双样本异方差假设
异方差性的概念、类型、后果、检验及其修正方法含案例

Yi和Xi分别为第i个家庭的储蓄额和可支配收入。
在该模型中,i的同方差假定往往不符合实际情况。对高收 入家庭来说,储蓄的差异较大;低收入家庭的储蓄则更有规律 性(如为某一特定目的而储蓄),差异较小。
因此,i的方差往往随Xi的增加而增加,呈单调递增型变化 。
– 在选项中,EViews提供了包含交叉项的怀特检验“White Heteroskedasticity(cross terms)”和没有交叉项的怀特检 验“White Heteroskedasticity(no cross terms)” 这样两个 选择。
• 软件输出结果:最上方显示两个检验统计量:F统计 量和White统计量nR2;下方则显示以OLS的残差平 方为被解释变量的辅助回归方程的回归结果。
随机误差项具有不同的方差,那么: 检验异方差性,也就是检验随机误差项的方差与解
释变量观测值之间的相关性及其相关的“形式”。 • 各种检验方法正是在这个共同思路下发展起来的。
路漫漫其修远兮, 吾将上下而求索
问题在于:用什么来表示随机误差项的方差? 一般的处理方法:
路漫漫其修远兮, 吾将上下而求索
2.图示检验法
路漫漫其修远兮, 吾将上下而求索
3.模型的预测失效
一方面,由于上述后果,使得模型不具有良好的统计性质;
【书上这句话有点问题】
其中 所以,当模型出现异方差性时,Y预测区间的建立将发生困 难,它的预测功能失效。
路漫漫其修远兮, 吾将上下而求索
三、异方差性的检验(教材P111)
1.检验方法的共同思路 • 既然异方差性就是相对于不同的解释变量观测值,
(注意:其中的2完全可以是1)
F检验

(&)按“确定”,则结果输出到从 3- 单元格开始的一些区域 中,见表%。
" 双样本方差齐性的" 检验
的!检在验进之行万前双方,样要数本先据等判方断差两假样设本的的!总检体验方或差者是双否样相本等异,若方两差样假本设
单击“工具”菜单中的“数据分析”命令可以浏览已有的分析
工具。如果在“工具”菜单上没有“数据分析”命令,应在“工具”
菜单上运行“加载宏”命令,在“加载宏”对话框中选择“分析工具
库”。! 检验分析 可 根 据 情 况 选 择:平 均 值 的 成 对 两 样 本 分 析、 双样本等方差假设分析和双样本异方差假设分析。
! 成对数据的!检验 当观察值存在成对关系时,例如对一个样本的实验前后进
行了两次检测,应使用配对!检验。 例!:应用克矽 平 治 疗 矽 肺 患 者 !" 名,治 疗 前 后 血 红 蛋 白
的含量(克:),见表 !。问该药是否会引起血红蛋白的变化? 计算方法是:
表! !"例患者治疗前后的血红蛋白值(克:)
选中此项:如果输入区域没有标志项,01234将在输出表中生成 适宜的数据标志,这里选中此项。
表! 双样本等方差时的$检验结果
项目
心肌梗死患者
健康人
平均 方差 观测值 合并方差 假设平均差
%# $&$’$ "((!/$)单尾 $ 单尾临界 "((!/$)双尾 $ 双尾临界
"$%"& )$%(*’++++&
(!)将“心梗者”输入 3! 单元格作为标志,其 @AB$"型测 定值输入 1!<=! 单元格;
Excel中双样本t检验之等方差异方差假设

Excel 中双样本t 检验之等方差异方差假设成组资料(非配对资料)的t 检验,是生物统计中必须掌握的基本技能贮备之一。
在Excel 完全安装情况下,加载“分析工具库”,之后会在菜单上出现“数据分析”选项,我们会发现“分析工具”中有两个选项,分别是:“t 检验:双样本等方差假设”、“t 检验:双样本异方差假设”。
那么,对于成组资料t 检验,什么时候用等方差,什么时候用异方差呢?最好的办法就是进行“F 检验 双样本方差”齐性检验。
如果通过检验,两个样本方差差异不显著,则选用“t 检验:双样本等方差假设”,如果两样本方差差异显著,则选用“t 检验:双样本异方差假设”。
例:有人曾对公雏鸡作了性激素效应试验。
将22只公雏鸡完全随机地分为两组,每组11只。
一组接受性激素A (睾丸激素)处理;另一组接受激素C (雄甾烯醇酮)处理。
在第15天取它们的鸡冠个别称重,所得数据如下表。
题解:在excel 中录入数据,在菜单“数据分析”中,选择“F 检验 双样本方差”,选择A1:A12”所在区域为“变量1的区域”,选择“B1:B12”区域为“变量2 的区域”。
勾选标志“a (A )”,默认为0.05,在输出区域中随便找一个单元格(如单元格D1), “确定”(见图1)。
图1 双样本方差的F-检验图2 t-检验:双样本等方差假设检验 从上图可以看出,p=0.4452221﹥0.05,表示激素A 与激素C 的对应的鸡冠,方差差异不显著。
换言之,就是样本A 与样本B 为等方差,在t 检验时,就选择“t 检验:双样本等方差假设”,得到图2结果。
从图2输出结果可以看出,t检验的结果是p=0.003000143﹤0.01,表明差异极显著。
也就是说,激素A 处理的鸡冠重(97mg )极显著地高于激素C 处理的鸡冠重(56mg )。
目前不管是本科教材,还是高职高专教材,生物统计仍是以公式手动计算为主,所采用的基本都是按照“t 检验:双样本等方差假设”,而且很多资料也表示,如果双样本都来源于同一总体,可以采用“t 检验:双样本等方差假设”。
计量经济学-第五章-异方差讲解

MY=MX+Mu 取 Y* = M Y, X * = M X, u* = M u , 上式变换为 Y* = X* + u* 则 u* 的方差协方差矩阵为 Var(u*) = E(u* u*' ) = E (M u u' M ' ) = M 2 M ' = 2 M M ' = 2 I 对变换后模型进行 OLS 估计,得到的是 的最佳线性无偏估计量。 这种估计方法称作广义最小二乘法。 的广义最小二乘 (GLS) 估计量定义为 ˆ (GLS) = (X*' X*)-1 X*' Y* = (X 'M ' M X ) -1 X ' M 'M Y = (X ' -1X) -1 X ' -1Y
6. 0E+ 11
4. 0E+ 11
2. 0E+ 11
0. 0E+ 00 80 82 84 86 88 90 92 94 96 98 00 02
28.0 LNGDP OF PHILIPPIN
27.5
27.0
26.5
26.0
25.5
25.0 80 82 84 86 88 90 92 94 96 98 00 02
(2) 利用散点图做初步判断。
(3) 利用残差图做初步判断(以解释变量为横坐标,残差平方ຫໍສະໝຸດ 为纵坐标)。7 Y
6 5 4 3 2
3 Y
2
1
0
-1
1
0 20 40 60 80 100 120 140 160 180 200
-2
异方差——精选推荐

异方差问题1.什么是异方差?i ki k i i i u X X X Y +++++=ββββ 22110,ni ,,2,1 =221),,|(i i i i X X u Var σ= ,n i ,,2,1 =或者 2)(i i u V a r σ=,n i ,,2,1 =同方差异方差2.异方差性的两个例子⏹收入与储蓄⏹打字出错个数与打字练习小时数3.异方差的类型同方差递增方差4.异方差性的后果(1)OLS 估计量仍然具有线性性和无偏性 证明:我们以一元线性回归模型为例来证明。
∑∑∑∑∑∑+-++=-==21010221)]()[()(ˆii i i i i i i i i ΔX X u X ΔX ΔX Y Y ΔX ΔX ΔY ΔX βββββ ∑+=i i u k 1β,其中∑=2iii ΔX ΔX k 。
⏹ 证明无偏性时只使用到两个假设:解释变量是外生的,误差的均值为零 ⏹下面证明OLS 估计量方差在同方差与异方差情况下不相等。
当假设为同方差时,1ˆβ的方差为 )var()var()ˆvar(11∑∑=+=i i i i u k u k ββ (由随机扰动项的无自相关性假设) ∑∑==)var()var(2i i i i u k u k (由同方差假设)∑∑∑∑=⎥⎥⎦⎤⎢⎢⎣⎡==22222222)(ii i iΔXΔX ΔX k σσσ当方差为异方差是,1ˆβ的方差为 ∑∑==2221)var()ˆvar(i i i i k u k σβ 22222222)()()(∑∑∑∑=⎥⎥⎦⎤⎢⎢⎣⎡=i i i i i i ΔX ΔX ΔX ΔX σσ (2)变量的显著性检验失去意义说明:如果在存在异方差的情况下,仍然使用常用的OLS 估计量表达式,则计算得到的方差通常是有偏的。
由于t 统计量和F 统计量的表达式中都包含样本标准差,因此计算得到的t 统计值和F 统计值都是有偏误的,则建立在其上的假设检验也是不可靠的。
两样本假设检验

两样本假设检验两样本_统计信息化——Excel与SPSS应用在实际工作中,常常要比较两个总体之间是否存在较大差异,两样本假设检验就是按照两个来自不同总体的样本数据,对两个总体的均值是否有显著差异举行判断。
两个总体均值之差的三种基本假设检验形式如下:双侧检验H0:μ1-μ2=0,H1:μ1-μ2≠0;左侧检验H0:μ1-μ2≥0,H1:μ1-μ2<0;右侧检验H0:μ1-μ2≤0,H1:μ1-μ2>0。
在Excel中,可用于两样本假设检验的工具有四种:【z-检验:双样本平均差检验】、【t-检验:双样本等假设】、【t-检验:双样本异方差假设】、【t-检验:平均值的成对二样本分析】。
【z-检验:双样本平均差检验】、【t-检验:双样本异方差假设】、【t-检验:双样本等方差假设】这三种分析工具用于两个自立样本的假设检验。
两个自立样本假设检验的前提要求:一是两组样本应是互相自立的,即从一个总体中抽取样本对从另一个总体中抽取样本没有任何影响,两组样本的样本单位数目可以不同,样本单位挨次可以任意调节;二是样本的总体应听从。
下面针对【z-检验:双样本平均差检验】、【t-检验:双样本等方差】、【t -检验:双样本异方差检验】检验分离举行解释。
5.2.4.1 【z-检验:双样本平均差检验】【z-检验:双样本平均差检验】适用于自立样本,样原来源态总体,且方差已知这种状况。
以例5.7为例,解释操作步骤及运算结果。
例5.7 某企业生产飞龙牌和喜达牌两种保温容器,按照过去的资料,知其保温时光的方差分离为1.08h和5.62h。
现各抽取5只作为样本,测得其保温时光(h)如下:飞龙牌 49.2 48.8 46.8 47.1 48.5喜达牌 46.8 44.2 49.6 45.1 43.8要求对两种保温容器的总体保温时光有无显著差异举行检验。
(1)打开或建立数据文件按图5-12所示,在A1:B6输入数据。
(2)调用【z-检验:双样本平均差检验】对话框鼠标单击【数据(T)】→【分析】中的【数据分析(D)】,在弹出的【数据分析】对话框中,挑选【z -检验:双样本平均差检验】,然后单击【确定】按钮,则显示【z-检验:双样本平均差检验】对话框,5-11所示。
统计学实验报告

统计学实验报告姓名:田媛学号:20092771 班级:营销0901 成绩:一、实验步骤总结:成绩:实验一:数据的搜集与整理1.数据收集:(1)间接数据的搜集。
有两种方法,一种是直接进入网站查询数据,另一种是使用百度等搜索引擎。
(2)直接数据的搜集。
直接统计数据可以通过两种途径获得:一是统计调查或观察,二是实验。
统计调查是取得社会经济数据的最主要来源,它主要包括普查、重点调查、典型调查、抽样调查、统计报表等调查方式。
2.数据的录入:数据的录入是将搜集到的数据直接输入到数据库文件中。
数据录入既要讲究效率,又要保证质量。
3.数据文件的导入:Excel数据文件的导入是将别的软件形成的数据或数据库文件,转换到Excel工作表中。
导入的方法有二,一是使用“文件-打开”菜单,二是使用“数据-导入外部数据-导入数据”菜单,两者都是打开导入向导,按向导一步步完成对数据文件的导入。
4.数据的筛选:数据的筛选是从大数据表单中选出分析所要用的数据。
Excel中提供了两种数据的筛选操作,即“自动筛选”和“高级筛选”。
5.数据的排序:Excel的排序功能主要靠“升序排列”(“降序排列”)工具按钮和“数据-排序”菜单实现。
在选中需排序区域数据后,点击“升序排列“(“降序排列”)工具按钮,数据将按升序(或降序)快速排列。
6.数据文件的保存:保存经过初步处理的Excel数据文件。
可以使用“保存”工具按钮,或者“文件-保存”菜单,还可以使用“文件-另存为”菜单。
实验二:描述数据的图标方法1.频数频率表:(一)Frequency函数使用方法举例:假设工作表里列出了考试成绩。
这些成绩为79、85、78、85、83、81、95、88 和97,并分别输入到单元格A1:A9。
这一列考试成绩就是data_array。
Bins_array 是另一列用来对考试成绩分组的区间值。
在本例中,bins_array 是指C4:C6 单元格,分别含有值70、79 和89。
双样本假设检验

组别 测 查 成 果
1
78
2
80
1
71
2
76
1
75
2
85
1
85
组别 测 查 成 果
1
78
1
71
2
80
2
76
1
75
1
85
2
85
组别 测 查 成 果
1
78
1
75
1
86
1
71
1
85
1
90
1
78
经过分 组变量旳设 定决定数据 在统计过程 中旳所属。
事物前后变化情况有四种
变化前
— +
变化后
— A B
A:前后不具有某种属性或不产生某种行为 + B:前具有某种属性或有某种行为但变化后没有 C C:前无某属性或无某种行为但变化后有 D D:前后都具有某种属性或者产生某种行为
结论:假如A与D旳情况诸多,阐明事前事后没有变化,所施加旳促变条件不起作用。 假如C旳情况诸多,阐明变化原因产生了明显旳增进作用。 假如B旳情况诸多,阐明变化原因产生了明显旳克制作用。
等级差 +1 +2 -2 +6 +1 -3 +2 +2 -4 -3
Frequencies
AFTER - FIRST
Negative Differencesa Positive Differencesb Tiesc
Total
a. AFTER < FIRST
b. AFTER > FIRST
c. FIRST = AFTER
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双样本异方差假设
双样本异方差假设是针对两个样本的方差不相等而提出的假设。
在统计学中,假设检验是一种用于通过搜集数据并对其进行分析来验证一个假设的方法。
双样本异方差假设是一个常见的假设之一,它可以用来确定两个不同组的平均值是否显著差异。
双样本异方差假设通常用于处理两个群体的数据。
例如,一个新的药物正在开发,研究人员需要确定该药物是否对患有某种疾病的患者有效,因此可以将患者随机分为两组,一组接受新药治疗,另一组接受传统的治疗方案。
这两个组在初始条件方面可能存在差异,如年龄、性别、病史等。
为了确定新药物是否有效,需要对两组数据进行分析。
假设两组数据存在方差不相等的情况,应该采用双样本异方差假设,该假设需要满足以下条件:
1.两组数据是独立的,互不影响。
2.两组数据分布符合正态分布。
3.两组数据的方差不相等。
在进行假设检验时,必须设立一个零假设和备择假设。
对于双样本异方差假设,零假设可以表示为:两个群体的平均值相等。
而备择假设可以表示为:两个群体的平均值不相等。
完成假设检验后,得到的结果通常是一个p值。
如果p值小于
显著性水平(通常是0.05),则可以拒绝零假设。
这意味着两个群体的平均值存在显著差异,可以通过统计显著性来证明。
总之,双样本异方差假设是一种在研究两个群体是否有显著差异时非常有用的统计技术。
通过正确地设置假设并进行显着性检验,可以得出结论并推动研究进一步发展。