上海交大第三版大学物理学答案上册

合集下载

大学物理学(第三版)上课后习题答案

大学物理学(第三版)上课后习题答案

第一章运动的描述1-1 ||与有无不同?和有无不同? 和有无不同?其不同在哪里?试举例说明.解:(1)是位移的模,是位矢的模的增量,即,;(2)是速度的模,即.只是速度在径向上的分量.∵有(式中叫做单位矢),则式中就是速度径向上的分量,∴不同如题1-1图所示.题1-1图(3)表示加速度的模,即,是加速度在切向上的分量.∵有表轨道节线方向单位矢),所以式中就是加速度的切向分量.(的运算较复杂,超出教材规定,故不予讨论)1-2 设质点的运动方程为=(),=(),在计算质点的速度和加速度时,有人先求出r=,然后根据 =,及=而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即=及=你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有,故它们的模即为而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作其二,可能是将误作速度与加速度的模。

在1-1题中已说明不是速度的模,而只是速度在径向上的分量,同样,也不是加速度的模,它只是加速度在径向分量中的一部分。

或者概括性地说,前一种方法只考虑了位矢在径向(即量值)方面随时间的变化率,而没有考虑位矢及速度的方向随间的变化率对速度、加速度的贡献。

1-3 一质点在平面上运动,运动方程为=3+5, =2+3-4.式中以 s计,,以m计.(1)以时间为变量,写出质点位置矢量的表示式;(2)求出=1 s 时刻和=2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算=0 s时刻到=4s时刻内的平均速度;(4)求出质点速度矢量表示式,计算=4 s 时质点的速度;(5)计算=0s 到=4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算=4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式).解:(1)(2)将,代入上式即有(3)∵∴(4)则(5)∵(6)这说明该点只有方向的加速度,且为恒量。

上海交大第三版大学物理学答案上册

上海交大第三版大学物理学答案上册

第一章 运动的描述1、解:设质点在x 处的速度为v ,62d d d d d d 2x txx t a +=⋅==v v ()x x xd 62d 02⎰⎰+=v v v()2 213xx +=v2、解:=a d v /d t 4=t , d v 4=t d t⎰⎰=vv 0d 4d tt tv 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰=x 2=t 3 /3+x 0 (SI)3、解: ct b t S +==d /d vc t a t ==d /d v()R ct b a n /2+=根据题意:a t =a n即()R ct b c /2+=解得cb c R t -=4、解:根据已知条件确定常量k()222/rad 4//s Rt t k ===v ω24t =ω, 24Rt R ==ωvs t 1=时,v = 4Rt 2 = 8 m/s 2s /168/m Rt dt d a t ===v22s /32/m R a n ==v()8.352/122=+=nt a a a m/s 25、解:(1) 球相对地面的初速度=+='v v v 030 m/s抛出后上升高度9.4522='=gh v m/s 离地面高度H = (45.9+10) m =55.9 m(2) 球回到电梯上时电梯上升高度=球上升高度2021)(gt t t -+=v v v 08.420==gt v s 6、解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知222s h l +=将上式对时间t 求导,得ts s t l ld d 2d d 2= 根据速度的定义,并注意到l ,s 是随t 减少的,∴tsv v t l v d d ,d d 0-==-=船绳即 θcos d d d d 00v v s lt l s l t s v ==-=-=船 或 sv s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度320222022002)(d d d d d d sv h s v s l s v s lv s v v s t sl t l st v a =+-=+-=-==船船 7、解:(1)大船看小艇,则有1221v v v-=,依题意作速度矢量图如图(a)由图可知1222121h km 50-⋅=+=v v v方向北偏西︒===87.3643arctan arctan21v v θ (2)小船看大船,则有2112v v v-=,依题意作出速度矢量图如图(b),同上法,得5012=v 1h km -⋅,方向南偏东o 87.36第二章 运动定律与力学中的守恒定律1、解:(1)位矢j t b i t a rωωsin cos += (SI)可写为t a x ωcos =,t b y ωsin =t a t x x ωωsin d d -==v ,t b ty ωωυcos d dy == 在A 点(a ,0) ,1cos =t ω,0sin =t ω E KA =2222212121ωmb m m y x =+v v 在B 点(0,b ) ,0cos =t ω,1sin =t ωE KB =2222212121ωma m m y x =+v v (2) j ma i ma F y x +==j t mb i t ma ωωωωsin cos 22--由A →B ⎰⎰-==020d cos d a a x x x t a m x F W ωω=⎰=-022221d a ma x x m ωω ⎰⎰-==b b y y t b m y F W 020dy sin d ωω=⎰-=-b mb y y m 022221d ωω2、解:A 、B 两球发生弹性正碰撞,由水平方向动量守恒与机械能守恒,得B B A A A A m m m v v v +=0①2220212121B B A A A A m m m v v v +=② 联立解出0A B A B AA m m m m v v +-=,02A BA AB m m m v v += 由于二球同时落地,∴0>A v ,B A m m >;且B B A A L L v v //=∴52==B A B A L L v v ,522=-A B Am m m 解出5/=B A m m3、解:(1) 释放后,弹簧恢复到原长时A 将要离开墙壁,设此时B 的速度为v B 0,由机械能守恒,有2/3212020B m kx v = 得mk x B 300=v A 离开墙壁后,系统在光滑水平面上运动,系统动量守恒,机械能守恒,当弹簧伸长量为x 时有022211B m m m v v v =+①202222221121212121B m m kx m v v v =++②当v 1 =v 2时,由式①解出v 1 =v 2mkx B 3434/300==v (2) 弹簧有最大伸长量时,A 、B 的相对速度为零v 1 =v 2 =3v B 0/4,再由式②解出0max 21x x =4、解:二滑块在弹力作用下将沿水平导杆作振动. 因导杆光滑,不产生摩擦阻力, 故整个系统的机械能守恒,而且沿水平方向的动量守恒(等于零).当二滑块运动到正好使弹簧垂直于二导杆时,二滑块所受的弹力的水平分力同时为零,这时二滑块的速度将分别达到其最大速度v 1和v 2且此时弹簧为原长,弹簧势能为零。

上海交大版大学物理上册答案

上海交大版大学物理上册答案

上海交大版大学物理上册答案第一章质点运动学【例题】例1-1 At= s 例1-2D 例1-3 D 例1-4 B 例1-5 33 例1-6 D 例1-7 C 例1-8 证明:dvdt?dvdx?dxdt?vdvdx??Kv ∴ d v /v =-Kdx 2?v1vv0dv???Kdx , ln0xvv0??Kx ∴v =v 0e-Kx例1-9 1 s m例1-10 B 【练习题】1-1 x=(y-3)2 1-2 -/s-6m/s 1-3 D 1-4 不作匀变速率运动.因为质点若作匀变速率运动,其切向加速度大小at必为常数,即at1?at2?at3,现在虽然a1?a2?a3,但加速度与轨道各处的切线间夹角不同,这使得加速度在各处切线方向的投影并不相等,即at1?at2?at3,故该质点不作匀变速率运动。

1-5 D 1-6证明:设质点在x处的速度为v a?1-7 16 R t 4 rad /s2 2 dvdt?dvdx?dxdtv?2?6x 2?vdv?0??2?6x?dx v20x?2x?x?3?12 1-8 Hv/(H-v) 1-9 C 第二章质点运动定律【例题】例2-1 B 例2-2 B 例2-3 解:(1) 子弹进入沙土后受力为-Kv,牛顿定律?Kmdt?dvvt ∴dxdt,??m0xKvdt?t?v0dvv?Kt/m∴v?v0e (2) 求最大深度v? dx?v0e?Kt/mdt?0dx??0v0e?Kt/ mdt∴x?(m/K)v0(1?e?Kt/m) xmax?mv0/K 例2-4 D 例2-5 答:(1) 不正确。

向心力是质点所受合外力在法向方向的分量。

质点受到的作用力中,只要法向分量不为零,它对向心力就有贡献,不管它指向圆心还是不指向圆心,但它可能只提供向心力的一部分。

即使某个力指向圆心,也不能说它就是向心力,这要看是否还有其它力的法向分量。

(2) 不正确。

作圆周运动的质点,所受合外力有两个分量,一个是指向圆心的法向分量,另一个是切向分量,只要质点不是作匀速率圆周运动,它的切向分量就不为零,所受合外力就不指向圆心。

大学物理(交大3版)答案(11-15章)

大学物理(交大3版)答案(11-15章)

第11章11-1.直角三角形ABC 的A 点上,有电荷C 108.191-⨯=q ,B 点上有电荷C 108.492-⨯-=q ,试求C 点的电场强度(设m 03.0m ,04.0==AC BC ).解:1q 在C 点产生的场强 20114ACq E πε=2q 在C 点产生的场强 22204q E BC πε=C 点的合场强 22412 3.2410VE E E m=+=⨯ 方向如图11-2. 用细的塑料棒弯成半径为cm 50的圆环,两端间空隙为cm 2,电量为C 1012.39-⨯的正电荷均匀分布在棒上,求圆心处电场强度的大小和方向.解: 棒长 m d r l 12.32=-=π电荷线密度 19100.1--⋅⨯==m C lqλ若有一均匀带电闭合线圈,则圆心处的合场强为0,有一段空隙,则圆心处场强等于闭合线圈产生电场再减去m d 02.0=长的带电棒在该点产生的场强。

由于r d ππ,该小段可看成点电荷 C d q 11100.2-⨯=='λ圆心处场强 1211920072.0)5.0(100.2100.94--⋅=⨯⨯⨯='=m V r q E πε 方向由缝隙指向圆心处11-3. 将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB 的半径为R ,试求圆心O 点的场强.解:设O 为坐标原点,水平方向为x 轴,竖直方向为y 轴 半无限长导线∞A 在O 点的场强 )(40j i E 1-=Rπελ半无限长导线∞B 在O 点的场强 )(40j i E 2+-=RπελAB 圆弧在O 点的场强 )(40j i E 3+=Rπελ总场强 j)i E E E E 321+=++=(40Rπελ111-4. 带电细线弯成半径为R 的半圆形,电荷线密度为φλλsin 0=,式中0λ为一常数,φ为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度. 解:R d RdldE 00204sin 4πεϕϕλπελ==ϕcos dE dE x = 考虑到对称性 0=x E ϕsin dE dE y =RR d dE E y 00002084sin sin ελπεϕϕλϕπ===⎰⎰方向沿y 轴负向11-5. 一半径为R 的半球面,均匀地带有电荷,电荷面密度为σ,求球心O 处的电场强度.解:把球面分割成许多球带,球带所带电荷 dl r dq σπ2=2322023220)(42)(4r x dl rx r x xdq dE +=+=πεσππεθcos R x =θsin R r =θRd dl =21sin 2224E d i πσσθθεε==⎰11-6. 图示一厚度为d 的“无限大”均匀带电平板,电荷体密度为ρ.求板内、外的场强分布,并画出场强随坐标x 变化的图线,即x E -图线(设原点在带电平板的中央平面上,Ox 轴垂直于平板).解:在平板内作一个被平板的中间面垂直平分的闭合圆柱面1S 为高斯面S E d S ∆=•⎰21S E S x q ∆=∑ρ20ερx E =)2(d x ≤ 同理可得板外一点场强的大小 02ερd E =()2dx >11-7. 设电荷体密度沿x 轴方向按余弦规律x cos 0ρρ=分布在整个空间,式中0ρ为恒量.求空间的场强分布.解:过坐标x ±处作与x 轴垂直的两平面S ,用与x 轴平行的侧面将之封闭,构成高斯面。

(上海交大)大学物理上册课后习题答案4动量和角动量

(上海交大)大学物理上册课后习题答案4动量和角动量

)s 习题44-1.如图所示的圆锥摆,绳长为l ,绳子一端固定,另一端系一质量为m 的质点,以匀角速ω绕铅直线作圆周运动,绳子与铅直线的夹角为θ。

在质点旋转一周的过程中,试求:(1)质点所受合外力的冲量I;(2)质点所受张力T 的冲量T I。

解:(1)设周期为τ,因质点转动一周的过程中,速度没有变化,12v v =,由I mv =∆ ,∴旋转一周的冲量0I =;(2)如图该质点受的外力有重力和拉力,且cos T mg θ=,∴张力T 旋转一周的冲量:2cos T I T j mg j πθτω=⋅=⋅所以拉力产生的冲量为2mgπω,方向竖直向上。

4-2.一物体在多个外力作用下作匀速直线运动,速度4/v m s =。

已知其中一力F方向恒与运动方向一致,大小随时间变化内关系曲线为半个椭圆,如图。

求:(1)力F在1s 到3s 间所做的功;(2)其他力在1s 到3s 间所做的功。

解:(1)半椭圆面积⋅====⋅=⎰⎰⎰⎰v t F v t Fv x F x F A d d d dJ 6.12540201214==⨯⨯⨯=ππ(2)由动能定理可知,当物体速度不变时,外力做的总功为零,所以当该F做的功为125.6J 时,其他的力 的功为-125.6J 。

4-3.质量为m 的质点在Oxy 平面内运动,运动学方程为cos sin r a t i b t j ωω=+,求:(1)质点在任一时刻的动量;(2)从0=t 到ωπ/2=t 的时间内质点受到的冲量。

解:(1)根据动量的定义:P mv = ,而drv dt== sin cos a t i b t j ωωωω-+ , ∴()(sin cos )P t m a t i b t j ωωω=-- ;(2)由2()(0)0I mv P P m b j m b j πωωω=∆=-=-= , 所以冲量为零。

4-4.质量为M =2.0kg 的物体(不考虑体积),用一根长为l =1.0m 的细绳悬挂在天花板上。

大学物理学答案上海交大版上下册

大学物理学答案上海交大版上下册

4-12. 一质量为 M 千克的木块,系在一固定于墙壁的弹簧的末端,静止在光滑水平面上,弹簧的劲度系数为 k . 一质量为 m 的子弹射入木块后,弹簧长度被压缩了 L .
(1)求子弹的速度;(2)若子弹射入木块的深度为 s ,求子弹所受的平均阻力。
解:(1)碰撞过程中子弹和木块动量守恒,碰撞结束后的运动由机械能守恒条件可得,
因为 m1

m2

m

x1

xc 2

xc

mxc
2mx2 4m
,
x2

3 2
xc
4-8. 两个质量分别为 m1 和 m2 的木块 A、B ,用一劲度系数为 k 的轻弹簧连接,放在光滑的水平面上。A 紧靠墙。
今用力推 B 块,使弹簧压缩 x0 然后释放。(已知 m1 m , m2 3m )求:
3-5. 在劲度系数为 k 的弹簧下,如将质量为 m 的物体挂上慢慢放下,弹簧伸长多少?如瞬间挂上让其自由下落弹
簧又伸长多少?
答:如将质量为 m 的物体挂上慢慢放下,弹簧伸长为 mg=kx,所以 x mg k
如瞬间挂上让其自由下落,弹簧伸长应满足能量守恒: mgx 1 kx2 ,所以 2
x 2mg k
由碰撞时,动量守恒,分析示意图,可写成分量式:
m1 sin m2 cos
P m1 cos m2 sin
所以 P 1.41022 kg m / s 151.9
(2)反冲的动能为: Ek

P2 2m

0.17 1018 J
4-6. 一颗子弹在枪筒里前进时所受的合力大小为 F 400 4 105 t / 3 ,子弹从枪口射出时的速率为 300m/s 。

大学物理学(第三版上) 课后习题3答案详解

大学物理学(第三版上)  课后习题3答案详解

习题33.1选择题(1) 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A)02ωmRJ J+ (B) 02)(ωR m J J + (C)02ωmRJ(D) 0ω [答案: (A)](2) 如题3.1(2)图所示,一光滑的内表面半径为10cm 的半球形碗,以匀角速度ω绕其对称轴OC 旋转,已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4cm ,则由此可推知碗旋转的角速度约为 (A)13rad/s (B)17rad/s (C)10rad/s (D)18rad/s(a) (b)题3.1(2)图[答案: (A)](3)如3.1(3)图所示,有一小块物体,置于光滑的水平桌面上,有一绳其一端连结此物体,;另一端穿过桌面的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将绳从小孔缓慢往下拉,则物体 (A )动能不变,动量改变。

(B )动量不变,动能改变。

(C )角动量不变,动量不变。

(D )角动量改变,动量改变。

(E )角动量不变,动能、动量都改变。

[答案: (E)]3.2填空题(1) 半径为30cm 的飞轮,从静止开始以0.5rad·s -2的匀角加速转动,则飞轮边缘上一点在飞轮转过240˚时的切向加速度a τ= ,法向加速度a n=。

[答案:0.15; 1.256](2) 如题3.2(2)图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O转动,今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的守恒,原因是。

木球被击中后棒和球升高的过程中,对木球、子弹、细棒、地球系统的守恒。

题3.2(2)图[答案:对o轴的角动量守恒,因为在子弹击中木球过程中系统所受外力对o轴的合外力矩为零,机械能守恒](3) 两个质量分布均匀的圆盘A和B的密度分别为ρA和ρB (ρA>ρB),且两圆盘的总质量和厚度均相同。

大学物理学(第三版上) 课后习题5答案详解-推荐下载

大学物理学(第三版上)  课后习题5答案详解-推荐下载

习题55.1选择题(1)一物体作简谐振动,振动方程为,则该物体在时2cos(πω+=t A x 0=t 刻的动能与(T 为振动周期)时刻的动能之比为:8/T t =(A)1:4 (B )1:2 (C )1:1 (D) 2:1[答案:D](2)弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为(A)kA 2 (B) kA 2/2(C) kA 2//4 (D)0[答案:D](3)谐振动过程中,动能和势能相等的位置的位移等于(A) (B) 4A±2A ±(C) (D) 23A±22A ±[答案:D]5.2 填空题(1)一质点在X 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点。

若t =0时质点第一次通过x =-2cm 处且向X 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为____s 。

[答案:]23s (2)一水平弹簧简谐振子的振动曲线如题5.2(2)图所示。

振子在位移为零,速度为-ωA 、加速度为零和弹性力为零的状态,对应于曲线上的____________点。

振子处在位移的绝对值为A 、速度为零、加速度为-ω2A 和弹性力为-KA 的状态,则对应曲线上的____________点。

题5.2(2) 图[答案:b 、f ; a 、e](3)一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点,已知周期为T ,振幅为A 。

(a)若t=0时质点过x=0处且朝x 轴正方向运动,则振动方程为x=___________________。

(b) 若t=0时质点过x=A/2处且朝x 轴负方向运动,则振动方程为x=_________________。

[答案:; ]cos(2//2)x A t T ππ=-cos(2//3)x A t T ππ=+5.3 符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动:(1)拍皮球时球的运动;(2)如题5.3图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很 短).题5.3图题5.3图(b)解:要使一个系统作谐振动,必须同时满足以下三个条件:一 ,描述系统的各种参量,如质量、转动惯量、摆长……等等在运动中保持为常量;二,系统是在自己的稳定平衡位置附近作往复运动;三,在运动中系统只受到内部的线性回复力的作用. 或者说,若一个系统的运动微分方程能用0d d 222=+ξωξt描述时,其所作的运动就是谐振动.(1)拍皮球时球的运动不是谐振动.第一,球的运动轨道中并不存在一个稳定的平衡位置; 第二,球在运动中所受的三个力:重力,地面给予的弹力,击球者给予的拍击力,都不是线性回复力.(2)小球在题5.3图所示的情况中所作的小弧度的运动,是谐振动.显然,小球在运动过程中,各种参量均为常量;该系统(指小球凹槽、地球系统)的稳定平衡位置即凹槽最低点,即系统势能最小值位置点;而小球在运动中的回复力为,如题5.3图(b)中O θsin mg -所示,因<<,故→0,所以回复力为.式中负号,表示回复力的方S ∆R RS∆=θθmg -向始终与角位移的方向相反.即小球在点附近的往复运动中所受回复力为线性的.若以O 小球为对象,则小球在以为圆心的竖直平面内作圆周运动,由牛顿第二定律,在凹槽切O '线方向上有θθmg tmR -=22d d令,则有Rg=2ω222d 0d tθωθ+=5.4 弹簧振子的振幅增大到原振幅的两倍时,其振动周期、振动能量、最大速度和最大加速度等物理量将如何变化?解:弹簧振子的振动周期、振动能量、最大速度和最大加速度的表达式分别为222122,m m T E kA v A a Aπωωω=====所以当振幅增大到原振幅的两倍时,振动周期不变,振动能量增大为原来的4倍,最大速度增大为原来的2倍,最大加速度增大为原来的2倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章
1、解:设质点在x处的速度为v,
2、解: dv/dt t,dv tdt
v t2
v x/dt t2
x t3/3+x0(SI)
3、解:
根据题意:at=an

解得
4、解:根据已知条件确定常量k
,
时,v= 4Rt2= 8 m/s
m/s2
5、解:(1)球相对地面的初速度
30 m/s
抛出后上升高度 m/s
=0.56 s
t= 0时,
解得 m
180°+12.6°=3.36 rad
也可取=-2.92 rad
振动表达式为x= 2.05×10-2cos(11.2t-2.92)(SI)
或x= 2.05×10-2cos(11.2t+3.36)(SI)
t= s时, cm
由上二式解得tg= 1
因为在A点质点的速度大于零,所以=-3/4或5/4(如图)
cm
∴振动方程 (SI)
(2)速率 (SI)
当t= 0时,质点在A点
m/s
3、解:k=m0g/l N/m
cm
,= 0.64 rad
(SI)
4、解:设弹簧的原长为l,悬挂m1后伸长l,则kl=m1g,
k=m1g/l= 2 N/m取下m1挂上m2后, rad/s
8、解:受力分析如图所示.
设重物的对地加速度为a,向上.则绳的A端对地有加速度a向下,人相对于绳虽为匀速向上,但相对于地其加速度仍为a向下.
根据牛顿第二定律可得:
对人:Mg-T2=Ma①
对重物:T1- Mg= Ma②
根据转动定律,对滑轮有
(T2-T1)R=J=MR2/ 4③
因绳与滑轮无相对滑动,a=R④
由图可知
方向北偏西
(2)小船看大船,则有 ,依题意作出速度矢量图如图(b),同上法,得
,方向南偏东
第二章
1、解:(1)位矢 (SI)
可写为 ,

在A点(a,0), ,
EKA=
在B点(0,b), ,
EKB=
(2) =
由A→B =
=
2、解:A、B两球发生弹性正碰撞,由水平方向动量守恒与机械能守恒,得


①、②、③、④四式联立解得a=2g / 7
9、解:对棒和滑块系统,在碰撞过程中,由于碰撞时间极短,所以棒所受的摩擦力
矩<<滑块的冲力矩.故可认为合外力矩为零,因而系统的角动量守恒,即
m2v1l=-m2v2l+ ①
碰后棒在转动过程中所受的摩擦力矩为

由角动量定理 ③
由①、②和③解得
10、解: (1)由题意,子弹到枪口时,有
,得
(2)子弹所受的冲量
将 代入,得
(3)由动量定理可求得子弹的质量
第三章
1、解:设立方体的长、宽、高分别以x0,y0,z0表示,观察者A测得立方体的长、宽、高分别为 , , .
相应体积为
观察者A测得立方体的质量
故相应密度为
2、解:令O系中测得正方形边长为a,沿对角线取x轴正方向(如图),则边长在坐标轴上投影的大小为

A与B碰撞过程中以A、B为系统,动量守恒,机械能守恒


A与B碰撞后,A压缩弹簧,机械能守恒

联立①、②、③、④并考虑到 且 为压缩量与x0一样应取正值,可求出
m
7、解:
油灰与笼底碰前的速度
碰撞后油灰与笼共同运动的速度为V,应用动量守恒定律

油灰与笼一起向下运动,机械能守恒,下移最大距离x,则

联立解得: m
联立解出 ,
由于二球同时落地,∴ , ;且
∴ ,
解出
3、解:(1)释放后,弹簧恢复到原长时A将要离开墙壁,设此时B的速度为vB0,由机械能守恒,有

A离开墙壁后,系统在光滑水平面上运动,系统动量守恒,机械能守恒,当弹簧
伸长量为x时有 ①

当v1=v2时,由式①解出
v1=v2
(2)弹簧有最大伸长量时,A、B的相对速度为零v1=v2=3vB0/4,再由式②
(2)如使a>g,小物体能脱离振动物体,开始分离的位置由N= 0求得
cm
即在平衡位置上方19.6 cm处开始分离,由 ,可得
=19.6 cm.
2、解:由旋转矢量图和|vA| = |vB|可知T/2 = 4秒,
∴T= 8 s,= (1/8) s-1,
s-1
(1)以 的中点为坐标原点,x轴指向右方.
t= 0时, cm
离地面高度H= (45.9+10) m =55.9 m
(2)球回到电梯上时电梯上升高度=球上升高度
s
6、解: 设人到船之间绳的长度为 ,此时绳与水面成 角,由图可知
将上式对时间 求导,得
根据速度的定义,并注意到 , 是随 减少的,



将 再对 求导,即得船的加速度
7、解:(1)大船看小艇,则有 ,依题意作速度矢量图如图(a)

面积可表示为:
在以速度v相对于O系沿x正方向运动的O'系中
=0.6×
在O'系中测得的图形为菱形,其面积亦可表示为
cm2
3、解:(1)观测站测得飞船船身的长度为
54 m
则t1=L/v=2.25×10-7s
(2)宇航员测得飞船船身的长度为L0,则
t2=L0/v=3.75×10-7s
4、解:以地球上的时钟计算: 年

动能为零。对此系统应用机械能守恒定律和动量守恒定律得到:


解此二式得
5、解:以V表示球上升到最大高度时m和M的共同速度,则由动量守恒和机械能
守恒可得
由此二式可解得
以V′表示球离开小车时小车的速度,则在小球射入到离开的整个过程中,由动量守恒和机械能守恒可得
由此二式可得
v与v0反向.
6、解:释放物体A到A与B碰撞前,以\A与弹簧为系统,机械能守恒
7、解: 测得相遇时间为
测得的是固有时




或者, 测得长度收缩,
第四章
1、解:(1)小物体受力如图.
设小物体随振动物体的加速度为a,按牛顿第二定律有(取向下为正)
当N= 0,即a=g时,小物体开始脱离振动物体,已知
A= 10 cm,
有 rad·s-1
系统最大加速度为 m·s-2
此值小于g,故小物体不会离开.
以飞船上的时钟计算: 0.20年
5、解:令S'系与S系的相对速度为v,有

则 ( = 2.24×108m·s-1)
那么,在S'系中测得两事件之间距离为:
= 6.72×108m
6、解:根据功能原理,要作的功W=E
根据相对论能量公式E=m2c2-m1c2
根据相对论质量公式
∴ =4.72×10-14J=2.95×105eV
解出
4、解:二滑块在弹力作用下将沿水平导杆作振动.因导杆光滑,不产生摩擦阻力,故整个系统的机械能守恒,而且沿水平方向的动量守恒(等于零).当二滑块运动到正好使弹簧垂直于二导杆时,二滑块所受的弹力的水平分力同时为零,这时二滑块的速度将分别达到其最大速度v1和v2且此时弹簧为原长,弹簧势能为零。
由题意得知,开始时系统的弹性势能为
相关文档
最新文档