纵坐标为2,∵函数ky x =的图象经过点A ,C ,∴22k C ⎛⎫⎪⎝⎭,,()1,A k ,∴2k D k ⎛⎫⎪⎝⎭,,∴2DC k =-,∵把矩形ABCD 沿BD 折叠,点C 的对应点为E ,∴12kBE BC ==-,90BED BCD ∠=∠=︒,∴2212DC k DEk BC BE -===-,如图,过点D 作DH y ⊥轴,过点B 作BF y ⊥轴,∵AD x 轴,∴H ,A ,D 三点共线,∴90HED BEF ∠+∠=︒,90BEF EBF ∠+∠=︒,∴HED EBF ∠=∠,∵90DHE EFB ∠=∠=︒,∴DHE EFB ∽,∴2DH HEDEEF BF BE ===,∵1BF =,2kDH =∴2HE =,4kEF =,∴24kHF =+,由图知,HF DC =,∴224kk +=-,∴163k =;(3)∵把矩形ABCD 沿BD 折叠,点C 的对应点为E ,当点E ,A 重合,∴AC BD ⊥,∵四边形ABCD 为矩形,∴四边形ABCD 为正方形,45ABP DBC ∠=∠=︒,∴sin 45APAB BC CD DA =====︒,12AP PC BP AC ===,BP AC ⊥,∵BC x ∥轴,∴直线y ax =为一,三象限的夹角平分线,∴y x =,当O 过点B 时,如图所示,过点D 作DH x ∥轴交y 轴于点H ,∵AD x ∥轴,∴H ,A ,D 三点共线,∵以点O 为圆心,AC 长为半径作O ,OP =∴23OP OB BP AC BP AP AP AP =+=+=+==∴AP =,∴2AB AD ===,2BD AP ==,2BO AC AP ===,∵AB y ∥轴,∴DHO DAB ∽,∴HO DH DO AB AD BD==,∴22HO DH ==,∴4HO HD ==,∴422HA HD DA =-=-=,∴()2,4A ,∴248k =⨯=,当O 过点A 时,根据A ,C 关于直线OD 对轴知,O 必过点C ,如图所示,连AO ,CO ,过点D 作DH x ∥轴交y 轴于点H ,∵AO OC AC ==,∴AOC 为等边三角形,∵OP AC ⊥,∴160302AOP ∠=⨯︒=︒,∴3tan 303AP OP PD =︒⨯=⨯==,2AC BD AP ===,∴AB AD ===,OD BP PD =+=,∵AB y ∥轴,∴DHO DAB ∽,∴HO DH DO AB AD BD==,==∴3HO HD ==+,∴33HA HD DA =-=+-,∴(3A +,∴((336k =⨯+=,∴当O 与ABC 的边有交点时,k 的取值范围为68k ≤≤.【点睛】本题主要考查了相似三角形的判定和性质,解直角三角形,一次函数的性质,反比例函数的性质,矩形的性质,正方形的判定和性质,轴对称的性质,圆的性质等知识点,熟练掌握其性质,合理作出辅助线是解决此题的关键.。

2024年中考语文模拟试题01(广东专用)(含解析)

2024年中考语文模拟试题01(广东专用)(含解析)

2024年中考语文模拟试题01(广东卷)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上。

用2B 铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号。

将条形码粘贴在答题卡“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、积累与运用(29分)1.默写诗文。

(共10分,答对1句得1分,满分不超过10分)(1),君子好逑。

(《诗经·关雎》)(2)晓雾将歇,。

夕日欲颓,。

(陶弘景《答谢中书书》)(3)挥手自兹去,。

(李白《送友人》)(4),。

露从今夜白,月是故乡明。

(杜甫《月夜忆舍弟》)(5)长沟流月去无声。

,。

(陈与义《临江仙·夜登小阁·忆洛中旧游》)(6)让我们走近文学,一起欣赏锦绣诗文,感受前人的精神情怀。

杜甫寄身漏雨的茅屋却为他人疾呼“,。

”(《茅屋为秋风所破歌》),济世情怀令人动容;同样心系百姓的还有白居易,他能体察卖炭翁“,。

”(《卖炭翁》)的矛盾心境,实为难得。

2.根据拼音写出相应的词语。

(4分)(1)轻捷的叫天子忽然从草间直窜向yún xiāo ()里去了。

(2)它没有婆娑的姿态,没有屈曲盘旋的qiú zhī()。

(3)如不能辨异,可令读经院哲学,盖是辈皆chuī máo qiú cī()之人。

(4)像鸟的歌唱,云的流盼,树的yáo yè()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2024年广东中考倒计时
近日,广东省教育考试院公布了2022年委托省命题地市的初中学业水平考试(下面简称为“中考”)时间安排,中考时间为6月26日至6月28日,共三天。

如下:
根据《广东省教育厅关于印发初中学业水平考试实施办法的通知》(粤教考〔2018〕12号)的要求,在充分征求各地市意见的基础上,经研究,现就2022年初中学业水平考试时间安排通知。

健康、音乐、美术、信息技术、物理、化学、生物实验操作等科目的初中学业水平考试具体时间。

由各地市根据当地实际情况自行确定。

非省级命题城市初中学业水平考试时间由相关城市自行确定。

各地要加强对考试日程的宣传解读,做好学生考试和升学指导工作,为广大考生创造安全的考试环境,全力确保初中学业水平考试安全、稳定、顺利举行。

相关文档
最新文档