蔡觉平老师西电VerilogHDL上机大作业硬件描述语言_微电子学院
Verilog HDL数字集成电路设计原理与应用 作者 蔡觉平_ 第1章

HDL语言发展至今,产生了很多种对于数字集成电路 的描述性设计语言,并成功地应用于设计的各个阶段(建模、 仿真、验证和综合等)。20世纪80年代至今,已出现了上百 种硬件描述语言,它们对设计自动化起到了极大的促进和 推动作用,主要有Gateway Design Automation公司提出的 Verilog HDL、美国国防部高级研究计划局(DARPA)设计的 VHDL、美国国防部RPASSP(Rapid Prototyping of Application Specification Signal Processing)计划提出的基于 18 面向对象的OO VHDL(Object Oriented VHDL)、美国杜克 大学的DE VHDL(Duke Extended VHDL)
第1章 Verilog HDL数字集成电路 设计方法概述
➢1.1 数字集成电路的发展和设计方法的演变
➢ 1.2 硬件描述语言
➢1.3 Verilog HDL的发展和国际标准
➢1.4 Verilog HDL和VHDL
➢1.5 Verilog HDL在数字集成电路设计中的优点
➢1.6 功能模块的可重用性
20世纪80年代(第二次变革时期)是标准工艺加工线 (Foundry)公司与IC设计公司共同发展的阶段,主流产品是 MPU、微控制器(Micro Control Unit,MCU)及专用 IC(Application-Specific IC,ASIC)。这时,Foundry和IC设 计公司相结合的方式开始成为集成电路产业发展的新模式。 这一时期,IC产业开始进入以客户为导向的阶段。首先, 标准化功能的IC已难以满足整机客户对系统成本、可靠性 等的要求;其次,由于小尺寸加工技术的进步,软件的硬 9 件化已成为可能,超大规模集成电路(Very Large Scale Integrated,VLSI)开始成为主流芯片;
FPGA-Verilog试题(西安电子科技大学)

西安电子科技大学考试时间分钟试题题号一二三四五六七八九十总分分数1.考试形式:闭(开)卷;2.本试卷共四大题,满分100分。
班级学号姓名任课教师一、选择题(每题2分,共18分)1. 下面哪个是可以用verilog语言进行描述,而不能用VHDL语言进行描述的级别?( A )(A) 开关级 (B)门电路级 (C) 体系结构级 (D) 寄存器传输级2.在verilog中,下列语句哪个不是分支语句?( D )(A) if-else (B) case (C) casez (D) repeat3.下列哪些Verilog的基本门级元件是多输出( D )(A) nand (B) nor (C) and (D) not4.Verilog连线类型的驱动强度说明被省略时,则默认的输出驱动强度为( B )(A) supply (B) strong (C) pull (D) weak5.元件实例语句“notif1 #(1:3:4,2:3:4,1:2:4) U1(out,in,ctrl);”中截至延迟的典型值为( B )(A) 1 (B) 2 (C) 3 (D) 46.已知“a =1b’1; b=3b'001;”那么{a,b}=( C )(A) 4b'0011 (B) 3b'001 (C) 4b'1001 (D) 3b'101第 2 页共 8 页7.根据调用子模块的不同抽象级别,模块的结构描述可以分为(ABC )(A) 模块级 (B)门级 (C) 开关级 (D) 寄存器级8.在verilog语言中,a=4b'1011,那么 &a=(D )(A) 4b'1011 (B) 4b'1111 (C) 1b'1 (D) 1b'09.在verilog语言中整型数据与( C )位寄存器数据在实际意义上是相同的。
(A) 8 (B) 16 (C) 32 (D) 64二、简答题(2题,共16分)1.Verilog HDL语言进行电路设计方法有哪几种(8分)1、自上而下的设计方法(Top-Down)2、自下而上的设计方法(Bottom-Up)3、综合设计的方法2.specparam语句和parameter语句在参数说明方面不同之处是什么(8分)。
Verilog HDL硬件描述语言实验报告

Verilog HDL实验报告学院:应用科学学院班级:电科13-2班姓名:学号:实验一组合逻辑电路设计(1)实验目的(1)熟悉FPGA设计流程;(2)熟悉DE2开发板的基本元件使用(开关、发光二极管);(3)学习基本组合逻辑元件的Verilog HDL设计以及实现(数据选择器);(4)掌握连续赋值语句使用;实验内容本实验的目的是学习如何连接一个简单的外部输入、输出器件到FPGA 芯片以及如何在FPGA器件上实现逻辑电路控制简单外部器件。
考虑使用DE2开发板上拨动开关SW17-0(toggle Switch)作为电路的输入。
使用发光二极管(Light Emitt-ing Diodes,LEDs)和7段显示数码管(7-segment Display)作为电路的输出。
第1部分连续赋值语句步骤1、新建Quartus II工程,选择Cyclone II EP2C35F672C6作为目标芯片,该芯片是DE2开发板上的FPGA芯片;2、编写Verilog HDL代码加入到Quaruts II工程;3、引脚分配,并编译工程该工程;4、将编译好的电路下载到FPGA器件。
扳动拨动开关观察相应的发光二极管显示,验证电路功能是否正确;代码module part1(input wire[2:0]SW,output wire LEDR);wire r_g,s_g,qa,qb;and u1(r_g, SW[0], SW[1]);and u2(s_g, SW[1], SW[2]);nor u3(qa, r_g, qb);nor u4(qb, qa, s_g);assign LEDR = qa;endmodule第2部分简单的数据选择器步骤1 .新建Quartus II工程;2.在工程中加入8位宽的2选1数据选择器Verilog HDL代码。
使用DE2开发板上的SW17作为输入s,开关SW7-0作为输入X,SW15-8作为输入Y。
VerilogHDL硬件描述语言PPT课件

三、 Verilog HDL硬件描述语言
1
整体 概述
2
一 请在这里输入您的主要叙述内容
二
请在这里输入您的主要 叙述内容
三 请在这里输入您的主要叙述内容
课程安排
一、可编程逻辑器件基础 二、数字系统设计方法 三、Verilog HDL硬件描述语言 四、开发软件介绍 五、应用实验 六、考核方式
21
2.Verilog HDL建模概述
▪ 2.7 三种建模方式
结构化描述方式
通过对电路结构的描述来建模,即通过对器件的调用 (HDL概念称为“例化”),并使用线来连接各器件 的描述方式
4
1.Verilog HDL概述
1.1什么是Verilog HDL?
Verilog HDL(Hardware Discription Language) 一种硬件描述语言,用于从算法级、门级到开关级 的多种抽象设计层次的数字系统建模。
5
1.Verilog HDL概述
1.2Verilog在VLSI设计过程中的位置
实际器件相类比 每个模块要进行端口定义,并说明输入、输出口,
然后对模块的功能进行逻辑描述(测试模块例外) 书写格式自由,一行可以写几个语句,一个语句可
以分几行写。 除end语句结束
16
2.Verilog HDL建模概述
▪ 2.4 模块语法
17
2.Verilog HDL建模概述
7
1.Verilog HDL概述
1.4 Verilog与VHDL
➢使用情况 •美国:Verilog: 60%, VHDL: 40% •台湾:Verilog: 50%, VHDL: 50%
➢两者的区别: •VHDL侧重于系统级描述,从而更多的为系统 级设计人员所采用 •Verilog侧重于电路级描述,从而更多的为电路 级设计人员所采用
verilog硬件描述语言上机

verilog硬件描述语言上机《硬件描述语言》上机作业西电微电子\第一题:用Verilog语言的结构描述和行为描述分别设计下面的电路。
A[0] Array B[0]A[1]B[1]A[2]B[2]结构描述:电路设计:module hw1(A,B,Y); input[2:0] A,B;output Y;wire w1,w2,w3;xor U1(w1,A[0],B[0]);xor U2(w2,A[1],B[1]);xor U3(w3,A[2],B[2]);nor U4(Y,w1,w2,w3);endmodule仿真测试:module test_hw1;reg[2:0] A,B;wire Y;hw1 U1(A,B,Y);initialbeginA=3'b000;B=3'b000;#50 A=3'b000;B=3'b000;#50 A=3'b111;B=3'b111;#50 A=3'b000;B=3'b110;#50 A=3'b111;B=3'b000;#50 A=3'b110;B=3'b110;#50 A=3'b011;B=3'b010;#50 A=3'b001;B=3'b011;#50 A=3'b111;B=3'b010;#50 $stop;endinitial $monitor($time,"\tA=%d\tB=%d\tY=%d",A,B,Y); Endmodule行为描述:电路设计:module hw2(A,B,Y);input[2:0] A,B;output Y;wire Y;assign Y=~((A[0]^B[0])||(A[1]^B[1])||(A[2]^B[2])); endmodule 仿真测试:module test_hw2;reg[2:0] A,B;wire Y;hw2 U1(A,B,Y);initialbeginA=3'b000;B=3'b000;#50 A=3'b000;B=3'b000;#50 A=3'b111;B=3'b111;#50 A=3'b000;B=3'b110;#50 A=3'b111;B=3'b000;#50 A=3'b110;B=3'b110;#50 A=3'b011;B=3'b010;#50 A=3'b001;B=3'b011;#50 A=3'b111;B=3'b010;#50 $stop;endinitial $monitor($time,"\tA=%b\tB=%b\tY=%b",A,B,Y); endmodule第二题:参数化电路设计1. 用行为描述方式实现下图所示的具有“one -hot”(独热)状态的环形计数器。
verilog hdl实验报告

verilog hdl实验报告《Verilog HDL实验报告》Verilog HDL(硬件描述语言)是一种用于描述电子系统的硬件的语言,它被广泛应用于数字电路设计和硬件描述。
本实验报告将介绍Verilog HDL的基本概念和使用方法,并通过实验展示其在数字电路设计中的应用。
实验目的:1. 了解Verilog HDL的基本语法和结构2. 掌握Verilog HDL的模块化设计方法3. 熟悉Verilog HDL的仿真和综合工具的使用实验内容:1. Verilog HDL的基本语法和结构Verilog HDL是一种硬件描述语言,其语法和结构类似于C语言。
它包括模块定义、端口声明、信号赋值等基本元素。
在本实验中,我们将学习如何定义Verilog模块,并使用端口声明和信号赋值描述数字电路的行为。
2. Verilog HDL的模块化设计方法Verilog HDL支持模块化设计,可以将复杂的电路分解为多个模块,每个模块描述一个子电路的行为。
在本实验中,我们将学习如何设计和实现Verilog模块,并将多个模块组合成一个完整的数字电路。
3. Verilog HDL的仿真和综合工具的使用Verilog HDL可以通过仿真工具进行功能验证,也可以通过综合工具生成实际的硬件电路。
在本实验中,我们将使用Verilog仿真工具对设计的数字电路进行功能验证,并使用综合工具生成对应的硬件电路。
实验步骤:1. 学习Verilog HDL的基本语法和结构2. 设计一个简单的数字电路,并实现Verilog模块描述其行为3. 使用仿真工具对设计的数字电路进行功能验证4. 使用综合工具生成对应的硬件电路实验结果:通过本实验,我们学习了Verilog HDL的基本概念和使用方法,并成功设计和实现了一个简单的数字电路。
我们使用仿真工具对设计的数字电路进行了功能验证,并使用综合工具生成了对应的硬件电路。
实验结果表明,Verilog HDL在数字电路设计中具有重要的应用价值。
Verilog HDL是一种硬件描述语言

Verilog HDL是一种硬件描述语言(myvanity发布/index.asp) 第一章简介Verilog HDL是一种硬件描述语言,用于从算法级、门级到开关级的多种抽象设计层次的数字系统建模。
被建模的数字系统对象的复杂性可以介于简单的门和完整的电子数字系统之间。
数字系统能够按层次描述,并可在相同描述中显式地进行时序建模。
Verilog HDL 语言具有下述描述能力:设计的行为特性、设计的数据流特性、设计的结构组成以及包含响应监控和设计验证方面的时延和波形产生机制。
所有这些都使用同一种建模语言。
此外,Verilog HDL语言提供了编程语言接口,通过该接口可以在模拟、验证期间从设计外部访问设计,包括模拟的具体控制和运行。
Verilog HDL语言不仅定义了语法,而且对每个语法结构都定义了清晰的模拟、仿真语义。
因此,用这种语言编写的模型能够使用Verilog仿真器进行验证。
语言从C编程语言中继承了多种操作符和结构。
Verilog HDL提供了扩展的建模能力,其中许多扩展最初很难理解。
但是,Verilog HDL 语言的核心子集非常易于学习和使用,这对大多数建模应用来说已经足够。
当然,完整的硬件描述语言足以对从最复杂的芯片到完整的电子系统进行描述。
1.1 历史Verilog HDL语言最初是于1983年由Gateway Design Automation公司为其模拟器产品开发的硬件建模语言。
那时它只是一种专用语言。
由于他们的模拟、仿真器产品的广泛使用,Verilog HDL 作为一种便于使用且实用的语言逐渐为众多设计者所接受。
在一次努力增加语言普及性的活动中,Verilog HDL语言于1990年被推向公众领域。
Open Verilog International (OVI)是促进Verilog 发展的国际性组织。
1992年,OVI决定致力于推广Verilog OVI标准成为IEEE标准。
这一努力最后获得成功,Verilog语言于1995年成为IEEE标准,称为IEEE Std 1364-1995。
Verilog HDL数字集成电路设计原理与应用 作者 蔡觉平_ 第2章

字,它是Verilog HDL语言内部的专用词,是事先定义好的 确认符,用来组织语言结构。用户不能随便使用这些关键
字。需注意的是,所有关键字都是小写的。例如,
ALWAYS不是关键字,它只是标识符,与always(关键字) 是不同的。表2.1-1所示为Verilog HDL的常用关键字。 11
2.1.1 空白符
空白符包括空格符(\b)、制表符(\t)、换行符和换页符。
空白符使代码看起来结构清晰,阅读起来更方便。在编译 和综合时,空白符被忽略。
Verilog HDL程序可以不分行,也可以加入空白符采用
多行编写。
4
例2.1-1 空白符使用示例。
initial begin a = 3'b100; b = 3'b010; end
表2.1-1 Verilog HDL中的常用关键字
always and assign attribute begin buf bufif0 bufif1 case casex casez cmos deassign end endattribute endcase endmodule endfunction endprimitive endspecify endtable endtask event for force forever fork function highz0 highz1 if initial inout input integer join large macromodule medium module nand negedge nmos nor not notif0 notif1 or output parameter pmos posedge primitive pull0 pull1 pullup pulldown rcmos real realtime reg release repeat rtran rtranif0 rtranif1 scalared signed small specify specparam strength strong0 strong1 supply0 supply1 table task time tran tranif0 tranif1 tri tri0 tri1 triand trior trireg unsigned vectored wait wand weak0 weak1 while wire wor xnor xor
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《Verilog HDL数字集成电路设计原理与应用》上机作业******* 班级:******* 学号:*******姓名:verilog HDL描述与仿真。
题目1:数字集成电路的设计和仿真软件;(1)学习使用Modelsim要求:中的例子;2)练习教材7.2.1 ((3)掌握设计代码和测试代码的编写;(4)掌握测试仿真流程;Modelsim软件的波形验证方式。
(5)掌握解答:语句块的区别,并写出下面信号语句块和begin-endfork-join:题目2 简述对应的程序代码AB500ns40201030解答:(1)begin-end语句块和fork-join语句块的区别:1、执行顺序:begin-end语句块按照语句顺序执行,fork-join语句块所有语句均在同一时刻执行;2、语句前面延迟时间的意义:begin-end语句块为相对于前一条语句执行结束的时间,fork-join语句块为相对于并行语句块启动的时间;3、起始时间:begin-end语句块为首句开始执行的时间,fork-join语句块为转入并行语句块的时间;4、结束时间:begin-end语句块为最后一条语句执行结束的时间,fork-join 语句块为执行时间最长的那条语句执行结束的时间;5、行为描述的意义:begin-end语句块为电路中的数据在时钟及控制信号的作用下,沿数据通道中各级寄存器之间的传送过程。
fork-join语句块为电路上电后,各电路模块同时开始工作的过程。
(2)程序代码:Begin-end语句:module initial_tb1;reg A,B;initialbeginA=0;B=1;#10 A=1;B=0;#10 B=1;#10 A=0;#10 B=0;#10 A=1;B=1;endendmoduleFrk-join语句:module wave_tb2;reg A,B;parameter T=10;initialforkA=0;B=1;#T A=1;B=0;#(2*T) B=1;#(3*T) A=0;#(4*T) B=0;#(5*T) A=1;B=1;joinendmodule3. 分别用阻塞和非阻塞赋值语句描述如下图所示移位寄存器的电路图。
题目out2out1out0dinout3QQDDQQD clk解答:)阻塞赋值语句(1module block2(din,clk,out0,out1,out2,out3);input din,clk; output out0,out1,out2,out3;reg out0,out1,out2,out3;always@(posedge clk)beginout0=din; out1=out0;out2=out1; out3=out2;end endmodule)非阻塞赋值语句(2module non_block1 (din,clk,out0,out1,out2,out3);input din,clk; output out0,out1,out2,out3;reg out0,out1,out2,out3;always@(posedge clk) begin out0<=din;out1<=out0;out2<=out1;out3<=out2;endendmodule位同步计数器:设计题目416位同步计数器结构和电路特点;1)分析16要求:()用硬件描述语言进行设计;(2)编写测试仿真并进行仿真。
(3解答:)电路特点:同步计数器的时间信号是同步的;每当到达最高计数后就会重新计数。
(1)程序代码:(2module comp_16 (count, clk, rst );output [15:0] count;input clk,rst; reg [15:0] count;always @ (posedge clk) if (rst) count<=16'b0000000000000000; else if (count==16'b1111111111111111) count<=16'b0000000000000000;else count<=count+1;endmodule)仿真代码:(3module comp_16_tb;wire [15:0] count;reg clk,rst;comp_16 U1 (count, clk, rst );always #1 clk=~clk;initial begin clk=0;rst=0;#1 rst=1; #10 rst=0;#10 rst=1;#10 rst=0;#99999 $finish;end endmodule题目5. 试用Verilog HDL门级描述方式描述如下图所示的电路。
D3T3D2T2ZD T D TSS1解答:module zy(D0,D1,D2,D3,S1,S2,T0,T1,T2,T3,Z);output Z;input D0,D1,D2,D3,S1,S2;wire T0,T1,T2,T3,wire1,wire2;not U1(wire1,S1),U2(wire2,S2);and U3(T0,D0,wire2,wire1),U4(T1,D1,S1,wire1),U5(T2,D2,S1,wire2),U6(T3,D3,S1,S2);or U7(Z,T0,T1,T2,T3,);endmodule题目6. 试用查找真值表的方式实现真值表中的加法器,写出Verilog HDL代码:Cin ain bin sum Cout000000001100101110100101000111解答:module homework6(SUM,COUT,A,B,CIN);output SUM,COUT;input A,B,CIN;reg SUM,COUT;always@(A or B or CIN)case({A,B,CIN}) 3'b000:SUM<=0; 3'b000:COUT<=0; 3'b001:SUM<=1; 3'b001:COUT<=0; 3'b010:SUM<=1; 3'b010:COUT<=0;3'b011:SUM<=0; 3'b011:COUT<=1; 3'b100:SUM<=1; 3'b100:COUT<=0;3'b101:SUM<=0; 3'b101:COUT<=1; 3'b110:SUM<=0; 3'b110:COUT<=1;3'b111:SUM<=1; 3'b111: COUT<=1; endcase endmodule位同步加法器和乘法器7题目:设计1616位同步加法器和乘法器结构和电路特点;)分析要求:(1)用硬件描述语言进行设计;(2)编写测试仿真并进行仿真。
( 3解答:(1)16位同步加法器和乘法器结构和电路特点:加法器的进位只用考虑一位,但是乘法器的进位要考虑到32位才行。
(2)程序代码:16位同步加法器:module adder(a,b,c,sum,cout);output [15:0]sum;output cout;input [15:0]a,b;input c;assign {cout,sum}=a+b+c;endmodule16位同步乘法器:module multiplier(a,b,mul);input [15:0]a,b;output [31:0]mul;assign mul=a*b;endmodule(3)仿真代码:16位同步加法器:module adder_tb;reg [15:0]a,b;reg c;wire [15:0]sum;wire cout;initialbegina=8;b=8;c=1;endinitialbegin#10 a=16'b1111111111111111;#10 b=1;endadder U2(.a (a),.b (b),.c(c),.cout(cout),.sum(sum));endmodule16位同步乘法器:module multiplier_tb;reg [15:0]a,b;wire [31:0]mul;initialbegina=3;b=8;end initialbegin#10 a=100; #15 b=100;end multiplier U1(.a(a),.b(b),.mul(mul));endmodule仿真截图:加法器:乘法器:描述。
在图中,状态机的输入只与状态的跳转HDL8. 题目将下面的状态转移图用Verilog 有关,与状态机的输出无关,因此该状态机为摩尔型状态机。
下面为三段式描述方式。
start=0clr=1State0out=001step3=1start=1step3=0State3State1step2=0out=111out=010step2=1State2out=100解答:程序代码:module homework8(clk,out,step,clr);output [2:0]out;input step,clk,clr;reg [2:0]out;reg [1:0]state,next_state;always @(posedge clk)state<=next_state;always @(state or clr)if(clr)next_state<=0;elsecase(state)2'b00:case(step)1'b0:begin next_state<=2'b00;out<=3'b001;end1'b1:begin next_state<=2'b01;out<=3'b001;endendcase2'b01:beginout<=3'b010;next_state<=2'b10;end2'b10:case(step)1'b0:begin next_state<=2'b00;out<=3'b100;end1'b1:begin next_state<=2'b11;out<=3'b100;endendcase2'b11:case(step)1'b0:begin next_state<=2'b11;out<=3'b111;end1'b1:begin next_state<=2'b00;out<=3'b111;endendcaseendcaseendmodule仿真代码:module homework8_tb;reg clk,step,clr;wire [3:0]out;always#5 clk=~clk; initial begin clk=0; clr=1;step=1;end initial begin#5clr=0; #10 step=0; #10step=1;end homework8 U1(clk,out,step,clr);endmodule 仿真截图:Verilog HDL程序设计该电路。