小学数学应用题分类

合集下载

小学数学典型应用题归类总结(30种)

小学数学典型应用题归类总结(30种)

小学数学典型应题归类总结(30种)1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1、买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例2、 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。

例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送10吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。

2 、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

小学数学应用题21种类型总结

小学数学应用题21种类型总结

小学数学应用题21种类型总结以下是一些小学数学常见的应用题类型总结:1. 长度问题:例如给出一段线段的长度,计算另一段线段的长度。

2. 运算问题:例如给出一组数字,进行加减乘除运算。

3. 相等问题:例如给出一组数字,找出相等的数字,或者给出几个相等的数字,找出缺失的数字。

4. 比较问题:例如给出两个数,比较大小或者找出其中较大/较小的数。

5. 分配问题:例如将一组物品平均分配给一些人,计算每个人能分到多少。

6. 比例问题:例如给出一组物品的比例关系,计算另一组物品的数量。

7. 时钟问题:例如给出时钟的时间,计算经过一段时间后的时间。

8. 面积问题:例如给出一个图形的面积,计算另一个图形的面积。

9. 体积问题:例如给出一个物体的体积,计算另一个物体的体积。

10. 距离问题:例如给出两个地点之间的距离,计算另两个地点之间的距离。

11. 速度问题:例如给出一个物体的速度和时间,计算它经过的距离。

12. 天气问题:例如给出一些天气数据,计算平均温度或者最高/最低温度。

13. 日期问题:例如给出一个日期,计算几天后/几天前的日期。

14. 货币问题:例如给出一些货币的面值和数量,计算总价值。

15. 数字问题:例如给出一些数字,按照一定规则进行排列或者解码。

16. 数列问题:例如给出一些数字,找出它们的规律或者下一个数字。

17. 百分比问题:例如给出一个数,计算它的百分之几或者多少是另一个数的百分之几。

18. 逻辑问题:例如给出一些条件,判断哪些条件成立或者给出一些条件,判断是否满足某个条件。

19. 单位换算问题:例如给出一个单位的数量,将它转换为另一个单位的数量。

20. 几何问题:例如给出一个图形的属性,计算另一个图形的属性。

21. 拼图问题:例如给出一些形状的拼图,找出缺失的形状。

小学五年级数学应用题4大类

小学五年级数学应用题4大类

小学五年级数学应用题4大类在小学五年级的数学学习中,数学应用题是不可避免的一部分。

数学应用题可以帮助学生将所学的知识应用到实际生活中,提高解决实际问题的能力和素养。

在小学五年级的数学学习中,数学应用题大致可分为以下四类。

1. 按比例分配类数学应用题按比例分配类数学应用题是小学五年级数学学习中较为基础的一类应用题。

这类应用题包括了人数分配、面积分配、金钱分配等方面的题目,主要的解题思路是根据比例关系,计算出每份的具体数值。

例如,小明、小李、小刚三个孩子共有20个糖果要分配,按照他们各自的比例分配,问小明能分得几颗糖果?这个问题的解法是:先计算出小明、小李、小刚三人所分得的糖果数之和,再根据小明所占总比例分配他应得的糖果数。

2. 寻找规律类数学应用题寻找规律类数学应用题是小学五年级数学学习中需要培养的一种思维能力。

这类应用题包括了数字推理、图形推理、式子推理等方面的题目,主要的解题思路是观察现象,发现规律,进而应用规律解决问题。

例如,已知数列2、4、6、8、10……,求第50个数是多少?这个问题的解法是:根据数列的规律,每个数是前一个数加2,因此可以得到第50个数是2+2×49=100。

3. 运用逻辑类数学应用题运用逻辑类数学应用题是小学五年级数学学习中需要培养的一种思维能力。

这类应用题包括了谋略类问题、排列组合问题、条件限制问题等方面的题目,主要的解题思路是运用逻辑思维,将问题转化为计算机程序来思考。

例如,7个人参加篮球比赛,其中必须选出5人参赛,问有多少种不同的参赛方案?这个问题的解法是:将选出5人参赛的过程转化为从7个人中选出5个人的组合数,即C(7,5)=21种方案。

4. 运用空间想象类数学应用题运用空间想象类数学应用题是小学五年级数学学习中需要培养的一种思维能力。

这类应用题包括了图形转化、立体几何、空间数字问题等方面的题目,主要的解题思路是靠想象力在三维立体空间中运用几何知识解决问题。

小学五年级上期数学应用题分类汇总

小学五年级上期数学应用题分类汇总

应用题总汇植树问题:两端都栽:棵数=全长÷间隔长+1 (相当于公交站问题和楼梯问题)线形一端栽:棵数=全长÷间隔长两端都不栽:棵数=全长÷间隔长-1 (相当于锯木料问题和绳打结问题) 封闭图形植树棵数=全长÷间隔长(四边形,三角形,五边形等都是封闭图形) N边形植树棵数=每边植树总棵数-N 面积植树棵数=面积÷(棵距×行距)实心方阵=边长棵数²1、长在一条全长24千米的街道两旁设公交车站,每隔800米设一站.一共要设多少个车站?2、广场上的大钟5时敲响5下,8秒钟敲完。

12时敲响12下,需要多长时间?3、马拉松比赛平均每3千米设置一处饮水服务点(起点不设,终点设),一共设了15个饮水点,马拉松比赛全程多少千米?4、笔直的跑道两旁插着51面小旗,它们的间隔是2米.现在要改为只插26面小旗,间隔应改为多少米?5、把长2米的绳子接成一根长绳,一共打了12个结,你知道这根长绳多少米吗?6、有4根根木料,打算把每根锯成5段,每锯开一处,需要用7分钟,全部锯完需要多长时间?7、迎接六一儿童节,学校举行团体操表演,四年级学生排成下面的方阵.最外层每边站了25个人,最外层一共有多少名学生,整个方阵一共有多少名学生?8、公园里举办菊花展览,园艺师现在一个周长为50米的圆形喷泉边上每隔5米摆放一盆粉紫色的菊花;又在一条长为100米的迎宾大道两旁从头到尾每隔10米摆放一盆白色的菊花;每两盆白色菊花之间,又每隔2米摆放一盆黄色的菊花。

算出粉紫色、白色,黄色的菊花各有多少盆?相遇问题:(题中:两运动的物体同时相向而行,在途中相遇)(甲速+乙速)×相遇时间=总路程1、两艘军舰同时从相距948千米的两个港口对开.一艘军舰每时行38千米,另一艘军舰每时行41千米.经过几时两艘军舰可以相遇?2、小林和小云家相距4.5km。

早上9点分别从家以每分250米和分分200米相向而行。

小学数学常考的10种应用题类型_考前必看

小学数学常考的10种应用题类型_考前必看

小学数学常考的10种应用题类型_考前必看今天小编给大家带来小学数学常考的10种应用题类型,希望可以帮助到大家。

一、归一问题1.含义在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

2.数量关系总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数3.解题思路和方法先求出单一量,以单一量为标准,求出所要求的数量。

例1买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解:(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解:(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。

例35辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。

二、归总问题1.含义解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

人教版3年级上册数学四种应用题

人教版3年级上册数学四种应用题

人教版3年级上册数学四种应用题一、题型及特点人教版3年级上册数学共包含四种应用题,分别是加法应用题、减法应用题、乘法应用题和除法应用题。

这些应用题均贴近学生的日常生活,内容简单直观,能够帮助学生将数学知识与实际生活相结合,培养他们的逻辑思维能力和解决问题的能力。

二、加法应用题加法应用题主要是让学生通过实际问题的描述,运用加法原理解决问题。

其中,题目的特点如下:1、题目主要以日常生活中的例子为背景,例如购物、运动比赛等,让学生更容易理解。

2、加法式子的形式简单易懂,常为“数字+数字=结果”的形式,方便学生掌握。

3、通过加法应用题,能够帮助学生培养逻辑思维能力,提高他们的观察和解决问题能力。

三、减法应用题减法应用题主要是让学生通过实际问题的描述,运用减法原理解决问题。

题目的特点如下:1、题目仍以日常生活中的例子为背景,例如买东西找零、体育比赛中的排名等,让学生更容易理解。

2、减法式子的形式简单易懂,常为“数字-数字=结果”的形式,方便学生掌握。

3、通过减法应用题,能够帮助学生巩固减法的基本原理,培养他们的逻辑思维能力和解决问题的能力。

四、乘法应用题乘法应用题主要是让学生通过实际问题的描述,运用乘法原理解决问题。

题目的特点如下:1、题目仍以日常生活中的例子为背景,例如分组、购物计算等,让学生更容易理解。

2、乘法式子的形式也是以“数字*数字=结果”的形式呈现,方便学生理解和掌握。

3、通过乘法应用题,能够帮助学生理解乘法的基本原理,培养他们的逻辑思维能力和解决问题的能力。

五、除法应用题除法应用题主要是让学生通过实际问题的描述,运用除法原理解决问题。

题目的特点如下:1、题目仍以日常生活中的例子为背景,例如分苹果、分糖果等,让学生更容易理解。

2、除法式子的形式一般以“数字/数字=结果”的形式呈现,让学生理解除法运算的基本原理。

3、通过除法应用题,能够帮助学生巩固除法的基本原理,培养他们的逻辑思维能力和解决问题的能力。

小学三年级数学应用题分类及解法

小学三年级数学应用题分类及解法

小学三年级数学应用题分类及解法一、引言小学三年级是学生们开始接触数学应用题的初始阶段。

这一阶段的学习对于学生来说至关重要,因为它不仅为学生打下了数学基础,还培养了他们解决问题的能力。

本文将数学应用题分为几类,并给出相应的解题方法。

二、分类1、计算类应用题:这类应用题主要考察学生的计算能力,如加减乘除、分数、小数等。

例如:“小明有5个苹果,小红有3个苹果,他们一共有多少个苹果?”这类问题的解决方法主要是通过正确的计算步骤得出答案。

2、比较类应用题:这类应用题通过比较两个或多个数量或数值来考察学生的比较能力。

例如:“一斤苹果的价格是5元,一斤香蕉的价格是3元,哪种水果更便宜?”解决这类问题,学生需要掌握比较的方法,并能够确定哪个数量或数值更大或更小。

3、图形类应用题:这类应用题通过图形或几何问题来考察学生的空间观念和推理能力。

例如:“一个长方形的长是5厘米,宽是3厘米,请问这个长方形的面积是多少?”解决这类问题,学生需要理解图形的性质和相关的几何公式。

4、逻辑推理类应用题:这类应用题通过一系列的信息或条件,要求学生推断出某种结论或结果。

例如:“在1,2,3,4,5,6,7,8,9中,不重复的三个数字可以组成一个三位数,请问有多少种可能的组合方式?”解决这类问题,学生需要运用逻辑推理的能力,从给定的信息中推导出正确的答案。

三、解题方法对于每一类应用题,我们都有相应的解题方法:1、计算类应用题:首先要理解题目中的数学表达式或方程,然后使用正确的计算步骤得出答案。

如果遇到困难,可以重新阅读题目或寻求帮助。

2、比较类应用题:首先需要确定哪个数量或数值更大或更小,然后通过比较得出答案。

如果遇到困难,可以重新阅读题目或寻求帮助。

3、图形类应用题:首先需要理解图形的性质和相关的几何公式,然后使用这些公式来解决问题。

如果遇到困难,可以借助模型或重新阅读题目。

4、逻辑推理类应用题:首先需要仔细阅读题目,理解所有的信息和条件,然后使用逻辑推理的方法得出答案。

小学数学典型应用题归纳总结汇总30种题型

小学数学典型应用题归纳总结汇总30种题型

小学数学典型应用题归纳汇总30种题型1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

2 归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。

原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米? 3.2×791=2531.2(米)(2)现在可以做多少套?2531.2÷2.8=904(套)列成综合算式 3.2×791÷2.8=904(套)答:现在可以做904套。

3 和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。

例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

归一问题1、一个豆腐加工场用96千克黄豆做了384千克豆腐。

那么,120千克黄豆可做豆腐多少千克?2、小敏看一本故事书,3天看了36页,看108页要多少天?3、机床厂原计划20天制造240台机器,实际每天比原计划多制造5台,实际每天制造多少台?4、一个加工厂加工面粉500千克,3小时加工了150千克,加工完剩下的还要几小时?5、一项工作,8个人12小时可以完成,如果增加4个人,每人的工作效率相同,可以提前多少天完成?6、5个同学一共折了40只飞机,又有16人加入我们的小组,一共可以折几只?7、亮亮5分钟做了60道口算题,18分钟可以做几道?做144道要多少分钟?8、修一条长5千米的公路,3天修了1500米,共要几天?9、安装一条水管,头4天装了180米,还要15天可装完,这条水管总长多少米?10、铺设一条1500米和管道,5天铺了300米,还要几天可以铺完?11、两台拖拉机3天耕地18公顷,照这样计算,要在9天耕完81公顷地,要几台这样的拖拉机?12、民兵军训,4小时走16千米,为了达到目的地,每小时多走1千米,剩下的20千米要几小时?13、一项工作,16人25天可完成,如果增加4人,可以提前几天完成?14、3个工人4小时做了360个零件,那么5个工人6小时能做多少个零件?15、小军买5个练习本和1支圆珠笔用去5元6角,小明买同样的练习本8本和1支圆珠笔用了8元钱。

一本练习本多少钱?一支圆珠笔多少钱?16、一只青蛙一周吃525只害虫,照这样计算,一只青蛙七、八两个月能吃多少只害虫?归总问题1、一篇文章,编辑设计了几种排版方案.如果每页排200个字,需要排30页,如果每页增加50个字,需排多少页?2、同学们做广播操,每行站16人,正好站5行.如果站4行,每行站多少人?3、李老师带了一笔钱到体育用品商店,如果买单价是45元的篮球正好可以买20只,他想买8只单价是120元的足球,他带的钱够不够?4、王师傅加工一批零件,原计划每小时做45个,18小时完成,而实际只用了15小时就完成了,问:王师傅实际每小时比计划多做几个零件?5、用一批布料制作儿童服装,一条裤子用布0.8米.一件上衣比一条裤子多用布0.2米,如果全部做裤子,可以做150条.如果全部做上衣,可以做多少件?如果全做套装,最多能做几套.还剩多少布料?6、一篇文章原稿有10页,每页30行,每行28个字;如果改排成每页24行,每行25个字,这篇文章要排多少页?7、一种遥控车原来每辆160元.降价后,原来买6辆遥控车的钱现在可以多买4辆.降价后每辆遥控车多少元?8、三(1)班分学习小组,如果每组4人,可以分15组,如果每组分6人,可以分几组?9、奶糖每袋千克,每千克15元.酥糖每袋千克,每千克12元.用买16袋奶糖的钱买酥糖,可以买多少袋?10、某品牌酸奶原价每盒4.5元,五一节期间进行特价促销活动,每盒3元.原来买10盒酸奶的钱在促销期间能买多少盒?11、粮店里30袋大米的质量相当于50袋面粉的质量.每袋大米重25千克.每袋面粉重多少千克?12、王明做口算题,每分钟做18道,6分钟做完.如果每分钟做27道,那么几分钟可以做完?和差问题1.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种果树各有多少棵?2.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?3.用锡和铝制成500千克的合金,铝的重量比锡多100千克,锡和铝各是多少千克?4. 某工厂去年与今年的平均产值为96万元,今年比去年多10万元,今年与去年的产值各是多少万元?5.甲、乙两个学校共有学生1245人,如果从甲校调20人去乙校后,甲校比乙校还多5人,两校原有学生各多少人?6.三个物体平均重量是31千克,甲物体比乙、丙两个物体重量之和轻1千克,乙物体比丙物体重量的2倍还重2千克,三个物体各重多少千克?7.甲、乙两个工程队共有1980人,甲队为了支援乙队,抽出285人加入乙队,这时乙队人数还比甲队少24人,求甲、乙两队原有工人多少人?8.四年级有三个班,如果把甲班的1名学生调整到乙班,两班人数相等;如果把乙班1名学生调到丙班,丙班比乙班多2人,问甲班和丙班哪班人数多?多几人?9.某农民种玉米、谷子和棉花共148公亩,种的玉米比谷子多21公亩,种的棉花比玉米少32公亩,三种作物各种了多少公亩?10.小宁与小芳今年的年龄和是28岁,小宁比小芳小2岁,小芳今年多少岁?11.小敏和他爸爸的平均年龄是29岁,爸爸比他大26岁。

小敏和他爸爸的年龄各是多少岁?12.小兰期末考试时语文和数学的平均分是96分,数学比语文多4分。

小兰语文、数学各得多少分?13.甲、乙两船共有乘客623人,如果甲船增加34人,乙船减少57人,那么两船的乘客同样多。

乙船有多少乘客?14.妈妈星期天上街买衣服,花75元买了一条裤子和一件上衣。

已知上衣比裤子贵15元,妈妈买上衣花了多少钱?15.四个人的年龄之和是77岁,最小的10岁,他与最大的年龄之和比另外两个的年龄之和大7岁,最大的年龄多少岁?16.全家4口人,父亲比母亲大3岁,姐姐比弟弟大2岁,4年前全家年龄和是58岁,现在是73岁,现在各人年龄分别是多少岁?(提示:弟弟四年前还没有出生。

你知道是怎样判断的吗?)和倍问题1、某专业户养鸡、鸭共480只,其中鸭的只数是鸡的3倍,这个专业户养鸡、鸭各多少只?2、学校买来篮球和足球共27个,其中篮球的个数是足球的2倍。

学校买来篮球和足球各多少个?3、校将360本图书分给二、三年级,已知三年级所得的本数是二年级的3倍。

二、三年级各分得多少本图书上?4、副食店中白糖的千克数正好是红糖的5倍,已知白糖和红糖共有180千克。

副食店有白糖、红糖各多少千克?5、生产队养公鸡、母鸡共404只,其中公鸡的只数是母鸡的3倍。

公鸡、母鸡各养了多少只?6、弟弟有课外书20本,哥哥有课外书25本。

哥哥给弟弟多少本后,弟弟的课外书本数是哥哥的2倍?7、小华有笔30枝,小明有笔15只,问小明给几枝给小华后,小华的枝数是小明的8倍?8、甲桶有油150千克,乙桶有油90千克,要使甲桶油是乙桶的3倍,需要从乙桶中倒入多少千克到甲桶?9、甲、乙两个油桶共有油160千克,如果把乙桶中的油注入甲桶20千克,这时甲桶的油等于乙桶油的3倍。

甲、乙原来各有油多少千克?10、小明有书18本,小芳有书8本,现在又买来16本,怎样分配才能使小明的本数是小芳的2倍?11、水池有水69吨,乙水池有水36吨,如果甲水池的水以每分钟2吨的速度流入乙水池,那么多少分钟后,乙水池的水是甲水池的2倍?12、第一车间有工人45人,第二车间有工人36人,从第一车间调多少人到第二车间,第二车间的人数就是第一车间的8倍?13、被除数、除数、商三个数的和是212,已知商是2,被除数和除数各是多少?14、两数相除,商3余4,如果被除数、除数、商及余数相加,和是43,求被除数和除数。

15、甲数是乙数的3倍,丙数是乙数的4倍,丁数是丙数的一半,四个数的和是1040,丁数是多少?16、分子、分母之和是23,分母增加19以后,得到一个新的分数,把这个分数化为最简分数是1/5,原来分数是几分之几?17、两个数的和是682,其中一个加数的个位是0,若把0去掉,则与另一个数相同,这两个数各是多少?18、有货物108件,分成四堆存放在仓库里,第一堆件数的2倍等于第二堆件数的一半,比第三堆件数少2,比第四堆件数多2,问每堆各存放多少件?差倍问题1、李爷爷家养的鸭比鹅多18只,鸭的只数是鹅的3倍,你知道李爷爷家养的鸭和鹅各有多少只吗?2、两根电线的长相差30米,长的那根的长是短的那根的长的4倍。

这两根电线各长多少米?3、甲、乙二工程队,甲队有56人,乙队有34人。

两队调走同样多人后,甲队人数是乙队人数的3倍。

问:调动后两队各还有多少人?4、甲、乙两桶油重量相等。

甲桶取走26千克油,乙桶加入14千克油,这时,乙桶油的重量是甲桶油的重量的3倍。

两桶油原来各有多少千克?5、小云比小雨少20本书,后来小云丢了5本书,小雨新买了11本书,这时小雨的书比小云的书多2倍。

问:原来两人各有多少本书?6、大仓库存粮比小仓库存粮多254吨。

又知大仓库存粮是小仓库存粮的3倍。

大、小仓库各存粮多少吨?7、一养鸡场,公鸡比母鸡少369只,母鸡是公鸡的4倍。

公鸡、母鸡各多少只?8、小林今年9岁,他爸爸今年35岁。

小林多少岁时,他爸爸的年龄正好是他的3倍?9、一车间男工26人,女工14人。

调走男、女工同样多的人后,男工人数是女工人数的3倍。

剩下的男、女工各多少人?10、甲、乙二数相等。

甲数加上50,乙数减去34后,甲数就是乙数的4倍。

原来甲、乙二数等于几?11、甲乙两个数,甲数比乙数多45,如果甲数增加85,乙数减少70,那么甲数是乙数的5倍,求甲乙两数原来各是多少?12、甲桶的饮料是乙桶的4倍,如果从甲桶取出15千克倒入乙桶,那么两桶饮料的重量相等,甲桶原有饮料多少千克?倍比问题1、一台拖拉机3小时可耕地40公亩,那么12小时可耕地多少公亩?2、同学们栽树,3行栽了24棵树苗,照这样计算,要栽22行需要多少棵树苗?3、某盐场一块盐田能容海水9600吨,已知100千克海水含盐3千克,这块盐田一次可晒盐多少吨?4、机床厂用1680千克钢材可制出车床12台,现有钢材8400千克,可制出车床多少台?相遇问题1、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,4小时后还相距20千米”两地相距多少千米?2、电视机厂要装配2500台电视机,两个组同时装配,10天完成,一个组每天装配52台,另一个组每天装配多少台?3、甲乙两艘轮船同时从相距126千米的两个码头相对开出,3小时相遇,甲船每小时航行22千米,乙船每小时航行多少千米?甲船比乙船每小时多航行多少千米?4、甲地到乙地的公路长436千米。

两辆汽车从两地对开,甲车每小时行42千米,乙车每小时行46千米。

甲车开出2小时后,乙车才出发,再经过几小时两车相遇?5、一列快车从甲站开往乙站每小时行驶65千米,一列慢车同时从乙站开往甲站,每小时行驶60千米,相遇时快车比慢车多走10千米。

求甲、乙两站间的距离是多少千米?6、一列货车和一列客车同时从两地相对开出。

货车每小时行48千米,客车每小时行52千米,2.5小时后相遇。

两地间的铁路长多少千米?7、两个工程队共同开凿一条隧道,各从一端相向施工。

甲队每天开凿4米,乙队每天开凿3.5米,21天完工,这条隧道长多少米?8、一辆汽车每小时行38千米,另一辆汽车每小时行41千米。

两车同时从相距237千米的两地相向开出,经过几小时两车相遇?9、两地间的铁路长250千米。

相关文档
最新文档