测量电阻率实验

合集下载

11.3实验导体电阻率的测量(解析版)

11.3实验导体电阻率的测量(解析版)

11.3实验导体电阻率的测量(解析版)11.3 实验导体电阻率的测量(解析版)实验名称:导体电阻率的测量实验目的:通过实验测量导体的电阻率,了解电阻率的概念与测量方法。

实验器材:导线、电源、滑动变阻器、电流表、电压表、导体样品实验原理:导体的电阻率可以通过以下公式计算得出:ρ = (R * A) / L其中,ρ为电阻率,R为电阻,A为导体横截面积,L为导体长度。

实验步骤:1. 准备实验所需器材与导体样品。

2. 搭建电路,将滑动变阻器、电流表和电压表连接于电源和导体样品之间,确保电路连接无误。

3. 通过滑动变阻器调节电流的大小,记录电流值I和电压值V。

4. 更换不同的导体样品,重复步骤3,记录不同导体样品的电流和电压值。

5. 根据测得的电流和电压值,计算出不同样品的电阻率。

6. 分析实验数据,得出结论。

实验数据记录与计算:样品1:电流值I1 = 2A电压值V1 = 5V导体长度L1 = 10cm导体横截面积A1 = 2cm²样品2:电流值I2 = 1A电压值V2 = 3V导体长度L2 = 15cm导体横截面积A2 = 3cm²样品3:电流值I3 = 3A电压值V3 = 8V导体长度L3 = 8cm导体横截面积A3 = 1cm²计算导体电阻率:样品1:R1 = V1 / I1 = 5V / 2A = 2.5Ωρ1 = (R1 * A1) / L1 = (2.5Ω * 2cm²) / 10cm = 0.5Ω·cm样品2:R2 = V2 / I2 = 3V / 1A = 3Ωρ2 = (R2 * A2) / L2 = (3Ω * 3cm²) / 15cm = 0.6Ω·cm样品3:R3 = V3 / I3 = 8V / 3A = 2.67Ωρ3 = (R3 * A3) / L3 = (2.67Ω * 1cm²) / 8cm = 0.3337Ω·cm实验结果与结论:通过实验测得样品1的电阻率为0.5Ω·cm,样品2的电阻率为0.6Ω·cm,样品3的电阻率为0.3337Ω·cm。

电阻率实验报告

电阻率实验报告

一、实验目的1. 理解电阻率的定义及其在材料科学中的应用。

2. 掌握电阻率测量的基本原理和方法。

3. 通过实验验证电阻率与材料性质之间的关系。

二、实验原理电阻率(ρ)是衡量材料导电性能的重要参数,其定义为单位长度、单位截面积的导体电阻。

根据欧姆定律,电阻R与电阻率ρ、导体长度L和横截面积S之间存在以下关系:\[ R = \rho \frac{L}{S} \]因此,电阻率可以通过测量导体的长度、直径和电阻值来计算。

实验中,我们将使用双臂电桥测量金属丝的电阻,并据此计算其电阻率。

三、实验仪器与材料1. 金属丝(材料:铜,直径:1mm)2. 双臂电桥3. 数字万用表4. 精密测量尺5. 电路连接线6. 导线连接夹四、实验步骤1. 准备实验器材,将金属丝固定在实验台上。

2. 使用精密测量尺测量金属丝的长度L(精确到0.01cm)。

3. 使用数字万用表测量金属丝的电阻R(精确到0.01Ω)。

4. 使用精密测量尺测量金属丝的直径d(精确到0.001mm),然后计算横截面积S (S = π(d/2)^2)。

5. 根据公式\[ \rho = \frac{R \cdot S}{L} \]计算金属丝的电阻率ρ。

五、实验数据与结果| 金属丝长度L (cm) | 金属丝直径d (mm) | 金属丝电阻R (Ω) | 横截面积S (mm²) | 电阻率ρ (Ω·m) ||------------------|------------------|------------------|------------------|----------------|| 10.00 | 1.000 | 0.100 | 0.785 | 7.85 × 10^-6 |六、实验分析与讨论根据实验数据,金属丝的电阻率为7.85 × 10^-6 Ω·m。

该值与铜的标准电阻率(约为1.68 × 10^-8 Ω·m)存在较大差异,可能是由于以下原因:1. 金属丝长度和直径的测量误差;2. 金属丝表面氧化层或杂质的影响;3. 测量仪器的精度限制。

实验“测定金属电阻率”的方法步骤和技巧

实验“测定金属电阻率”的方法步骤和技巧

1实验“测定金属电阻率”的方法、步骤和技巧山东省沂源一中(256100)任会常材料的电阻率是材料的一种电学特性。

由电阻定律公式 R =ρL /S 知,电阻率ρ=RS/L 。

因此,要测定金属的电阻率,只须选择这种金属材料制成的导线,用刻度尺测出金属导线连入电路部分的长度L ,用螺旋测微器测出金属导线的直径d ,用“伏安法”测出金属导线的电阻R ,即可求得金属的电阻率ρ。

一、实验方法1、实验器材①金属丝 ②螺旋测微器(千分尺)③刻度尺 ④电流表 ⑤电压表 ⑥学生电源 ⑦滑动变阻器 ⑧单刀开关 ⑨导线若干。

【点拨】被测金属丝要选用电阻率大的材料,如铁铬铝合金、镍铬合金等或300W 电炉丝经细心理直后代用,直径0.4mm 左右,电阻5~10Ω之间为宜,在此前提下,电源若选3V 直流电源,安培表应选0~0.6A 量程,伏特表应选0~3V 档,滑动变阻器选0~20Ω。

2.实验方法(1)金属丝横截面积的测定:在金属丝上选择没有形变的点,用螺旋测微器在不同的方位上测金属丝的直径三次。

【点拨】测金属丝的直径时,每测一次转45°,如果金属丝上有漆,则要用火烧去漆,轻轻抹去灰后再测量。

切忌把金属丝放在高温炉中长时间的烧,也不要用小刀刮漆,以避免丝径变小或不均匀)。

求出该点的金属丝直径d ,在不同的点再测出金属丝的直径,求得金属丝直径的平均值后,计算出金属丝的横截面积。

(2)用刻度尺测出金属丝的长度。

(3)金属丝电阻的测定:按图1连接电路。

金属丝R 一定从它的端点接入电路。

滑动变阻器R 0先调至阻值最大的位置,闭合开关,根据电阻丝的额定电流和电流表、电压表的指针位置,适当调节变阻器的阻值大小,使电流表和电压表指针在刻度盘的1/3-2/3的区间。

改变电压几次,读出几组U 、I 值,由欧姆定律R =U /I 算出金属丝的电阻R ,再由公式ρ=RS/L 求得金属的电阻率。

二、实验步骤1.用螺旋测微器三次测量导线不同位置的直径取平均值D ,求出其横截面积S =πD 2/4.2.将金属丝两端固定在接线柱上悬空挂直,用毫米刻度米尺测量接入电路的金属丝长度L ,测三次,求出平均值L 。

测量导体的电阻率实验报告

测量导体的电阻率实验报告

测量导体的电阻率实验报告今天咱们聊聊一个既有趣又实用的话题——电阻率。

说起电阻率,很多人可能会一脸懵逼,觉得这是个高深莫测的东西。

但电阻率就像一位默默无闻的“幕后英雄”,在咱们的日常生活中发挥着至关重要的作用。

想想看,咱们的电子产品、家里的电器,都是在电阻率的“护航”下正常运作的。

今天的实验,就是要通过测量不同导体的电阻率,让大家直观感受一下它的魅力。

一开始,咱们得准备好实验器材。

其实也不复杂,简单的导线、电源、万用表就可以搞定。

这些小玩意儿就像咱们的好帮手,给咱提供了很多便利。

选好导体后,咱们的实验就开始啦!你要是觉得电阻率的概念有点难理解,不妨想象成给导体“打分”。

就像咱们给每个人的性格打分一样,电阻率低的导体更“开朗”,电流通过的时候就不容易“闹脾气”,而电阻率高的导体就像个闷葫芦,电流进得去,但出来的时候可能就要花点功夫了。

咱们把导线连接好,准备开始测量。

哎呀,那感觉就像是一场紧张刺激的冒险。

你能想象,当万用表上的数值跳动时,心里那种小期待吗?每一个数字都是在告诉你,这根导体到底“乖不乖”。

有些导体的电阻率特别低,数字一跳出来,简直让人心花怒放;而有些则让人摸摸额头,心想“这家伙怎么这么倔”。

这种实验就像是在进行一场“导体大赛”,每一根导体都在努力向你展示自己的实力。

实验过程中偶尔也会出现小插曲。

比如,有一次我把万用表接错了,结果显示的数字让我忍不住哈哈大笑。

没想到自己闹了个大乌龙,心想“真是笑话,电流不是你能随便开玩笑的”。

不过,这种小失误倒也让实验更加有趣。

搞科研就是要敢于尝试,有时失败也是一种收获,毕竟“失败乃成功之母”嘛。

经过一番折腾,最后咱们得到了不同导体的电阻率数据。

看着一张张数字表,我不禁感慨万千。

这些数据就像一幅幅生动的画卷,展现出不同材料的“性格”。

铜的电阻率低得让人叹为观止,铝虽然表现得不如铜,但也有它自己的闪光点。

通过这些数据,咱们不仅学会了如何测量电阻率,还理解了材料的特性。

实验二:测定金属的电阻率

实验二:测定金属的电阻率

实验二:测定金属的电阻率螺旋测微器(千分尺)的读数:螺纹的螺距为0.5mm.即测微螺杆旋转一周时前进或者后退0.5mm.将螺旋分成50等份,每一份表示直线位移变化0.01mm,即螺旋测微器的分度值为0.01mm。

1.实验原理根据部分电路的欧姆定律:导体电阻R=根据电阻定律:R=用毫米刻度尺测一段金属丝导线的长度L,用螺旋测微器测导线的直径d,用伏安测导线的电阻R,得=RSL = πud24IL2实验器材:被测金属丝、螺旋测微计、刻度尺、电源、电压表、电流表、开关、导线若干3.实验步骤(1)用螺旋测微器在导线的三个不同位置各测一次,取直径d的平均值,然后计算出导线的横截面积S;(2)将金属丝两端固定在接线柱上悬空挂直,用毫米刻度尺测量接入电路的金属丝长度L,反复测量三次,求平均值;(3)按照图中所示的电路图用导线把器材连接好,并把滑动变阻器的阻值调至最大(4)求出R,带入数据求解。

3.注意事项(1)本实验中被测金属丝的电阻值较小,为了减小实验的误差,必须采用电流表外接法;(2通电电流不宜过大(电流表量程选用0~0.6A),通电时间不宜过长,以免温度过高对金属阻值增大(3)求R,可用平均值法,或者作U-I图像【例题1】在测量金属丝电阻率的实验中,可供选用的器材如下:待测金属丝:Rx(阻值约4 Ω,额定电流约0.5 A);电压表:V(量程3 V,内阻约3 kΩ);电流表:A1(量程0.6 A,内阻约0.2 Ω);电流表:A2(量程3 A,内阻约0.05 Ω);电源:E1(电动势3 V,内阻不计);电源:E2(电动势12 V,内阻不计);滑动变阻器:R(最大阻值约20 Ω);螺旋测微器;毫米刻度尺;开关S;导线。

①用螺旋测微器测量金属丝的直径,示数如下图所示,读数为________mm。

②若滑动变阻器采用限流接法,为使测量尽量精确,电流表应选________、电源应选________(均填器材代号),在虚线框内完成电路原理图。

测量电阻率实验报告

测量电阻率实验报告

测量电阻率实验报告测量电阻率实验报告引言:电阻率是描述材料导电性能的一个重要参数,它反映了材料对电流的阻碍程度。

测量电阻率的实验是电学实验中的基础实验之一,通过该实验可以了解不同材料的导电性能,并为电路设计和材料选用提供参考。

实验目的:本次实验的目的是测量不同材料的电阻率,并探究不同因素对电阻率的影响。

实验原理:电阻率(ρ)的定义为:ρ = R × A / L,其中R为电阻值,A为截面积,L为长度。

实验中,我们使用恒流源和电压表来测量电阻值,然后根据样品的几何尺寸计算出电阻率。

实验步骤:1. 准备实验装置:将恒流源和电压表连接好,并确保测量仪器的正常工作。

2. 测量导体的电阻值:将待测导体接入电路中,调节恒流源的电流大小,并使用电压表测量电压值。

3. 计算电阻率:根据实测的电阻值和导体的几何尺寸,计算出电阻率。

实验结果与分析:在实验中,我们选择了几种常见的导体材料进行测量,包括铜线、铁丝和铝片。

通过测量得到的电阻值和样品的几何尺寸,我们计算出了它们的电阻率。

结果显示,铜线的电阻率最低,铝片的电阻率次之,而铁丝的电阻率最高。

这是因为铜具有良好的导电性能,电子在铜中的迁移速度较快;而铝的导电性能稍差一些,电子迁移速度较慢;而铁的导电性能相对较差,电子迁移速度较慢。

因此,不同材料的电阻率存在差异。

此外,我们还发现了一些影响电阻率的因素。

首先是导体的长度,长度越长,电阻率越大;其次是导体的截面积,截面积越小,电阻率越大。

这与电阻率的定义式一致,即电阻率与长度成正比,与截面积成反比。

实验误差分析:在实验中,由于仪器的精度限制和操作的不准确性,存在一定的误差。

例如,电压表的示数误差、导体表面的接触电阻等都会对实验结果产生一定的影响。

为减小误差,我们可以多次测量并取平均值,同时注意操作的准确性。

结论:通过本次实验,我们测量了不同材料的电阻率,并探究了影响电阻率的因素。

实验结果表明,不同材料的电阻率存在差异,同时电阻率与导体的长度和截面积相关。

电阻率的测量实验报告

电阻率的测量实验报告

电阻率的测量实验报告电阻率的测量实验报告引言电阻率是描述物质导电性能的重要物理量。

本实验旨在通过测量不同材料的电阻和尺寸,计算出它们的电阻率,并探讨电阻率与材料性质之间的关系。

实验目的1. 掌握电阻率的测量方法;2. 了解不同材料的电阻率差异;3. 分析电阻率与材料性质之间的关系。

实验材料和仪器1. 电源;2. 电流表;3. 电压表;4. 导线;5. 不同材料的样品。

实验步骤1. 将电源与电流表、电压表和导线连接好,确保电路正常工作;2. 选取一个样品,将其两端与电路相连;3. 调节电源输出电压,使电流表读数在合适范围内;4. 记录电流表和电压表的读数;5. 重复步骤2-4,测量其他样品的电阻和电压。

实验数据处理根据欧姆定律,电阻的计算公式为R = V/I,其中R为电阻,V为电压,I为电流。

根据测得的电阻和电压,可以计算出每个样品的电阻值。

根据电阻的定义,电阻率的计算公式为ρ = R × A/L,其中ρ为电阻率,R为电阻,A为横截面积,L为长度。

根据样品的尺寸,可以计算出每个样品的电阻率。

实验结果通过测量和计算,得到了不同材料的电阻和电阻率数据。

观察数据可以发现,不同材料的电阻率存在明显差异。

例如,金属材料具有较低的电阻率,而绝缘材料则具有较高的电阻率。

这与材料的导电性能和电子结构有关。

讨论与分析1. 材料的导电性能对电阻率有重要影响。

金属材料中的自由电子能够自由移动,因此具有较低的电阻率。

而绝缘材料中的电子几乎无法移动,导致较高的电阻率。

2. 材料的电子结构也对电阻率产生影响。

例如,半导体材料中的能带结构使得电子在特定条件下能够移动,导致其电阻率介于金属和绝缘体之间。

3. 温度也会对电阻率产生影响。

在金属中,随着温度升高,电阻率会增加;而在半导体中,随着温度升高,电阻率会减小。

结论通过本实验,我们成功测量了不同材料的电阻和电阻率,并发现了电阻率与材料性质之间的关系。

电阻率是描述材料导电性能的重要物理量,对于材料科学和工程应用具有重要意义。

测量电阻率的实验报告

测量电阻率的实验报告

测量电阻率的实验报告一、实验目的1、掌握测量电阻率的基本原理和方法。

2、学会使用伏安法测量电阻,并通过数据处理计算电阻率。

3、熟悉实验仪器的使用,提高实验操作技能和数据处理能力。

二、实验原理电阻率是用来表示各种物质电阻特性的物理量。

某种材料制成的长为 L、横截面积为 S 的导体的电阻 R 为:\(R =\rho \frac{L}{S}\)则电阻率\(\rho\)为:\(\rho = RS/L\)在本实验中,我们使用伏安法测量电阻。

通过测量导体两端的电压U 和通过导体的电流 I,根据欧姆定律\(R = U/I\)计算出电阻 R。

然后测量导体的长度 L 和横截面积 S,即可计算出电阻率\(\rho\)。

三、实验仪器1、直流电源(输出电压可调)2、电流表(量程 0 06 A、0 3 A)3、电压表(量程 0 3 V、0 15 V)4、待测电阻(金属丝或电阻丝)5、滑动变阻器6、毫米刻度尺7、螺旋测微器8、开关9、导线若干四、实验步骤1、用螺旋测微器测量待测电阻丝的直径d,在不同位置测量多次,取平均值。

根据圆的面积公式\(S =\pi(d/2)^2\)计算横截面积 S。

2、按照电路图连接实验电路。

将电源、开关、滑动变阻器、电流表、待测电阻串联,电压表并联在待测电阻两端。

注意电表的量程选择要合适,连接电路时开关要断开,滑动变阻器的滑片要置于阻值最大处。

3、闭合开关,调节滑动变阻器,使电流表和电压表的示数在合适的范围内,分别读出几组电压 U 和电流 I 的值,并记录下来。

4、用毫米刻度尺测量电阻丝的有效长度L,测量多次,取平均值。

5、根据记录的数据,计算出每次测量的电阻值\(R = U/I\),然后求出电阻的平均值\(R_{平均}\)。

6、将测量得到的平均值\(R_{平均}\)、长度 L 和横截面积 S 代入公式\(\rho = RS/L\),计算出待测电阻的电阻率\(\rho\)。

五、实验数据记录与处理1、电阻丝直径的测量|测量次数| 1 | 2 | 3 | 4 | 5 |平均值||||||||||直径 d(mm)|_____ |_____ |_____ |_____ |_____ |_____ |2、电阻丝长度的测量|测量次数| 1 | 2 | 3 |平均值||||||||长度 L(cm)|_____ |_____ |_____ |_____ |3、电压和电流的测量|测量次数| 1 | 2 | 3 | 4 | 5 |||||||||电压 U(V)|_____ |_____ |_____ |_____ |_____ ||电流 I(A)|_____ |_____ |_____ |_____ |_____ |4、电阻的计算|测量次数| 1 | 2 | 3 | 4 | 5 |平均值||||||||||电阻 R(Ω)|_____ |_____ |_____ |_____ |_____ |_____ |5、电阻率的计算横截面积\(S =\pi(d/2)^2 =\pi \times (_____/2)^2 =_____mm^2 =_____cm^2\)电阻率\(\rho = RS/L =_____ \times _____ /_____ =_____Ω·m\)六、误差分析1、测量电阻丝直径和长度时存在读数误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本实验报告旨在阐述测量电阻率实验的全过程。实验目的是通过伏安法间接测定金属导体的电阻率,并练习使用螺旋测微器。实验原理基于电阻定律公式,通过测量金属导线的长度、直径和电阻,计算出电阻率。实验器材包括被测金属导线、直流电源、电流表、电压表、滑动变阻器等。报告中详细介绍了滑动变阻器的两种常见接法:限流接法和分压接法,并解释了选择接法的依据。此外ቤተ መጻሕፍቲ ባይዱ还展示了伏安法测电阻的实验电路图和螺旋测微器的使用方法,强调了实验中的注意事项,如测量被测金属导线的有效长度时应将导线拉直,以及由于被测金属导线的电阻值较小,实验电路必须采用电流表外接法。通过本实验,可以准确测定金属导体的电阻率,并提高实验者的实践操作能力。
相关文档
最新文档