高中物理竞赛教程(超详细)第十八讲原子物理

合集下载

高中物理第十八章原子结构高效整合课件新人教选修3_5

高中物理第十八章原子结构高效整合课件新人教选修3_5
答案: A
已知氢原子的基态能量为 E1,激发态能量En= E1/n2,其中n=2,3,….用h表示普朗克常量,c表示真空中的 光速.能使氢原子从第一激发态电离的光子的最大波长为
()
A.-43hEc1
B.-2Eh1c
C.-4Eh1c
D.-9Eh1c
解析: 由 En=E1/n2 知,第一激发态的能量为 E2=E41,

色光
红 橙 黄 绿 蓝—靛 紫
光子能量 1.61~ 2.00~ 2.07~ 2.14~ 2.53~ 2.76~ 范围(eV) 2.00 2.07 2.14 2.53 2.76 3.10
处于某激发态的氢原子、发射的光的谱线在可见光范围内 仅有2条,其颜色分别为( )
A.红、蓝—靛 B.黄、绿 C.红、紫 D.蓝—靛、紫
解析: 由于原子发生跃迁时放出三种不同能量的光子, 故跃迁发生前这些原子分布在2个激发态能级上,即分布在n= 2,n=3两个能级上,因为放出光子的最大能量为12.09 eV, 由E3-E1=12.09 eV得E3=-1.51 eV,故最高能级的能量 值是-1.51 eV.
答案: 2 -1.51
α粒子散射实验
离核以后速度的大小为________(用光子频率ν、电子质量m、
氢的电离能E1与普朗克常量h表示.)
解析: 由题意,hν=12mv2+E1,解得 v=
2hνm-E1.
答案:
2hν-E1 m
大量氢原子处于不同能量激发态,发生跃迁时放 出三种不同能量的光子 ,其能量值分别是: 1.89 eV,10.2 eV,12.09 eV.跃迁发生前这些原子分布在____个激发态能级 上,其中最高能级的能量值是____eV(基态能量为-13.6 eV).

高三物理第十八章 原子结构 第节

高三物理第十八章 原子结构 第节

准兑市爱憎阳光实验学校高三物理第十八章原子结构第1~4节【本讲信息】一. 教学内容:3—5第十八章原子结构第一节电子的发现第二节原子的核式结构模型第三节氢原子光谱第四节玻尔的原子模型二. 知识内容〔一〕1. 阴极射线:阴极射线的本质是带负电的粒子流,后来,组成阴极射线的粒子被称为电子。

2. 电子的发现:1897年英国的物理学家汤姆孙发现了电子,并求出了这种粒子的比荷。

〔二〕1. 汤姆孙的原子模型:原子是一个球体,正电荷弥漫性地均匀分布在整个球体内,电子镶嵌其中,有人形象地把汤姆孙模型称为“西瓜模型〞或“枣糕模型〞。

2. a粒子散射:〔1〕a粒子:a粒子是从放射性物质中发射出来的快速运动的粒子,带有两个单位的正电荷,质量为氢原子质量的4倍。

〔2〕现象:绝大多数a粒子穿过金箔后,根本上仍沿原来的方向,但有少数a粒子〔约占八千分之一〕发生了大角度偏转,偏转的角度甚至大于900,也就是说它们几乎被“撞了回来〞。

〔3〕卢瑟福核式结构模型:原子中带正电的体积很小,但几乎占有质量,电子在正电体的外面运动。

按照卢瑟福的理论,正电体被称为原子核,卢瑟福的原子模型因而被称为核式结构模型。

3. 原子核的电荷与尺度:〔1〕电荷:原子核是由质子和中子组成的,原子核的电荷数就是核中的质子数。

〔2〕尺度:对于一般的原子核,核半径的数量级为10-16m,而整个原子半径的数量级是10-10m,两者相差十万倍之多,可见原子内部是十分“空旷〞的。

〔三〕1. 光谱:〔1〕义:把光按波长的大小分开,获得光的波长〔频率〕成分和强度分布的记录。

即光谱。

〔2〕分类:光谱分为线状谱和连续谱。

〔3〕特征:线状谱是一条条分立的亮线;连续谱是一条连续的光带。

2. 原子光谱:〔1〕义:各种原子的发射光谱都是线状谱,不同原子的亮线位置不同,把这些亮线称为原子的特征谱线。

〔2〕光谱分析:每种原子都有自己的特征谱线,我们可以用它来鉴别物质和确物质的组分,这种方法称为光谱分析。

高二物理选修课件第十八章玻尔的原子模型

高二物理选修课件第十八章玻尔的原子模型

要点二
优缺点分析
卢瑟福模型能更好地解释α粒子散射实验和元素周期律, 但无法解决电子绕核运动的稳定性问题;汤姆孙模型则能 解释原子呈电中性的原因和某些元素的化学性质,但与实 验结果不符。因此,在解释原子结构和性质方面,卢瑟福 模型更具优势。
06 玻尔原子模型在现代物理 中地位和影响
玻尔原子模型对量子力学发展贡献
高二物理选修课件第十八章玻尔的 原子模型
汇报人:XX 20XX-01-19
目 录
• 玻尔原子模型基本概念 • 玻尔原子模型中电子运动规律 • 氢原子光谱与能级结构分析 • 碱金属原子光谱与能级结构特点 • 其他类型原子模型简介与评价 • 玻尔原子模型在现代物理中地位和影响
01 玻尔原子模型基本概念
量子力学基本原理的验证
氢原子光谱的实验结果与量子力学基本原理的预言高度一致,因此可以作为验证量子力学 基本原理的重要手段之一。例如,通过测量氢原子基态和激发态之间的能量差,可以验证 量子力学中关于能量量子化和波函数坍缩等基本概念的预言。
04 碱金属原子光谱与能级结 构特点
碱金属原子光谱实验现象及解释
模型内容
卢瑟福核式结构模型认为原子由 带正电的原子核和带负电的电子
组成,电子绕核运动。
优点
成功解释了α粒子散射实验的结果 ,揭示了原子的核式结构。
缺点
无法解释原子稳定性和元素周期律 ,且电子绕核运动的稳定性问题未 得到解决。
汤姆孙枣糕模型简介与评价
模型内容
汤姆孙枣糕模型认为原子是一个 均匀分布着正电荷的球体,电子
氢原子光谱在科学研究中的应用
原子结构的研究
氢原子光谱是研究原子结构的重要手段之一。通过分析氢原子光谱的精细结构和超精细结 构,可以揭示原子核的内部结构和性质。

高中物理竞赛原子物理教案

高中物理竞赛原子物理教案

高中物理竞赛原子物理教案教学内容:原子物理
教学目标:
1. 理解原子结构和原子核的基本概念;
2. 掌握原子核的组成和性质;
3. 熟练掌握原子核的稳定性和放射性研究方法;
4. 了解核反应和核能的应用。

教学重点:
1. 原子结构和原子核的组成;
2. 原子核的稳定性和放射性;
3. 核反应和核能的应用。

教学难点:
1. 掌握原子核的结构和性质;
2. 理解核反应的基本原理。

教学过程:
一、导入:介绍原子结构和原子核的基本概念。

二、讲解:原子核的组成和性质。

1. 原子核的结构和组成:质子、中子和电子;
2. 原子核的性质:电荷数、质量数、核反应等。

三、探究:原子核的稳定性和放射性。

1. 原子核的稳定性:结合能、核力等因素;
2. 放射性的种类和性质:α、β、γ辐射。

四、活动:实验测定原子核的放射性活度。

五、拓展:核反应和核能的应用。

1. 核反应的原理和种类;
2. 核能在能源领域的应用。

六、总结:回顾本节课的重点内容,核实学生的学习情况。

教学资源:
1. 教材:高中物理教科书;
2. 实验器材:放射性测量仪器;
3. 图表资料:有关原子物理的图片和实验数据。

教学评估:
1. 课堂随堂测试;
2. 学生课后练习;
3. 实验报告和讨论。

以上是关于高中物理竞赛原子物理教案范本,希望可以帮助到您的教学工作。

祝教学顺利!。

2020高中物理 第十八章 原子结构 第4节 玻尔的原子模型课件 新人教版选修3-5

2020高中物理 第十八章 原子结构 第4节 玻尔的原子模型课件 新人教版选修3-5

01课前自主学习
一、玻尔原子理论的基本假设
1.轨道量子化:玻尔认为,电子绕原子核做圆周运动,服从经典力学的
规律,但轨道半径不能是任意的,只有半径在符合一定条件时,这样的轨道
才是可能的,也就是说,电子的轨道是□01 量子化的。电子在这些轨道上绕核 的转动是稳定的,不产生□02 电磁辐射。
2.能量量子化:电子在不同轨道上运动时能量是不同的,轨道的量子化
课堂任务 玻尔理论对氢光谱的解释 1.氢原子能级图
(1)横线:表示氢原子各个能级的能量值。 (2)横线间距:表示氢原子各个能级间的能量值的差。 (3)能级图:表示氢原子各个能级的能量值的横线排列成的阶梯式的图。 从高能级向低能级跃迁时,能级差越小,光子波长越长;能级差越大,光子 波长越短。
2.玻尔理论对巴耳末公式的解释 根据频率条件,辐射的光子的能量 hν=Em-En,巴耳末公式1λ=R212-n12 中的正整数 n 和 2,正好代表电子跃迁之前和跃迁之后所处的定态轨道的量 子数 n 和 2。因此,巴耳末公式代表的应该是电子从量子数分别为 n=3,4,5,… 的能级向量子数 n=2 的能级跃迁时发出的光谱线。 因此根据玻尔理论可以推导出巴耳末公式,并从理论上计算出里德伯常 量 R 的值,所得结果与实验值符合得很好。
决定,即 □08 hν=Em-En 。反之会吸收光子,吸收光子的能量同样由频率条件
决定。
二、玻尔理论对氢光谱的解释
1.玻尔理论解释巴耳末公式:按照玻尔理论,从高能级跃迁到低能级时
辐射的光子的能量为 hν=Em -En;巴耳末公式中的正整数 n 和 2,正好代
表电子跃迁之前和跃迁之后所处的□01 定态轨道的量子数 n 和 2。并且理论上 的计算和实验测量的□02 里德伯常量 R 符合得很好,同样,玻尔理论也很好地

高中物理课件第十八章 原子结构 章末分层突破

高中物理课件第十八章 原子结构 章末分层突破

下一页
[再判断] 1.放射性元素发出的射线可以直接观察到.( × ) 2.放射性元素发出的射线的强度可以人工控制.( × ) 3.α射线的穿透本领最强,电离作用很弱.( × )
上一页
返回首页
下一页
(5)①原子吸收光子能量是有条件的,只有等于某两个能级差时才被吸收发
生跃迁.
②如果入射光的能量 E≥13.6 eV,原子也能吸收光子,则原子电离.
③用粒子碰撞的方法使原子能级跃迁时,粒子能量大于能级差即可.
2.跃迁与光谱线
原子处于基态时,原子是稳定的,但原子在吸收能量跃迁到激发态后,就
知识脉络
上一页
返回首页
下一页
天然放射现象的发现及放射线的本质
[先填空]
1.天然放射现象的发现 (1)天然放射现象:物质能自发地放出 射线 的现象. (2)放射性:物质放出 射线 的性质,叫做放射性. (3)放射性元素:具有 放射性 的元素,叫做放射性元素. (4)天然放射现象的发现:1896年,法国物理学家 贝可勒尔 发现了天然放
上一页
返回首页
下一页
两个重要的物理思想方法 1.模型法 人们对原子结构的认识经历了几个不同的阶段,其中有汤姆孙模型、卢瑟 福模型、玻尔模型、电子云模型.
上一页
图 18-1
返回首页
下一页
2.假设法 假设法是学习物理规律常用的方法,前边我们学过的安培分子电流假说, 现在大家知道从物质微观结构来看是正确的,它就是核外电子绕核旋转所形成 的电流.在当时的实验条件下是“假说”。玻尔的假说是为解决核式结构模型 的困惑而提出的,他的成功在于引入量子理论,局限性在于保留了轨道的概念, 没有彻底脱离经典物理学框架.
基态或激发态的原子的核外电子跃迁到 n=∞的轨道,n=∞时,E∞=0.

高中物理第十八章(原子结构)教案设计与知识点解析

高中物理第十八章(原子结构)教案设计与知识点解析

高中物理第十八章(原子结构)教案设计与知识点解析18.1 电子的发现三维教学目标1、知识与技能(1)了解阴极射线及电子发现的过程;(2)知道汤姆孙研究阴极射线发现电子的实验及理论推导。

2、过程与方法:培养学生对问题的分析和解决能力,初步了解原子不是最小不可分割的粒子。

3、情感、态度与价值观:理解人类对原子的认识和研究经历了一个十分漫长的过程,这一过程也是辩证发展的过程,根据事实建立学说,发展学说,或是决定学说的取舍,发现新的事实,再建立新的学说。

人类就是这样通过光的行为,经过分析和研究,逐渐认识原子的。

教学重点:阴极射线的研究。

教学难点:汤姆孙发现电子的理论推导。

教学方法:实验演示和启发式综合教学法。

教学用具:投影片,多媒体辅助教学设备。

教学过程:第一节电子的发现(一)引入新课很早以来,人们一直认为构成物质的最小粒子是原子,原子是一种不可再分割的粒子。

这种认识一直统治了人类思想近两千年。

直到19世纪末,科学家对实验中的阴极射线深入研究时,发现了电子,使人类对微观世界有了新的认识。

电子的发现是19世纪末、20世纪初物理学三大发现之一。

(二)进行新课1、阴极射线气体分子在高压电场下可以发生电离,使本来不带电的空气分子变成具有等量正、负电荷的带电粒子,使不导电的空气变成导体。

问题:是什么原因让空气分子变成带电粒子的?带电粒子从何而来的?史料:科学家在研究气体导电时发现了辉光放电现象。

1858年德国物理学家普吕克尔较早发现了气体导电时的辉光放电现象。

德国物理学家戈德斯坦研究辉光放电现象时认为这是从阴极发出的某种射线引起的。

所以他把这种未知射线称之为阴极射线。

对于阴极射线的本质,有大量的科学家作出大量的科学研究,主要形成了两种观点。

(1)电磁波说:代表人物,赫兹。

认为这种射线的本质是一种电磁波的传播过程。

(2)粒子说:代表人物,汤姆孙。

认为这种射线的本质是一种高速粒子流。

思考:你能否设计一个实验来进行阴极射线的研究,能通过实验现象来说明这种射线是一种电磁波还是一种高速粒子流。

高中物理竞赛教程(超详细)第十八讲原子物理

高中物理竞赛教程(超详细)第十八讲原子物理

学习好资料 欢迎下载第一讲原子物理自1897年发现电子并确认电子是原子的组成粒子以后,物理学的中心问题就是探索原子内部的奥秘,经过众多科学家的努力,逐步弄清了原子结构及其运动变化的规律并建立了描述分子、原子等微观系统运动规律的理论体系——量子力学。

本章简单介绍一些关于原子和原子核的基本知识。

§1.1 原子1.1.1、原子的核式结构1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。

1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。

1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm 以下。

1、1.2、氢原子的玻尔理论 1、核式结论模型的局限性通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。

电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。

由此可得两点结论:①电子最终将落入核内,这表明原子是一个不稳定的系统; ②电子落入核内辐射频率连续变化的电磁波。

原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。

如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。

为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。

2、玻尔理论的内容:一、原子只能处于一条列不连续的能量状态中,在这些状态中原子是稳定的,电子虽做加速运动,但并不向外辐射能量,这些状态叫定态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲 原 子 物 理自1897年发现电子并确认电子是原子的组成粒子以后,物理学的中心问题就是探索原子内部的奥秘,经过众多科学家的努力,逐步弄清了原子结构及其运动变化的规律并建立了描述分子、原子等微观系统运动规律的理论体系——量子力学。

本章简单介绍一些关于原子和原子核的基本知识。

§1.1 原子1.1.1、原子的核式结构1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。

1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。

1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm 以下。

1、1.2、氢原子的玻尔理论 1、核式结论模型的局限性通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。

电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。

由此可得两点结论:①电子最终将落入核内,这表明原子是一个不稳定的系统; ②电子落入核内辐射频率连续变化的电磁波。

原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。

如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。

为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。

2、玻尔理论的内容:一、原子只能处于一条列不连续的能量状态中,在这些状态中原子是稳定的,电子虽做加速运动,但并不向外辐射能量,这些状态叫定态。

二、原子从一种定态(设能量为E 2)跃迁到另一种定态(设能量为E 1)时,它辐射或吸收一定频率的光子,光子的能量由这种定态的能量差决定,即γh =E 2-E 1三、氢原子中电子轨道量子优化条件:氢原子中,电子运动轨道的圆半径r 和运动初速率v 需满足下述关系:π2hnrmv =,n=1、2……其中m 为电子质量,h 为普朗克常量,这一条件表明,电子绕核的轨道半径是不连续的,或者说轨道是量子化的,每一可取的轨道对应一个能级。

定态假设意味着原子是稳定的系统,跃迁假设解释了原子光谱的离散性,最后由氢原子中电子轨道量子化条件,可导出氢原子能级和氢原子的光谱结构。

氢原子的轨道能量即原子能量,为r e kmv E 2221-= 因圆运动而有222r e k r v m = 由此可得r e kE 22-= 根据轨道量子化条件可得:mr hnv π2=,n=1,2……因22mv e k r =,便有 2222224h n r m m ke r π⋅= 得量子化轨道半径为:22224kme h n r n π=,n=1,2……式中已将r 改记为r n 对应的量子化能量可表述为:224222h n e mk E n π-=,n=1,2……n=1对应基态,基态轨道半径为22214kme h r π=计算可得: m r 1111029.5-⨯==0.529οAr 1也称为氢原子的玻尔半径基态能量为 242212h e mk E π-=计算可得: E 1=6.13-eV 。

对激发态,有:2112,n E E r n r n n ==,n=1,2…n 越大,r n 越大,E n 也越大,电子离核无穷远时,对应0=∞E ,因此氢原子的电离能为:eVE E E E 6.1311=-=-=∞电离电子从高能态E n 跃迁到低能态E m 辐射光子的能量为:m n E E hv -=光子频率为)11(221m n h E h E E v m n -=-=,m n >因此氢原子光谱中离散的谱线波长可表述为:1111)1(22--⋅==m n E hc r c λ,m n >试求氢原子中的电子从第n 轨道迁跃到n-1第轨道时辐射的光波频率,进而证明当n 很大时这一频率近似等于电子在第n 轨道上的转动频率。

辐射的光波频率即为辐射的光子频率γ,应有)(11--=n n E E hν将224222h n e mk E n π-= 代入可得223422223422)1(1221)1(12--⋅=⎥⎦⎤⎢⎣⎡--⋅=n n n h me k n n h me k ππν 当n 很大时,这一频率近似为 334224h n me k πν=电子在第n 轨道上的转动频率为:222n nn n n n r m r mv r U f ⋅⋅==ππ将π2hn r mv n n ⋅= 代入得 νπ==334224h n me k f n因此,n 很大时电子从n 第轨道跃迁到第n-1轨道所辐射的光波频率,近似等于电子在第n 轨道上的转动频率,这与经典理论所得结要一致,据此,玻尔认为,经典辐射是量子辐射在∞→n 时的极限情形。

1、1.3、氢原子光谱规律 1、巴耳末公式研究原子的结构及其规律的一条重要途径就是对光谱的研究。

19世纪末,许多科学家对原子光谱已经做了大量的实验工作。

第一个发现氢原子线光谱可组成线系的是瑞士的中学教师巴耳末,他于1885年发现氢原子的线光谱在可见光部分的谱线,可归纳为如下的经验公式⎪⎭⎫⎝⎛-=221211n R λ,n=3,4,5,…式中的λ为波长,R 是一个常数,叫做里德伯恒量,实验测得R 的值为1.096776⨯1071-m 。

上面的公式叫做巴耳末公式。

当n=3,4,5,6时,用该式计算出来的四条光谱线的波长跟从实验测得的αH 、βH 、γH、δH 四条谱线的波长符合得很好。

氢光谱的这一系列谱线叫做巴耳末系。

2、里德伯公式1896年,瑞典的里德伯把氢原子光谱的所有谱线的波长用一个普遍的经验公式表示出来,即⎪⎪⎭⎫⎝⎛-=2221111n n R λn=1,2,3…112+=n n ,21+n ,31+n …上式称为里德伯公式。

对每一个1n ,上是可构成一个谱线系:11=n ,22=n ,3,4… 莱曼系(紫外区) 21=n ,32=n ,4,5… 巴耳末系(可见光区) 31=n ,42=n ,5,6… 帕邢系(红外区) 41=n ,52=n ,6,7…布拉开系(远红外区)51=n ,62=n ,7,8…普丰德系(远红外区)以上是氢原子光谱的规律,通过进一步的研究,里德伯等人又证明在其他元素的原子光谱中,光谱线也具有如氢原子光谱相类似的规律性。

这种规律性为原子结构理论的建立提供了条件。

1、1.4、玻尔理论的局限性:玻尔原子理论满意地解释了氢原子和类氢原子的光谱;从理论上算出了里德伯恒量;但是也有一些缺陷。

对于解释具有两个以上电子的比较复杂的原子光谱时却遇到了困难,理论推导出来的结论与实验事实出入很大。

此外,对谱线的强度、宽度也无能为力;也不能说明原子是如何组成分子、构成液体个固体的。

玻尔理论还存在逻辑上的缺点,他把微观粒子看成是遵守经典力学的质点,同时,又给予它们量子化的观念,失败之处在于偶保留了过多的经典物理理论。

到本世纪20年代,薛定谔等物理学家在量子观念的基础上建立了量子力学。

彻底摒弃了轨道概念,而代之以几率和电子云概念。

例题1:设质子的半径为m 1510-,求质子的密度。

如果在宇宙间有一个恒定的密度等于质子的密度。

如不从相对论考虑,假定它表面的“第一宇宙速度”达到光速,试计算它的半径是多少。

它表面上的“重力加速度”等于多少?(1mol 气体的分子数是23106⨯个;光速s m /1038⨯=);万有引力常数G 取为2211/106kg Nm -⨯。

只取一位数做近似计算。

解:2H 的摩尔质量为2g/mol ,2H 分子的质量为 kg g 262310621062⨯=⨯∴质子的质量近似为 kg 261062⨯质子的密度 ρ=()315261034/10625-⨯π=()3194516/102411010641m kg ⨯=⨯⨯⨯-设该星体表面的第一宇宙速度为v ,由万引力定律,得22r mM G r mv =,r GM v =2而 ρπ334r M = ∴ρρπ23434Gr r r G v ==γ2=v Gp()m G v r 4191181031024110621032⨯=⨯⨯⨯⨯==-ρ由于“重力速度”ρρπyG y y G y GM g 4/34/232≈==∴()21219114/103102411061034s m g ⨯=⨯⨯⨯⨯⨯⨯=-【注】万有引力恒量一般取=G 6.67211/10kg m N ⋅⨯-例题2:与氢原子相似,可以假设氦的一价正离子(He +)与锂的二价正离子(L++)核外的那一个电子也是绕核作圆周运动。

试估算(1)He +、L ++的第一轨道半径; (2)电离能量、第一激发能量;(3)赖曼系第一条谱线波长分别与氢原子的上述物理量之比值。

解:在估算时,不考虑原子核的运动所产生的影响,原子核可视为不动,其带电量用+Ze 表示,可列出下面的方程组:20224n n n y Ze r mv πε=,①n n n r Ze mv E 022421πε-=,② π2hn r mv n n ⋅=,n=1,2,3,…③ 12En En hv -=,④由此解得n r ,n E ,并可得出λ1的表达式:Z n r Z me n h r n 212220==πε,⑤其中10220110530-⨯⋅==me h r πε米,为氢原子中电子的第度轨道半径,对于He +,Z=2,对于Li++,Z=3.2212222028n Z E n Z h me E n =-=ε,⑥其中-=-=220418h me E ε13.6电子伏特为氢原子的基态能. ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=22212222122204111181n n R Z n n Z c h me ελ.⑦11=n ,2,3,…,112+=n n 21+n ,31+n ,…R 是里德伯常数。

(1)由半径公式⑤,可得到类氢离子与氢原子的第一轨道半径之比:21==++H H HHe Z Z r r ,31==++++Li H H Li Z Z rr .(2)由能量公式⑥,可得到类氢离子与氢原子的电离能和第一激发能(即电子从第一轨道激发到第二轨道所需的能量)之比:电离能: 41200221111==--=--++HHe H He Z E Z E E E ,91300221111==--=--++++HLi HLi Z E Z E EE第一激发能:4433112112222212212212211212=--=--=--++E E E E E E E E HH He He ,943427112113232212212212211212=--=--=--++++E E E E E E E E HH LiLi 。

相关文档
最新文档