无功补偿的意义及原理

合集下载

为什么要进行无功补偿?无功补偿的原理、形式详细解读

为什么要进行无功补偿?无功补偿的原理、形式详细解读

为什么要进行无功补偿?无功补偿的原理、形式是什么?终于明白了02 18原文功率因数是针对不同的负载说的,在之前的直流电时代,是没有功率因数这一说的,那时候功率因数都是1。

后来特斯拉将我们带入了交流电时代,从此以后功率因数就常常伴随着我们的身边(一般功率因数都是小于1的)。

下面就给大家讲一讲无功补偿的原理、补偿形式,供大家学习参考。

(1)为什么要进行无功补偿无功功率绝不是无用功率,在交流供电系统中,电感和电容都是必不可少的负载,如电动机、变压器等铁磁性负载,如果没有感性无功的励磁,设备无法正常工作,比如定距离送电的线路本身,就是容性负载,只要是送电当中就会相当于电容器在工作。

那么也就是说在交流供电系统中,无功的存在对能量的传输和交换有着巨大意义,不可缺少,或者说离开无功功率的交换系统就不能正常工作。

那么,大量的无功由哪里来?系统中众多的无功负载,尤其是感性无功负载,正常来讲,这些负载所吸收的无功功率是由发电厂提供的,也就是说发电机在工作时就会向系统释放有功电能,同时对感性负载提供相应的无功电能。

发电机运行时必须要保持适当的无功输出,如果没有无功输出就会对发电系统造成破坏性的影响,也就是说保护系统的无功平衡至关重要。

当系统中无功功率需求增大时,如果不在系统人为地安装无功补偿装置,发电厂要通过调相的方式来加大无功功率输出,由于发电机的容量是有限的,那么就势必要减少有功功率的输出量,也就是降低发电机的输出能力,为满足用电的要求,发电机、供电线路和变压器的容量需增大,这样不仅增加供电投资、降低设备利用率,也将增加线路损耗。

为了降低发电厂的无功供给压力,我们在供电系统中感性负载消耗较大的点投入相应的电容器来为感性负载提供无功功率,这样就极大的减轻了发电厂的无功供给压力。

用户应在提高用电自然功率因数的基础上,设计和装设无功补偿装置,并做到随其负荷和电压变动及时投入或切除,防止无功倒送。

同时将用户的功率因数达到相应的标准,以避免供电部门加收力率电费。

无功补偿在风力发电系统中的应用

无功补偿在风力发电系统中的应用

无功补偿在风力发电系统中的应用无功补偿(Power Factor Compensation)是指在电力系统中通过控制电容器或电感器的投入和退出,以提高系统的功率因数,减少无功功率的流动。

在风力发电系统中,无功补偿的应用对于优化发电效率和提高系统稳定性至关重要。

一、无功补偿的原理和作用无功补偿是为了解决电力系统中由负载引起的无功功率流动过大的问题。

当电力负载具有感性(电感)特性时,会产生无功功率的流动,降低系统的功率因数。

无功补偿通过投入电容器来补偿感性功率,提高功率因数。

在风力发电系统中,风机叶片的旋转会产生感性负载,导致无功功率的流动。

为了确保系统的稳定运行和最大限度地利用风能,必须应用无功补偿技术来平衡感性功率并提高发电效率。

二、无功补偿的应用技术在风力发电系统中,常见的无功补偿技术主要包括静态无功补偿器(SVC)和STATCOM(Static Synchronous Compensator)。

1. 静态无功补偿器(SVC):静态无功补偿器是一种通过控制电容器和电感器的投入和退出来实现无功补偿的设备。

它可以根据系统的功率因数和电压来自动调节无功功率的流动,从而提高系统的稳定性。

2. STATCOM:STATCOM是一种静态同步补偿装置,它通过控制功率半导体器件的工作方式来实现无功功率的补偿。

它可以快速响应并提供连续的无功功率调节,从而有效地保持系统电压稳定。

三、无功补偿在风力发电系统中的优势无功补偿在风力发电系统中具有以下优势:1. 提高发电效率:风力发电系统中的无功功率流动会降低整个系统的发电效率。

通过应用无功补偿技术,可以平衡感性功率,减少无功功率的流动,从而提高发电效率。

2. 保护设备:无功补偿可以减少电力系统中的无功功率流动,降低电网中的谐波干扰,保护各种设备免受电压波动和电流波动的影响。

3. 提高电网稳定性:风力发电系统作为分布式电源,对电网的稳定性有很大影响。

通过应用无功补偿技术,可以平衡感性功率,提高系统的功率因数,增强电网的稳定性。

无功补偿的作用和原理

无功补偿的作用和原理

无功补偿的作用和原理无功补偿是电力系统中的重要概念,它是指通过采用补偿设备来控制无功功率的流动,以保持电力系统的功率平衡和电压稳定。

本文将介绍无功补偿的作用和原理,以及常用的无功补偿设备。

一、无功补偿的作用无功功率是电力系统中的虚功,对电网的运行和稳定性有一定的影响。

无功补偿的作用主要表现在以下几个方面:1. 改善电力系统的功率因数电力系统的功率因数是指有功功率和视在功率的比值,用来衡量电能的有效利用程度。

功率因数低会引起电网的电压降低、电流增大、线路损耗增加等问题。

通过无功补偿,可以减小无功功率的流动,提高功率因数,从而减少电网的损耗,提高供电质量。

2. 调整电网的电压水平无功补偿设备可以根据实际需要主动投入或退出运行,调节电网的电压水平。

当电压过高时,可以通过投入无功补偿设备来吸收一部分无功功率,从而降低电压水平;当电压过低时,可以通过退出无功补偿设备来释放一部分无功功率,提高电压水平。

通过这种方式,可以保持电网的电压稳定,提高供电可靠性。

3. 抑制电网谐波和电磁干扰无功补偿设备可以对电网谐波进行滤波和衰减,减少电网谐波对其他电气设备的干扰。

此外,无功补偿设备还可以提高电网的电能质量,减少电气设备的故障率,延长设备的使用寿命。

二、无功补偿的原理无功补偿的原理主要涉及电力系统中的三个方面:功率因数、无功功率和电压。

功率因数是电力系统中有功功率和视在功率的比值,通常用功率因数角(cosφ)来表示。

当电力系统中存在感性负载时,功率因数是正值;当电力系统中存在容性负载时,功率因数是负值。

为了提高功率因数,可以通过引入合适的无功补偿设备来平衡系统中的感性负载和容性负载。

无功功率是电力系统中的虚功,通常用无功功率角(Q)来表示。

感性负载所产生的无功功率是正值,而容性负载所产生的无功功率是负值。

通过补偿设备,可以调整电力系统中无功功率的流动方向和大小,实现无功功率的消纳或释放。

电压是电力系统中的重要参数,通过无功补偿设备可以调节电网的电压水平。

无功补偿的作用及原理

无功补偿的作用及原理

无功补偿的作用及原理无功补偿是一种通过补偿电网中无功功率的不足或过剩,使其功率因数达到合理水平的技术手段。

它对于提高电网的稳定性、降低线路损耗、改善电压质量、减少电能浪费等方面起到了重要的作用。

以下将对无功补偿的作用及原理进行精辟的讲解。

无功功率是电能输送过程中所需产生的无用功率,它并不参与实际的能量转换,却负有维持电网稳定运行的重要责任。

在电能输送过程中,电流通过导线时会产生磁场,如同一辆旋转的飞轮,磁场带着电流做匀速旋转,进而造成无功功率。

显然,无功功率的存在造成了电网能量的浪费,同时也导致了电压下降、电网稳定性降低、线路损耗增加等问题。

无功补偿通过引入一定的无功电力,在电网中达到无功功率平衡,使得功率因数接近1,从而改善不平衡状态。

它主要分为容性无功补偿和感性无功补偿两种方式,其原理如下:1.容性无功补偿:容性无功补偿是通过连接并行电容器来补偿电感性负载产生的感性无功功率。

电容器的特性使其能够存储和释放电能,在电压的周期性变化过程中,通过释放存储的能量来抵消电网中的感性无功功率,从而实现功率因数的提高。

容性无功补偿主要应用于感性负载较大的场合,如电动机和变压器等,能够有效地降低电网的无功功率。

2.感性无功补偿:感性无功补偿是通过连接串联电抗器来补偿负载产生的容性无功功率。

电抗器具有阻碍电流变化的作用,当电压周期性变化时,电抗器会吸收部分电能用于克服负载的容性无功功率,从而实现功率因数的提高。

感性无功补偿主要应用于容性负载较大的场合,如电力电子装置和电动机等。

1.提高电网的稳定性:无功补偿能够抑制电网中的无功功率波动,保持电压稳定,提高电网的供电质量和可靠性。

尤其在大型电力系统中,通过无功补偿可以减小系统的稳定边界,提高系统的稳定裕度。

2.降低线路损耗:电网中存在一定的输电线路电阻和电感,由于电流通过线路时会产生电阻损耗和感性无功功率,导致线路的传输能力下降和电能损耗增加。

通过无功补偿可以减小线路中的无功功率,降低线路损耗。

无功补偿的工作原理、知识及作用

无功补偿的工作原理、知识及作用

无功补偿的工作原理、知识及作用无功补偿的工作原理、知识及作用无功补偿技术是一种有效的电力质量控制手段,它能够提高电网稳定性,减少传输线路损耗,改善电能质量,节约能源等。

本文将从三个方面来详细介绍无功补偿技术的工作原理、知识及其作用。

一、工作原理在普通交流电路中,电源通过交流电流按照正弦周期性地向负载供电。

正如你所知,电机、变压器等负载不仅需要有有功电能供应,还需要有一定量的无功电能供应。

无功电能是交流电路中存在的必不可少的电能,但它又不能像有功电能一样用来做功,只能在电路中流动和存储,因此它的存在对电力系统质量、稳定性都产生了一定的影响。

无功补偿的工作原理就是在电网中加入合适的电容、电感等装置,通过不同的相位调节,使无功电流最终流向电容、电感等负载中,从而减少了在负载中的无功功率的流失,达到了节约能源的目的。

二、知识范畴无功补偿涉及到的知识范畴非常广泛,在这里仅仅列举一些基本概念,帮助读者对无功补偿有一个大体的认识。

1. 有功电能与无功电能在电路中,有功电能是指可以被负载转换为有用功的电能,如电机,灯具等等。

而无功电能则是不能被直接转换为有用功而只能流动在线路上面的电能。

2. 电容(Capacitor)电容是一种被广泛应用在电路中的元素,它能够存储电能,同时在交流电路中,它可以用来吸收流经其上的无功电流。

3. 电抗器(Reactor)电抗器是在电路中用来添置电感的元素,能够通过面向性线圈来增大电流的阻抗值,从而限制交流电路中的电流值。

三、作用及应用1. 防止电压波动长时间交流电路会产生电压跌落和波动,而无功补偿技术正是利用电容来吸收无功功率,使交流电路中的电压波动减至最小,从而稳定电网的正常运转。

2. 消除应用负载的谐波在当今的市场上,高频电子设备等负载都会引起无功功率的增大,而无功补偿技术则可以消除电网内的一些谐波负载,从而提高电能质量。

3. 提高传输线路的运行效率由于长距离传输中无功功率的流动,会导致传输线路中出现能量损失,形成线路热,进而影响传输的效率。

无功补偿的意义及原理

无功补偿的意义及原理

四、无功补偿的意义及原理人们对有功功率的理解非常容易,而要深刻认识无功功率却并不轻而易举的.在正弦电路中,无功功率的概念是清楚的,而在含有谐波时,至今尚无公认的无功功率定义。

但是,对无功功率这一概念的重要性和无功补偿重要性的认识,却是一致的。

无功功率应包含对基波无功功率的补偿和对谐波无功功率的补偿。

无功功率对供电系统和负荷的运行都是十分重要的。

电力系统网络元件的阻抗主要是电感性的。

因此,粗略地说,为了输送有功功率,就要求送电端和受电端有一相位差,这在相当宽的范围内可以实现。

而为了输送无功功率,则要求两端电压有一幅值差,这只能在很窄的范围内实现.不仅大多网络元件消耗无功功率,大多数负载也需要消耗无功功率。

网络元件和负载所需要的无功功率必须从网络中某个地方获得。

显然,这些无功功率如果都要由发电机提供并经过长距离传送是不合理的,通常也是不可能的。

合理的方法应是在需要消耗无功功率的地方产生无功功率,这就是无功补偿。

无功补偿的作用主要有以下几点:(1)提高供用电系统及负载的功率因数,降低设备容量,减少功率损耗;(2)稳定受电端及电网的电压,提高供电质量。

在长距离输电线路合适的地点设置动态无功补偿装置,还可以改善输系统的稳定性,提高输电能力;(3)在电气化铁道等三相负载不平衡的场合,通过适当的无功补偿可以平衡三相的有功及无功负载。

(一).无功补偿的物理意义无功功率只是描述了能量交换的幅度,而并不消耗功率。

图中的单相电路就是这方面的一个例子,其负载为一阻感负载。

电阻消耗有功功率,而电感则在一周期内的一部分时间把从电源吸收的能量储存起来,另一部分时间再把储存的能量向电源和负载释放,并不消耗能量.无功功率的大小表示了电源和负载电感之间交换能量的幅度。

电源向负载提供这种功率是阻感负载内在的需要,同时也对电源的输出带来一定的影响。

下图是带有阻感负载的三相电路,为了和上图对照,假设u、R、L的参数均和上图相同,且为对称三相电路。

低压无功补偿的作用和原理

低压无功补偿的作用和原理

低压无功补偿是一种电力系统中常用的电力调节技术,它主要通过对电流的调整来改善电网的功率因数和电压质量。

其作用和原理如下:作用:1. 改善功率因数:低压无功补偿可以通过提供并吸收无功功率来改善电网的功率因数。

当功率因数低于标准值时,无功补偿设备可以注入无功功率,降低系统的无功功率,从而提高功率因数。

2. 提高电压稳定性:无功补偿设备可以通过调整电网中的无功功率来控制电压水平。

当电压低于标准值时,无功补偿设备可以注入无功功率,提高电网的电压水平,从而提高电网的稳定性。

3. 减少线路和设备的损耗:由于无功补偿可以改善功率因数,从而减少了系统中的无效功率流动,使得电网中的线路和设备的损耗减少。

原理:低压无功补偿通常采用电容器和电抗器来实现。

电容器用于提供无功功率,而电抗器用于吸收无功功率。

1. 电容器:电容器可以存储和释放电荷,当系统需要额外的无功功率时,电容器可以通过释放电荷来提供所需的无功功率。

这样可以减少系统中的无功功率需求,改善功率因数。

2. 电抗器:电抗器是一种能够吸收无功功率的装置。

当系统中存在过多的无功功率时,电抗器可以吸收部分无功功率,从而降低系统中的无功功率,改善功率因数。

低压无功补偿通常通过控制电容器和电抗器的开关状态来实现对无功功率的调节。

根据电网的需求,可以使用静态补偿装置(如电容器和电抗器组)或动态补偿装置(如STATCOM和SVC)来实现无功功率的补偿。

总的来说,低压无功补偿的作用和原理是通过调节无功功率来改善功率因数、提高电压稳定性,减少线路和设备的损耗,从而优化电力系统的运行和效率。

无功补偿的作用和原理

无功补偿的作用和原理

无功补偿的作用和原理无功补偿是电力系统中的一个重要概念,用于解决电力系统中出现的无功功率不平衡问题。

本文将介绍无功补偿的作用和原理。

一、无功补偿的作用无功功率是指在交流电路中产生和消耗无功功率的能量,它不对机械负载做功,主要表现为电感和电容元件的无功功率。

而无功功率不仅会造成电力系统中的电能浪费,还会导致电压稳定性问题。

无功补偿的作用就是调整电力系统中的无功功率,以提高电能的利用效率和电压的稳定性。

具体而言,无功补偿可以实现以下几个方面的作用:1. 提高功率因数:功率因数是指有功功率与视在功率之比。

功率因数越接近1,说明电能的利用效率越高。

通过无功补偿,可以降低系统中的无功功率,从而提高功率因数。

2. 改善电压稳定性:电力系统中的负载变化会引起电压波动,尤其是大型电动机和变压器的启动和停止会产生较大的电压波动。

通过无功补偿,可以在负载变化时调整无功功率的产生和吸收,从而保持电压在合理范围内的稳定。

3. 减少线路损耗:无功功率不仅会增加变压器和输电线路的负荷,还会导致线路电压降低,从而增加线路上的电能损耗。

通过无功补偿,可以减少线路上的无功损耗,提高电能传输的效率。

二、无功补偿的原理无功补偿的原理主要涉及到无功功率的产生和吸收,可以通过电容器和电感器来实现。

电容器是一种能够存储电能的元件,可以在电路中产生无功功率。

当电容器与电源相连接时,由于电容器具有存储电能的特性,在电源电压较高的时候,电容器会吸收电能;而在电源电压较低的时候,电容器会释放电能。

通过调整电容器的容值和连接方式,可以实现对无功功率的产生和吸收。

电感器是一种能够存储磁能的元件,可以在电路中吸收无功功率。

当电感器与电源相连接时,由于电感器具有存储磁能的特性,在电源电压较低的时候,电感器会吸收电能;而在电源电压较高的时候,电感器会释放电能。

通过调整电感器的参数和连接方式,可以实现对无功功率的吸收。

无功补偿的原理可以通过自动或手动方式实现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、无功补偿的意义及原理
人们对有功功率的理解非常容易,而要深刻认识无功功率却并不轻而易举的。

在正弦电路中,无功功率的概念是清楚的,而在含有谐波时,至今尚无公认的无功功率定义。

但是,对无功功率这一概念的重要性和无功补偿重要性的认识,却是一致的。

无功功率应包含对基波无功功率的补偿和对谐波无功功率的补偿。

无功功率对供电系统和负荷的运行都是十分重要的。

电力系统网络元件的阻抗主要是电感性的。

因此,粗略地说,为了输送有功功率,就要求送电端和受电端有一相位差,这在相当宽的范围内可以实现.而为了输送无功功率,则要求两端电压有一幅值差,这只能在很窄的范围内实现。

不仅大多网络元件消耗无功功率,大多数负载也需要消耗无功功率。

网络元件和负载所需要的无功功率必须从网络中某个地方获得。

显然,这些无功功率如果都要由发电机提供并经过长距离传送是不合理的,通常也是不可能的。

合理的方法应是在需要消耗无功功率的地方产生无功功率,这就是无功补偿。

无功补偿的作用主要有以下几点:
(1)提高供用电系统及负载的功率因数,降低设备容量,减少功率损耗;
(2)稳定受电端及电网的电压,提高供电质量。

在长距离输电线路合适的地点设置动态无功补偿装置,还可以改善输系统的稳定性,提高输电能力;
(3)在电气化铁道等三相负载不平衡的场合,通过适当的无功补偿可以平衡三相的有功及无功负载。

(一).无功补偿的物理意义
无功功率只是描述了能量交换的幅度,而并不消耗功率。

图中的单相电路就是这
方面的一个例子,其负载为一阻感负载。

电阻消耗有功功率,而电感则在一周期内的一部分时间把从电源吸收的能量储存起来,另一部分时间再把储存的能量向电源和负载释放,并不消耗能量。

无功功率的大小表示了电源和负载电感之间交换能量的幅度。

电源向负载提供这种功率是阻感负载内在的需要,同时也对电源的输出带来一定的影响。

下图是带有阻感负载的三相电路,为了和上图对照,假设u、R、L的参数均和上图相同,且为对称三相电路。

这时无功功率的大小当然也表示了电源和负载电感之间能量交换的幅度。

无功能量在电源和负载之间来回流动。

同时可以证明,各相的无功功率分量(ui r )的瞬时值之和在任一时刻都为零。

因此,也可以认为无功能量是在三相之间流动的。

这种流动是通过阻感负载进行 的。

(二)无功补偿的原理
在实际电力系统中,大部分负载为异步电动机,包括异步电动机在内的绝大部分电气设备的等效电路可看作电阻R 与电感L 串联的电路,其功率因数为 22cos L
R
R X φ=+
式中 L X L ω=
将R 、L 电路并联再接入电容C 之后,电路如下图(a )所示。

该电路的电流方程为:
c RL I I I =+
由下图的相量图可知,并联电容后电压U 与电流I 的相位差变小了,即供电回路的功率因数提高了。

此时供电电流I 的相位滞后于电压U,这种情况称为欠补偿.
图并联电容补偿无功功率的电路和相量图
(a)电路; (b)相量图(欠补偿);(c)相量图(过补偿)
若电容C的容量过大,使得供电电流I的相位超前于电压U,这种情况称为过补偿,其相量图如图(c)所示。

通常不希望出现过补偿的情况,因为这会引起变压器二次电压的升高,而且容性无功功率在电力线路上传输同样回增加电能损耗,如果供电线路电压因此而升高,还会增大电容器本身的功率损耗,使温升增大,影响电容器的寿命.
二。

增加无功补偿:
当电力网中某一点增加无功补偿量后,从该点至电源所有串接的线路及变压器中的无功潮流都将减少,从而使该点以前串接的电能损耗减少,达到了降损节电和改善电能质量的目的。

无功补偿对于需要集中补偿的可按无功经济当量来选择补偿点和补偿容量,对于用电客户可按提高功率因数的原则进行无功补偿,补偿分布首先考虑调压的要求,闭免无功长距离传输,补偿设备的配置要按照“分级补偿,就地平衡”的原则进行规划,就是要做到那里有无功负荷就在那里安装无功补偿装置,但要考虑它的经济性,
无功补偿通常不希望出现过补偿,因为这样会使变压器二次电压升高且容性无功功率在电力线路上传输同样会增加电能损耗,也就是用电设备倒送无功功率到电网,这种情况绝大多数是电网无功过剩引起的,它可能将对电网造成过电压的危害,这样就要求安装电抗器,就进吸收无功,但还是要考虑经济投资.在电力系统中,无功要保持平衡,否则,将降低系统的电压下降,严重时,会导致设备损坏,系统解列.此外,网络的功率因数和电压的降低,使电气设备得不到充分利用,促使网络传输能力下降,损耗增加。

因此,解决好网络补偿问题,对改善电压质量、提高功率因数及降低系统损耗和提高系统供电效率有极为重要的意义。

下面对无功作一介绍:
电力系统中的无功损耗,主要包括变压器中的无功功率损耗、输电线路上的无功功率损耗、晶闸管控制电路中吸收的无功功率及感性无功补偿设备所吸
收的无功功率等。

一。

电力系统中的无功负荷及无功损耗:
1.变压器中的无功功率损耗包括两部分:
(1)励磁支路上的无功功率损耗,基本上可以认为是与变压器负荷无
%)相等,关的空载损耗,数值上约与变压器空载电流的百分数(I
其值约为1%—2%。

(2)绕组漏抗中的无功损耗与变压器的负荷有关,当变压器为额定负
%)相等其值为10%。

荷时,约与短路电压的百分数(U
S
Y接法时:线电压U=线电压3U。

线电流I=相电流I。

接法时:线电压U=相电压U。

线电流I=相电流3I。

变压器中的漏抗比电阻大很多。

空载损耗只与加在它上的电压及容量有关,空载损耗指铁芯损耗。

负载损耗又称短路损耗,指绕组中的损耗,它与负荷有关,当变压器通过负荷时有功功率损耗等与绕组中的铜耗,无功功率等于绕组中的漏抗损耗。

2。

输电线路中的无功功率损耗也包括两部分:
(1)串联电抗中消耗的无功功率,与线路中负荷电流的平方成正比,呈
感性。

由于线路电抗远大于电阻,因此线路上的无功功率损耗比有功损
耗大。

(2)联电纳中消耗的无功功率,又称充电功率,与线路电压的平方成正比,呈容性。

(3)感性无功补偿设备所吸收的无功功率主要是指为补偿系统中过剩的容性无功功率而设置的并联电抗器所吸收的无功功率,与电
压的平方成正比。

如在高压原距离输电线路上,用以吸取轻载或
空载线路上过剩的感性无功功率,可以降低过过电压.
输电线路在35kv及以下可不计输电线路电纳和电导的影响Z=R+Jx 在110kv及以上L〉300km时则需要考虑电阻,电抗,电纳,电导,的分布参数特性。

电阻:由于导线上通过的电流与导线材料、截面、和温度有关则导线电阻有:
(1)导线基本恒定分量
(2)导线发热阻抗
(3)导线周围空气温度的影响
电抗:交流电流在其导线内部和外部产生交变磁场,引起的导线内部的交变
磁场与自感有关,引起的外部不仅与交变磁场有关还与尺寸、排列方
式、和相间距离及分裂跟数有关。

由于导线互感不等,个相中电抗数
值不等,影响输送容量,故需要换位。

电导:线路除(空气电离有关的有功损耗—电晕损耗)外还与(沿线绝缘子
泄漏电流所致有功损耗和绝缘子介质中的有功损耗)有关,及这类有
功损耗在线路等效电路中用电导表示.35kv 以下不考虑电导的影响,
110kv 中因选用导线截面总大于电晕出现最大截面,故也不考虑,绝
缘子产生的泄漏损耗一般按线路损耗的20%计算.
电纳:是由导线间的电容及导线对地电容所决定的
(1)如用分裂导线的,电阻用分裂导线等效半径Re 代替.
(2)一般可粗略地认为km s b /107.260-⨯=
(3)在同一杆塔的双回路电纳为单回路的一倍.
(4)电纳使线路中产生一个超前电压090的容性电流,在线路无负载
时任有电容电流通过。

(5)线路电纳在110kv 及以上超高压电力网中才考虑在及以下可忽略
不计。

3。

用电设备中主要的异步电动机吸收的无功功率与负载大小有关,一般满载时功率因数约为0。

7-0。

9,轻载运行时会降低。

相关文档
最新文档