二极管简介
半导体二极管简介

详细描述
在信号调制与解调过程中,二极管用于实现信号的振幅调制、频率调制和相位调制等,以适应不同的通信需求和 传输方式。
03
半导体二极管的发展历程
晶体管的发明
1947年,贝尔实验室的威廉·肖克利 、约翰·巴丁和沃尔特·布拉顿发明了晶 体管,这是电子技术历史上的一个重 大突破。
能效问题
总结词
能效问题是半导体二极管面临的主要挑 战之一,它影响了设备的性能和运行时 间。
VS
详细描述
随着技术的不断进步,对半导体二极管的 能效要求越来越高。由于二极管在转换电 能时存在一定的能量损失,因此提高能效 成为了亟待解决的问题。为了解决这一问 题,科研人员不断探索新的材料和工艺, 以提高二极管的转换效率和稳定性。
04
现代半导体二极管的设计更加注重性能、可靠性和集成度等方面,使 得半导体二极管的应用范围更加广泛。
04
半导体二极管的市场前景
半导体二极管的市场前景
• 半导体二极管是一种电子器件,它只允许电流在一个方向上流 动。由于其独特的单向导电性,二极管在各种电子应用中发挥 着关键作用。
05
半导体二极管的挑战与解决方 案
制造成本问题
总结词
制造成本是影响半导体二极管广泛应用的关键因素之一,降低制造成本有助于提高其市 场竞争力。
详细描述
随着技术的不断进步,半导体二极管的制造成本逐渐降低,但仍面临成本高昂的问题。 为了降低制造成本,科研人员不断探索新的制造工艺和材料,以提高生产效率和降低成 本。此外,政府和企业也加大对半导体二极管产业的扶持力度,推动其向更广泛的应用
可靠性问题
总结词
二极管简介

二极管的应用面很广,都是利用它的单向导电性。 可用于整流、检波、限幅、元件保护以及在数字电路 中作为开关元件。 二极管的应用举例1:二极管半波整流
ui
ui
RL
uo uo
t
t
14
二极管的应用举例2:
如图由RC构成微分电路,当输 u i 入电压ui为矩形波时,试画出 U 输出电压uo的波形。设uc(0) =0 0
0.10 3.95
0.72
1.54
2.36
3.18
4.05
IC N
RC
结论: 1)三电极电流关系 2) IC IB , IC IE 3) IC IB
IE = IB + IC C
基极电流的微小变化IB 能够引起较大的集电极电流 变化IC,这就是三极管的电 流放大作用。
B
IB RB
10
例1:
D + 3k
A
电路如图,求:UAB 取 B 点作参考点, 断开二极管,分析二 极管阳极和阴极的电 位。
6V 12V
UAB
– B
V阳 =-6 V V阴 =-12 V
V阳>V阴 二极管导通 若忽略管压降,二极管可看作短路,UAB =- 6V 否则, UAB低于-6V一个管压降,为-6.3V或-6.7V 在这里,二极管起钳位作用。
27
EB 进入P 区的电子 少部分与基区的空 穴复合,形成电流 IBE ,多数扩散到集 电结。
1 发射区向基区扩散电子,形成发射极电流IE。
E区多子(自由电子)到B区
发射结正偏 扩散强 B区多子(空穴)到E区 穿过发射结的电 流主要是电子流 形成发射 极电流IE IE是由扩散运 动形成的
28
二极管最小压降

二极管最小压降在电子领域中,二极管是一种具有非常重要作用的电子器件。
它是一种具有两个电极的半导体器件,能够实现电流的单向导通,其在电路中扮演着关键的角色。
二极管的一个重要性能参数就是压降,即它在正向导通状态下的电压降。
本文将详细介绍二极管最小压降的相关内容。
一、二极管原理简介二极管是一种将半导体材料(通常为硅)正、负载荷电子集合区域接触在一起的器件。
它由两种具有不同掺杂类型的材料组成,形成 pn 结,其中 p 区称为阳极(或接收区),n 区称为阴极(或发射区)。
在二极管中,p 区一侧的电子浓度较低,而 n 区的电子浓度较高。
这导致了在两侧之间形成电势差,形成导电的“压差”。
在二极管中,当外加电压施加在 p 区(阳极)上,而与之相连的 n 区(阴极)接地时,由于 p 区的电子浓度较低,导致电子从高浓度的 n 区向低浓度的 p 区扩散。
同时,由于 n 区接地,使得电子从 p 区向 n 区移动的过程中,能量被释放,形成电压降。
二、二极管最小压降的意义二极管的压降根据不同的材料和设计而有所不同。
对于某些特定的应用来说,例如电源电路或放大电路等,要求电路中的电压降尽可能小。
这是因为过大的电压降会引起能量损耗和功率消耗,降低电路效率。
而二极管的压降主要来自于 pn 结的正向偏置。
正向偏置时,二极管内部的 pn 结处于导通状态,电流可以通过器件自由流动。
在这种情况下,二极管的压降主要来源于pn 结的导通压降,即正向压降。
因此,当选择二极管时,希望其正向压降尽可能小,以减少电路的功耗。
三、影响二极管压降的因素影响二极管压降的因素有很多,包括材料、结构和工艺等,下面主要介绍两个重要的因素。
1. 材料类型二极管的压降与所使用的材料类型有关。
常见的二极管材料包括硅(Si)和砷化镓(GaAs)等。
与硅二极管相比,砷化镓二极管由于砷化镓材料的能带结构不同,其压降较低。
这使得砷化镓二极管在一些特殊应用中有着更好的性能。
2. 结构设计二极管的结构设计也会影响其压降性能。
mbr0520二极管参数

mbr0520二极管参数摘要:1.引言2.MBR0520 二极管简介3.MBR0520 二极管参数a.结构参数b.电气参数c.特性参数4.MBR0520 二极管应用领域5.结论正文:【引言】MBR0520 二极管是一种广泛应用于电子设备中的半导体元器件,具有重要的实用价值。
本文将详细介绍MBR0520 二极管的相关参数,以帮助读者更好地了解和应用这种二极管。
【MBR0520 二极管简介】MBR0520 二极管,全称为金属箔电阻二极管,是一种具有独特结构的半导体二极管。
它采用金属箔作为其PN 结的载体,具有良好的热稳定性、低正向电压降和快速恢复特性。
【MBR0520 二极管参数】【结构参数】MBR0520 二极管的结构参数主要包括封装形式、引脚数量、外壳材料等。
其中,封装形式有TO-220、TO-252 等多种,引脚数量通常为2 或3 根,外壳材料包括陶瓷、塑料等。
【电气参数】MBR0520 二极管的电气参数主要包括正向电压降、反向漏电流、额定电流等。
这些参数决定了二极管在实际应用中的性能表现。
例如,正向电压降越低,二极管导通时的功耗越小;额定电流越大,二极管所能承受的电流越大。
【特性参数】MBR0520 二极管的特性参数主要包括热稳定性、快速恢复特性等。
热稳定性是指二极管在高温环境下的性能稳定性,对于高温应用场合具有重要意义。
快速恢复特性是指二极管在关断瞬间能够迅速恢复到高阻态,减少了关断损耗,提高了工作效率。
【MBR0520 二极管应用领域】MBR0520 二极管广泛应用于各类电子设备中,如电源、通信、计算机、家电等领域。
特别是在开关电源、逆变器等高功率应用场合,MBR0520 二极管因其优良的性能而受到广泛欢迎。
【结论】MBR0520 二极管凭借其独特的结构、优良的电气性能和广泛的应用领域,成为一种重要的半导体元器件。
了解其参数对于正确选择和使用二极管具有重要意义。
二极管种类

二极管的种类
二极管是一种常用的半导体器件,用于控制电流的流动方向。
根据不同的工作原理和结构特点,二极管可以分为多种类型。
下面将介绍几种常见的二极管种类。
1. 功率二极管
功率二极管是一种用于承受高功率的二极管。
它通常具有较大的封装和散热表面,以便有效地散热。
功率二极管通常用于高电压、高电流的电路中,如电源供应器、变流器等。
2. 整流二极管
整流二极管也被称为整流器,用于将交流电信号转换为直流电信号。
整流二极管通常由硅或其他半导体材料制成,具有单向导电性,可以有效地将正负半周波形转换为单向电流。
3. 肖特基二极管
肖特基二极管是一种速度快、开启压低的二极管。
它通常由金属-半导体接面构成,具有较低的开启电压和较快的开启反应速度。
肖特基二极管适用于高频电路和快速开关电路。
4. 光电二极管
光电二极管也称为光敏二极管,是一种能够将光信号转换为电信号的二极管。
光电二极管通常由半导体材料制成,具有灵敏的光电转换效率。
它广泛应用于光通信、光测量等领域。
5. 双极型二极管
双极型二极管是一种同时具有N型和P型半导体材料的二极管。
它具有两个P-N结,可以实现双向导通。
双极型二极管在逻辑电路、放大电路等方面有着广泛的应用。
以上是几种常见的二极管种类,每种类型的二极管都具有不同的用途和特点。
选择适合的二极管种类对电路的性能和稳定性至关重要。
希望以上内容可以对二极管的种类有所了解。
二极管的应用电路原理图

二极管的应用电路原理图一、二极管简介二极管是一种最基本的电子元件,它具有具有单向导电性的特性。
根据材料的不同,二极管分为硅二极管和锗二极管。
其应用广泛,从小型电子设备到大型电力电子设备,都会使用到二极管。
二、二极管的基本原理二极管是由P型半导体和N型半导体组成的。
在P型半导体中,硅元素的空位较多,成为空穴(P为正电,代表正电荷缺失);而在N型半导体中,杂质的附加导致了额外的自由电子,形成负电荷。
当P型半导体和N型半导体连接在一起时,形成了PN结。
由于正电荷和负电荷之间存在电势差,形成了电场。
在电场的作用下,电子从N型半导体流向P型半导体,而空穴则从P型半导体流向N型半导体。
这个过程被称为二极管的正向偏置。
反过来,当二极管的正向电压减小或者反向电压增加时,电场减小,电子和空穴被阻隔,电流无法通过。
这个过程被称为二极管的反向偏置。
三、二极管的应用电路原理图下面将介绍一些常见的二极管应用电路原理图。
1. 整流电路整流电路是二极管最常见的应用之一。
它可以将交流电转换为直流电。
整流电路通常由一个或多个二极管和若干电阻组成。
二极管只允许电流在一个方向上通过,因此在交流电输入时,二极管将正向导通,只有一个方向的电流通过,实现了电流的整流效果。
2. 稳压电路稳压电路是通过利用二极管的特性来保持电路的稳定工作电压的电路。
在稳压电路中,二极管常与电阻、电容等元件配合使用。
常见的稳压电路有Zener稳压电路和电流源稳压电路。
3. 负电源电路负电源电路是通过二极管和电容元件组成的电路,用于提供负电压。
负电源电路常用于运算放大器、模拟电路等应用中。
4. 开关电路二极管也常被用作开关元件,在数字电子电路中应用广泛。
当二极管的正向偏置电压大于二极管的压降时,二极管处于导通状态,电流可以通过。
当正向偏置电压小于二极管的压降时,二极管处于截止状态,电流不能通过。
四、总结二极管是一种重要的电子元件,不仅有理论基础,也有广泛的应用。
fr4007二极管参数

fr4007二极管参数1. 简介二极管是一种常见的电子元件,具有单向导电性质,常用于电路中的整流、开关和保护等功能。
本文将重点介绍FR4007二极管的参数及其在实际应用中的特点。
2. FR4007二极管的基本参数FR4007是一种常见的快恢复二极管,其主要参数包括最大反向电压、最大正向电流、正向压降和反向恢复时间等。
FR4007具有最大反向电压为1000V,最大正向电流为1A,正向压降为1V以及快速反向恢复时间。
3. FR4007二极管特点3.1 高反向耐压能力FR4007具有较高的最大反向电压能力,达到1000V。
这使得它在高压应用中能够稳定工作,并提供可靠的保护作用。
3.2 高正向导通能力该二极管具有较高的最大正向电流能力,达到1A。
这使得它在高功率应用中可以承受较大负载,并保持稳定性能。
3.3 低正向压降FR4007具有较低的正向压降(约为1V),这意味着在正向导通时,它能够提供较低的功耗和较高的效率。
3.4 快速反向恢复时间该二极管具有快速的反向恢复时间,这意味着在正向导通切换到反向截止时,它能够迅速恢复到截止状态。
这有助于降低开关过程中的能量损耗和提高整体效率。
4. FR4007二极管应用4.1 整流器由于FR4007具有较高的反向耐压和正向导通能力,它常被用作整流器。
在交流电源中,FR4007可以将交流电转换为直流电,并提供稳定的输出。
4.2 开关电路由于该二极管具有快速的反向恢复时间和较低的正向压降,FR4007常被用作开关电路中的保护元件。
它可以快速切换,并提供可靠且稳定的保护作用。
4.3 逆变器FR4007还可应用于逆变器中。
逆变器将直流电转换为交流电,并常用于太阳能发电系统等领域。
该二极管在逆变过程中可以提供高效率和稳定性能。
4.4 电源管理FR4007还可用于电源管理领域,如电源开关、电源适配器等。
其高反向耐压能力和高正向导通能力使得它能够在高压和高功率的场景下稳定工作。
5. 总结FR4007二极管作为一种常见的快恢复二极管,具有高反向耐压、高正向导通能力、低正向压降和快速反向恢复时间等特点。
二极管、三极管、晶闸管简介

5、 二极管作用: 整流:将交流电信号转换成直流电信号。 检波:用于高频信号的调解(信号转换)。 发光:用于装饰或各种信号指示。 变容:用于各种自动调谐电路。 光电:用于光的测量;当制成大面积的光电二极管,可当做一种能源,称为光电池。
整流(利用单向导电性)
把交流电变为直流电,称为整流。一个简单的二极管半波整流电路如图(a)所示。若二极管为理想二极管,当输入一 正弦波时,由图可知:正半周时,二极管导通(相当开关闭合),vo=vi;负半周时,二极管截止(相当开关打开), vo =0。其输入、输出波形见图(b)。整流电路是直流电源的一个组成部分。
vi
+
D
+
0
t
vi
RL
vo
vo
-
-
0
t
(a)
(b)
稳压
稳压二极管的特点就是反向通电尚未击穿前,其两端的电压基本保持不变。这样,当把稳压管接 入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电压变动时,负载两端的电压 将基本保持不变。 稳压二极管在电路中常用“ZD”加数字表示
1、正常二极管
二极管、三极管、晶闸管简介
晶体二极管(Diode)
1、二极管的构成 核心是PN结, P性材料和N性材料结合, 有2个出线 端,即二极管有正、负两个极
应用电路
整
稳
流
压
正极
positive
PN
负极
negative
限
幅
(a)
正极
负极
(b)
2、二极管的电路符号: D VD 3、 基本特性:单向导电性
4、分类: 根据材质分为:1)硅二极管(导通电压:0.5~0.7V) 2) 锗二极管(导通电压:0.2~0.3V) 根据用途分:整流二极管、检波二极管、稳压二极管、发光二极管、光电二极管、变容二极管等
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、根据特性分类点接触型二极管,按正向和反向特性分类如下。
一般用点接触型二极管这种二极管正如标题所说的那样,通常被使用于检波和整流电路中,是正向和反向特性既不特别好,也不特别坏的中间产品。
如:SD34、SD46、1N34A等等属于这一类。
高反向耐压点接触型二极管是最大峰值反向电压和最大直流反向电压很高的产品。
使用于高压电路的检波和整流。
这种型号的二极管一般正向特性不太好或一般。
在点接触型锗二极管中,有SD38、1N38A、OA81等等。
这种锗材料二极管,其耐压受到限制。
要求更高时有硅合金和扩散型。
高反向电阻点接触型二极管正向电压特性和一般用二极管相同。
虽然其反方向耐压也是特别地高,但反向电流小,因此其特长是反向电阻高。
使用于高输入电阻的电路和高阻负荷电阻的电路中,就锗材料高反向电阻型二极管而言,SD54、1N54A等等属于这类二极管。
高传导点接触型二极管它与高反向电阻型相反。
其反向特性尽管很差,但使正向电阻变得足够小。
对高传导点接触型二极管而言,有SD56、1N56A 等等。
对高传导键型二极管而言,能够得到更优良的特性。
这类二极管,在负荷电阻特别低的情况下,整流效率较高。
肖特基二极管SBD肖特基势垒二极管SBD(Schottky Barrier Diode,简称肖特基二极管)是近年来间世的低功耗、大电流、超高速半导体器件。
其反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右,而整流电流却可达到几千安培。
这些优良特性是快恢复二极管所无法比拟的。
中、小功率肖特基整流二极管大多采用封装形式。
1.结构原理肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的多属-半导体器件。
因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,所以电子便从浓度高的B 中向浓度低的A中扩散。
显然,金属A中没有空穴,也就不存在空穴自A向B的扩散运动。
随着电子不断从B扩散到A,B 表面电子浓度表面逐渐降轻工业部,表面电中性被破坏,于是就形成势垒,其电场方向为B→A。
但在该电场作用之下,A中的电子也会产生从A→B的漂移运动,从而消弱了由于扩散运动而形成的电场。
当建立起一定宽度的空间电荷区后,电场引起的电子漂移运动和浓度不同引起的电子扩散运动达到相对的平衡,便形成了肖特基势垒。
典型的肖特基整流管的内部电路结构如图1所示。
它是以N型半导体为基片,在上面形成用砷作掺杂剂的N-外延层。
阳极(阻档层)金属材料是钼。
二氧化硅(SiO2)用来消除边缘区域的电场,提高管子的耐压值。
N型基片具有很小的通态电阻,其掺杂浓度较H-层要高100%倍。
在基片下边形成N+阴极层,其作用是减小阴极的接触电阻。
通过调整结构参数,可在基片与阳极金属之间形成合适的肖特基势垒,当加上正偏压E时,金属A和N型基片B分别接电源的正、负极,此时势垒宽度Wo变窄。
加负偏压-E时,势垒宽度就增加,见图2。
综上所述,肖特基整流管的结构原理与PN结整流管有很大的区别通常将PN结整流管称作结整流管,而把金属-半导管整流管叫作肖特基整流管,近年来,采用硅平面工艺制造的铝硅肖特基二极管也已问世,这不仅可节省贵金属,大幅度降低成本,还改善了参数的一致性。
肖特基整流管仅用一种载流子(电子)输送电荷,在势垒外侧无过剩少数载流子的积累,因此,不存在电荷储存问题(Qrr→0),使开关特性获得时显改善。
其反向恢复时间已能缩短到10ns以内。
但它的反向耐压值较低,一般不超过去时100V。
因此适宜在低压、大电流情况下工作。
利用其低压降这特点,能提高低压、大电流整流(或续流)电路的效率。
2.性能比较表1列出了肖特基二极管现超快恢复二极管、快恢复二极管、硅高频整流二极管、硅高速开关二极管的性能比较。
由表可见,硅高速开关二极管的trr虽极低,但平均整流电流很小,不能作大电流整流用。
3.检测方法下面通过一个实例来介绍检测肖特基二极管的方法。
检测内容包括:①识别电极;②检查管子的单向导电性;③测正向导压降VF;④测量反向击穿电压VBR。
被测管为B82-004型肖特基管,共有三个管脚,外形如图4所示,将管脚按照从左至右顺序编上序号①、②、③。
选择500型万用表的R×1档进行测量,全部数据整理成表2。
测试结论:第一,根据①—②、③—④间均可测出正向电阻,判定被测管为共阴对管,①、③脚为两个阳极,②脚为公共阴极。
第二,因①—②、③—②之间的正向电阻只几欧姆,而反向电阻为无穷大,故具有单向导电性。
第三,内部两只肖特基二极管的正向导通压降分别为0.315V、0.33V,均低于手册中给定的最大允许值VFM(0.55V)。
另外使用ZC 25-3型兆欧表和500型万用表的250VDC档测出,内部两管的反向击穿电压VBR依次为140V、135V。
查手册,B82-004的最高反向工作电压(即反向峰值电压)VBR=40V。
表明留有较高的安全系数.稳压二极管稳压二极管(又叫齐纳二极管)它的电路符号是: 此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件.在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用.其伏安特性,稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压.稳压管的应用:1、浪涌保护电路(如图2):稳压管在准确的电压下击穿,这就使得它可作为限制或保护之元件来使用,因为各种电压的稳压二极管都可以得到,故对于这种应用特别适宜.图中的稳压二极管D是作为过压保护器件.只要电源电压VS超过二极管的稳压值D就导通,使继电器J吸合负载RL就与电源分开.2、电视机里的过压保护电路(如图3):EC是电视机主供电压,当EC电压过高时,D导通,三极管BG导通,其集电极电位将由原来的高电平(5V)变为低电平,通过待机控制线的控制使电视机进入待机保护状态.3、电弧抑制电路如图4:在电感线圈上并联接入一只合适的稳压二极管(也可接入一只普通二极管原理一样)的话,当线圈在导通状态切断时,由于其电磁能释放所产生的高压就被二极管所吸收,所以当开关断开时,开关的电弧也就被消除了.这个应用电路在工业上用得比较多,如一些较大功率的电磁吸控制电路就用到它.4、串联型稳压电路(如图5):在此电路中,串联稳压管BG的基极被稳压二极管D钳定在13V,那么其发射极就输出恒定的12V电压了.这个电路在很多场合下都有应用Transient Voltage Suppressors(TVS)瞬态电压抑制二极管电压及电流的瞬态干扰是造成电子电路及设备损坏的主要原因,常给人们带来无法估量的损失。
这些干扰通常来自于电力设备的起停操作、交流电网的不稳定、雷击干扰及静电放电等,瞬态干扰几乎无处不在、无时不有,使人感到防不胜防。
幸好,一种高效能的电路保护器件TVS的出现使瞬态干扰得到了有效抑制TVS(TRANSIENT VOLTAGE SUPPRESSOR)或称瞬变电压抑制二极管是在稳压管工艺基础上发展起来的一种新产品,其电路符号和普通稳压二极管相同,外形也与普通二极管无异,当TVS管两端经受瞬间的高能量冲击时,它能以极高的速度(最高达1*10-12秒)使其阻抗骤然降低,同时吸收一个大电流,将其两端间的电压箝位在一个预定的数值上,从而确保后面的电路元件免受瞬态高能量的冲击而损坏。
TVS的特性及其参数(参数表见附表)S的特性如果用图示仪观察TVS的特性,就可得到图1中左图所示的波形。
如果单就这个曲线来看,TVS管和普通稳压管的击穿特性没有什么区别,为典型的PN结雪崩器件。
但这条曲线只反映了TVS特性的一个部分,还必须补充右图所示的特性曲线,才能反映TVS 的全部特性。
这是在双踪示波器上观察到的TVS管承受大电流冲击时的电流及电压波形。
图中曲线1是TVS管中的电流波形,它表示流过TVS管的电流由1mA突然上升到峰值,然后按指数规律下降,造成这种电流冲击的原因可能是雷击、过压等。
曲线2是TVS管两端电压的波形,它表示TVS中的电流突然上升时,TVS两端电压也随之上升,但最大只上升到VC值,这个值比击穿电压VBR略大,从而对后面的电路元件起到保护作用。
2、TVS的参数TVS在电路中和稳压管一样,是反向使用的,图2所示为单向TVS的工作曲线图。
各参数说明如下:A.击穿电压(VBR):TVS在此时阻抗骤然降低,处于雪崩击穿状态。
B.测试电流(IT):TVS的击穿电压VBR在此电流下测量而得。
一般情况下IT取1MA。
C.反向变位电压(VRWM):TVS的最大额定直流工作电压,当TVS两端电压继续上升,TVS将处于高阻状态。
此参数也可被认为是所保护电路的工作电压。
D.最大反向漏电流(IR):在工作电压下测得的流过TVS的最大电流。
E.最大峰值脉冲电流(IPP):TVS允许流过的最大浪涌电流,它反映了TVS的浪涌抑制能力。
F.最大箝位电压(VC):当TVS管承受瞬态高能量冲击时,管子中流过大电流,峰值为IPP,端电压由VRWM值上升到VC值就不再上升了,从而实现了保护作用。
浪涌过后,随时间IPP以指数形式衰减,当衰减到一定值后,TVS两端电压由VC开始下降,恢复原来状态。
最大箝位电压VC与击穿电压VBR之比称箝位因子Cf,表示为Cf= VC /VBR,一般箝位因子仅为1.2~1.4。
G.峰值脉冲功率(PP):PP按峰值脉冲功率的不同TVS分为四种,有500W、600W、1500W和5000W。
最大峰值脉冲功率:最大峰值脉冲功率为:PN=VC·IPP。
显然,最大峰值脉冲功率愈大,TVS所能承受的峰值脉冲电流IPP愈大;另一方面,额定峰值脉冲功率PP确定以后,所TVS能承受的峰值脉冲电流IPP,随着最大箝位电压VC的降低而增加。
TVS最大允许脉冲功率除了和峰值脉冲电流和箝位电压有关外,还和脉冲波形、脉冲持续时间和环境温度有关。
对于几种不同的脉冲波形PN=K·VC·IPP,其中K为功率因数,图3给出了几种典型脉冲波形的K值。
图4所示为最大允许脉冲功率和脉冲时间的关系曲线。
图中描绘了500W和1.5KW系列TVS的最大允许脉冲功率随脉冲持续时间增加的降额曲线,典型的脉冲时间为1ms。
500W和1.5KW即为脉冲持续时间为1ms时的最大允许脉冲功率。
图5所示为最大允许脉冲功率随环境温度增高的降额曲线,曲线表明,环境温度超过25℃,最大允许脉冲功率呈线性下降:在150℃时,脉冲功率为零。
TVS所能承受的瞬时脉冲峰值可达数百安培,其箝位响应时间仅为1*10-12 秒;TVS所允许的正向浪涌电流,在25℃,1/120秒的条件下,也可达50-200安培。