材料的热膨胀系数

合集下载

各种材料热膨胀系数

各种材料热膨胀系数

各种材料热膨胀系数
热膨胀系数是指物体在温度变化时所发生的线膨胀或体膨胀的程度。

不同的材料具有不同的热膨胀系数,以下将介绍一些常见材料的热膨胀系数。

1.金属材料:
金属一般具有较高的热膨胀系数,常用的金属材料的热膨胀系数如下:-铝:23×10^-6/℃
-铜:17×10^-6/℃
-铁:12×10^-6/℃
-钢:12×10^-6/℃
2.塑料材料:
相较于金属材料,塑料材料的热膨胀系数较低,常用塑料的热膨胀系
数如下:
-聚乙烯(PE):60×10^-6/℃
-聚氯乙烯(PVC):60~80×10^-6/℃
-聚苯乙烯(PS):70~90×10^-6/℃
3.陶瓷材料:
陶瓷材料的热膨胀系数因其成分和结构的不同而有所区别,以下是一
些常见陶瓷材料的热膨胀系数:
-瓷砖:5~9×10^-6/℃
-玻璃:8~12×10^-6/℃
4.混凝土材料:
混凝土材料的热膨胀系数与其中的骨料类型、水灰比等因素有关,一般范围为8~18×10^-6/℃。

5.石材材料:
-大理石:10×10^-6/℃
-花岗岩:8~12×10^-6/℃
6.环氧树脂:
环氧树脂是一种聚合物材料,其热膨胀系数较低,约为40~80×10^-6/℃。

需要注意的是,以上数值仅为常见材料的热膨胀系数范围,实际数值可能会因材料的具体成分和制备工艺等因素而有所不同。

在实际工程中,需要根据具体要求和应用场景选择合适的材料,以保证工程的稳定性和可靠性。

各种材料热膨胀系数

各种材料热膨胀系数
-4.1
食盐
40
不锈钢
14.4-16.0

1.23

12.3
碳纤维(HM 35 in L?ngsrichtung)
-0.5

10.8
氯仿(三氯甲烷)
1.28
水泥
6 – 14
康铜
15.2

14
果酸
1.07

29.3
Kovar
~ 5

4.5
乙醚
1.62

17.5

16.5

36
乙酸乙酯
1.38

41

26
各种材料热膨胀系数
热膨胀系数(Coefficient of thermal expansion,簡稱CTE)是指物质在热胀冷缩效应作用之下,几何特性随着温度的变化而发生变化的规律性系数。
实际应用中,有两种主要的热膨胀系数,分別是:
线性热膨胀系数:a=1/L*△L/△T
体积热膨胀系数:γ=1/V0*(аV/аt)p
物质
α in 10-6/K 20 °C
物质
α in 10-6/K 20 °C
物质
γ in 10-3/K 20 °C

23.2
木头, Eiche
8

19.5
酒精(乙醇)
1.1
纯铝
23.0(铝的热膨胀系数高达23μm/m.℃。)
不变钢
1.7-2.0

2
丙酮
1.43

10.5

6.5

13
汽油Байду номын сангаас
1.06

各材料热膨胀系数

各材料热膨胀系数

各材料热膨胀系数【第一部分:引言】材料热膨胀系数是指在温度变化下,固体材料的长度、体积或密度发生变化的程度。

热膨胀系数是材料工程学中一个重要的参数,它对于设计和制造各种结构和设备都具有重要意义。

不同材料的热膨胀性能差异巨大,因此了解材料的热膨胀系数对于预防热应力引起的变形和破坏非常重要。

本文将深入探讨各种材料的热膨胀系数,并分析其应用和影响。

【第二部分:各材料热膨胀系数的概述】在处理材料的热膨胀系数时,热膨胀系数一般分为线膨胀系数、面膨胀系数和体膨胀系数三种。

线膨胀系数是指在单位长度下,材料长度随温度变化而产生的变化量;面膨胀系数是指在单位面积下,材料表面积随温度变化而产生的变化量;体膨胀系数是指在单位体积下,材料体积随温度变化而产生的变化量。

不同材料的热膨胀系数可以差别较大。

金属材料通常具有较高的热膨胀系数,特别是对于铝、铜和钢等常见的结构材料。

而陶瓷和玻璃等非金属材料通常具有较低的热膨胀系数。

还存在一些特殊材料,如水的热膨胀系数随温度降低而变大,而凝胶材料则具有负的热膨胀系数。

【第三部分:各材料热膨胀系数的应用】了解材料的热膨胀系数对于许多应用是至关重要的。

当不同材料组合在一起时,它们的热膨胀系数差异会导致应力的积累,从而引起结构变形和损坏。

在设计和制造机械设备、建筑结构、电子元件等产品时,需要考虑材料的热膨胀系数以克服由温度变化引起的问题。

另一个应用领域是热学设计和材料选择。

通过了解不同材料的热膨胀系数,可以选择适合特定应用的材料,以确保在温度变化下能够保持结构的稳定性和功能。

在高温环境下,选择具有低热膨胀系数的陶瓷材料可以减少结构因热膨胀引起的应力,并提高材料的稳定性。

【第四部分:各材料热膨胀系数对结构的影响】材料的热膨胀系数可以对结构产生重要的影响。

在温度变化下,由于材料的热膨胀差异,结构可能会发生变形、应力集中或破坏。

在钢结构中,由于钢的热膨胀系数较高,当温度升高时,钢构件会通过膨胀而增加长度,如果不加以合理处理,可能导致结构的不稳定,从而引起变形或崩塌。

金属材料热膨胀系数及计算公式

金属材料热膨胀系数及计算公式

金属材料热膨胀系数及计算公式一、引言金属材料在受热时会发生热膨胀现象,即体积会随温度的升高而增大。

这是由于金属内部的原子和分子在受热后具有更大的运动能量,导致晶格结构发生变化,从而引起金属材料的体积膨胀。

二、热膨胀系数热膨胀系数是描述材料在温度变化下体积膨胀程度的物理量。

它表示单位温度变化时单位长度(或单位面积)的长度(或面积)变化量,通常用符号α表示。

单位一般为1/℃或1/K。

三、热膨胀系数的计算公式热膨胀系数可以通过实验测量得到,也可以通过理论计算得到。

以下是常见金属材料热膨胀系数的计算公式:1.线膨胀系数(αl):线膨胀系数是指在单位长度上的膨胀量,通常用于描述材料在长度方向上的膨胀情况。

线膨胀系数可以通过以下公式计算:αl = (ΔL / L0) / ΔT其中,ΔL为温度变化下的长度变化量,L0为初始长度,ΔT为温度变化量。

2.表膨胀系数(αA):表膨胀系数是指在单位面积上的膨胀量,通常用于描述材料在面积方向上的膨胀情况。

表膨胀系数可以通过以下公式计算:αA = (ΔA / A0) / ΔT其中,ΔA为温度变化下的面积变化量,A0为初始面积,ΔT为温度变化量。

3.体膨胀系数(αV):体膨胀系数是指在单位体积上的膨胀量,通常用于描述材料在体积方向上的膨胀情况。

体膨胀系数可以通过以下公式计算:αV = (ΔV / V0) / ΔT其中,ΔV为温度变化下的体积变化量,V0为初始体积,ΔT为温度变化量。

四、金属材料的热膨胀系数不同金属材料的热膨胀系数有所差异,下面是一些常见金属材料的热膨胀系数范围:1.铝(Al):线膨胀系数为22.2-25.5 × 10^-6/℃,表膨胀系数为69 × 10^-6/℃,体膨胀系数为71 × 10^-6/℃。

2.铜(Cu):线膨胀系数为16.6-17 × 10^-6/℃,表膨胀系数为59 × 10^-6/℃,体膨胀系数为60 × 10^-6/℃。

各种材料热膨胀系数(可编辑修改word版)

各种材料热膨胀系数(可编辑修改word版)
0.49

6.2

23

14.2
甲醇
1.1
钻石
1.3

5
花岗岩
3
Mineral?l(Hydraul
ik?l)
0.7
冰, 0 °C
51
黄铜
18.4
石墨
2
石蜡
0.76

12.2

5.2
灰铸铁
9
煤油/柴油
0.96/0.69

6
新银
18
玻璃
(Quarzglas)
0.5
水银
0.18
玻璃 (窗玻
璃)
7.6

13
大多数情况之下,此系数为正值。也就是说温度升高体积扩大。但是也有例外,当水在0到4摄氏度之间,会出现反膨胀。而一些陶瓷材料在温度升高情况下,几乎不发生几何特性变化,其热膨胀系数接近0。
一些固体的线性热膨胀系数 α(单位:10-6/K)
一些液体的体积热膨胀系数 γ
物质
α in 10-6/K 20°C
物质
各种材料热膨胀系数
热膨胀系数(Coefficientofthermalexpansion,簡稱CTE)是指物质在热胀冷缩效应作用之下,几何特性随着温度的变化而发生变化的规律性系数。
实际应用中,有两种主要的热膨胀系数,分別是:线性热膨胀系数:a=1/L*△L/△T
体积热膨胀系数:γ=1/V0*(аV/аt)p
玻璃陶瓷
(Zerodur)
<
0.1
松节油
1
玻璃 (工业
玻璃)
4.5

9
聚氯乙烯(PVC)
80

各种材料热膨胀系数

各种材料热膨胀系数
18.0

13.0

9.0
尼龙
120.0
聚甲基丙烯酸甲酯(PMMA)
85.0
聚氯乙烯(PVC)
80.0
瓷器
3.0

19.5

2.0

13.0
不锈钢
14.4-16.0

10.8

14.0

4.5

36.0

26.7
一些液体的体积热膨胀系数 γ
物质
γ in 10-3/K 20 °C
酒精(乙醇)
1.10
丙酮
0.5
玻璃陶瓷(Zerodur)
< 0.1

14.2
花岗岩
3.0
石墨
2.0
灰铸铁
9.0
木头, Eiche
8.0
不变钢
1.7-2.0

6.5
食盐
40.0
碳纤维(HM 35 in L?ngsrichtung)
-0.5
康铜
15.2
Kovar
~ 5

16.5

26.0

23.0

5.0
黄铜
18.4

5.2
新银
ngsrichtung05康铜152kovar5铜165镁260锰230砖50黄铜184钼52新银180镍130铂90尼龙1200聚甲基丙烯酸甲酯pmma850聚氯乙烯pvc800瓷器30银195锡20钢130不锈钢144160钛108铋140钨45锌360锡267一些液体的体积热膨胀系数丫物质丫in103k20c酒精乙醇110丙酮143汽油106苯123氯仿三氯甲烷128果酸107乙醚162乙酸乙酯138甘油propantriol049甲醇110mineral

常见材料的热膨胀系数

常见材料的热膨胀系数

常见材料的热膨胀系数热膨胀系数是描述物质在温度变化下长度、面积或体积变化的量度。

不同的物质具有不同的热膨胀系数,下面是常见材料的热膨胀系数介绍。

1.金属材料:(1)铝:铝的线膨胀系数为23.2×10^-6/℃。

(2)铜:铜的线膨胀系数为16.8×10^-6/℃。

(3)铁:铁的线膨胀系数为11.7×10^-6/℃。

(4)不锈钢:不锈钢的线膨胀系数约为17-19×10^-6/℃。

(5)钢铁:钢铁的线膨胀系数为12-14×10^-6/℃。

2.玻璃材料:(1)玻璃:玻璃的线膨胀系数约为7-9×10^-6/℃。

(2)硅玻璃:硅玻璃的线膨胀系数约为0.3-0.9×10^-6/℃。

3.陶瓷材料:(1)瓷器:瓷器的线膨胀系数约为5-7×10^-6/℃。

(2)瓷砖:瓷砖的线膨胀系数约为5-9×10^-6/℃。

4.塑料材料:(1)聚乙烯(PE):聚乙烯的线膨胀系数约为90-200×10^-6/℃。

(2)聚丙烯(PP):聚丙烯的线膨胀系数约为70-140×10^-6/℃。

(3)聚氯乙烯(PVC):聚氯乙烯的线膨胀系数约为55-85×10^-6/℃。

5.合金材料:(1)铝合金:铝合金的线膨胀系数在10-25×10^-6/℃之间,具体数值取决于合金中的元素组成和含量。

(2)镍合金:镍合金的线膨胀系数在13-16×10^-6/℃之间,具体取决于合金成分。

(3)钛合金:钛合金的线膨胀系数在7-9×10^-6/℃之间,具体取决于合金成分。

需要注意的是,以上给出的数值都是近似值,不同的材料在不同的温度范围内的热膨胀系数可能会有所不同。

此外,热膨胀系数也与材料的结构、晶格和制备工艺等因素有关。

在实际的工程设计和应用中,我们需要根据具体材料的热膨胀系数进行考虑,以避免由于温度变化引起的尺寸变化对结构或设备的影响。

材料热膨胀系数

材料热膨胀系数

材料热膨胀系数材料的热膨胀系数是指在单位温度变化下,材料长度、面积或体积的变化量与原长度、面积或体积的比值。

热膨胀系数是描述材料在温度变化下的物理性质的重要参数,对于工程设计和材料选择具有重要意义。

热膨胀系数的定义。

材料在温度变化下会发生长度、面积或体积的变化,这种变化与温度变化的比例关系可以用热膨胀系数来描述。

一般来说,热膨胀系数可以分为线膨胀系数、面膨胀系数和体膨胀系数。

线膨胀系数是指材料在单位温度变化下长度的变化与原长度的比值;面膨胀系数是指材料在单位温度变化下面积的变化与原面积的比值;体膨胀系数是指材料在单位温度变化下体积的变化与原体积的比值。

热膨胀系数的影响因素。

材料的热膨胀系数受多种因素的影响,包括材料的组成、结构、晶体结构等。

一般来说,金属的热膨胀系数较大,而非金属材料的热膨胀系数较小。

此外,晶体结构的不同也会导致材料的热膨胀系数不同,例如单晶材料的热膨胀系数通常比多晶材料小。

此外,材料的温度范围也会对热膨胀系数产生影响,一般来说,在高温下,材料的热膨胀系数会增大。

热膨胀系数的应用。

热膨胀系数在工程设计和材料选择中具有重要的应用价值。

在工程设计中,了解材料的热膨胀系数有助于预测材料在温度变化下的变形情况,从而避免因温度变化引起的尺寸不稳定问题。

在材料选择中,热膨胀系数也是一个重要的考量因素,特别是在高温环境下,需要选择热膨胀系数较小的材料,以保证设备的稳定性和可靠性。

热膨胀系数的测量。

热膨胀系数的测量通常采用膨胀仪或差示扫描热量计等仪器进行。

通过在不同温度下测量材料的长度、面积或体积的变化量,可以得到材料的热膨胀系数。

在实际测量中,需要注意控制温度的均匀性和稳定性,以确保测量结果的准确性。

总结。

热膨胀系数是描述材料在温度变化下物理性质的重要参数,对工程设计和材料选择具有重要意义。

了解材料的热膨胀系数有助于预测材料在温度变化下的变形情况,避免尺寸不稳定问题。

在材料选择中,热膨胀系数也是一个重要的考量因素,特别是在高温环境下。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

/p-50731110.html
陶粒5.83
耐火粘土砖的热膨胀系数是多少呀?
(4.5-6)×10的负6次方/℃
材料的热膨胀系数
Material 10-6 in./in.*/°F 10-5 in./in.*/°C
High Low High Low 锌及其合金Zinc & its Alloysc 19.3 10.8 3.5 1.9 铅及其合金Lead & its Alloysc 16.3 14.4 2.9 2.6 镁合金Magnesium Alloysb 16 14 2.8 2.5 铝及其合金Aluminum & its Alloysc 13.7 11.7 2.5 2.1 锡及其合金Tin & its Alloysc 13 - 2.3 - 锡铝黄铜Tin & Aluminum Brassesc 11.8 10.3 2.1 1.8 黄铜或铅黄铜Plain & Leaded Brassesc 11.6 10 2.1 1.8 银Silverc 10.9 - 2 - 铬镍耐热钢Cr-Ni-Fe Superalloysd 10.5 9.2 1.9 1.7 Heat Resistant Alloys (cast)d 10.5 6.4 1.9 1.1 Nodular or Ductile Irons (cast)c 10.4 6.6 1.9 1.2 不锈钢Stainless Steels (cast)d 10.4 6.4 1.9 1.1 锡青铜Tin Bronzes (cast)c 10.3 10 1.8 1.8 奥氏体不锈钢Austenitic Stainless Steelsc 10.2 9 1.8 1.6 磷硅青铜Phosphor Silicon Bronzesc 10.2 9.6 1.8 1.7 铜Coppersc 9.8 - 1.8 - Nickel-Base Superalloysd 9.8 7.7 1.8 1.4 铝青铜Aluminum Bronzes (cast)c 9.5 9 1.7 1.6 Cobalt-Base Superalloysd 9.4 6.8 1.7 1.2 铍(青)铜Beryllium Copperc 9.3 - 1.7 - Cupro-Nickels & Nickel Silversc 9.5 9 1.7 1.6 镍及其合金Nickel & its Alloysd 9.2 6.8 1.7 1.2
铬镍钴耐热钢Cr-Ni-Co-Fe Superalloysd 9.1 8 1.6 1.4 合金钢Alloy Steelsd 8.6 6.3 1.5 1.1 Carbon Free-Cutting Steelsd 8.4 8.1 1.5 1.5 铸造合金钢Alloys Steels (cast)d 8.3 8 1.5 1.4 Age Hardenable Stainless Steelsd 8.2 5.5 1.5 1
金Goldc 7.9 - 1.4 - High Temperature Steelsd 7.9 6.3 1.4 1.1 Ultra High Strength Steelsd 7.6 5.7 1.4 1 Malleable Ironsc 7.5 5.9 1.3 1.1 Titanium Carbide Cermetd 7.5 4.3 1.3 0.8 Wrought Ironsc 7.4 - 1.3 -
钛及其合金Titanium & its Alloysd 7.1 4.9 1.3 0.9 钴Cobaltd 6.8 - 1.2 -
马氏体不锈钢Martensitic Stainless Steelsc 6.5 5.5 1.2 1
渗氮钢Nitriding Steelsd 6.5 - 1.2 -
钯Palladiumc 6.5 - 1.2 -
铍Berylliumb 6.4 - 1.1 - Chromium Carbide Cermetc 6.3 5.8 1.1 1
钍Thoriumb 6.2 - 1.1 -
铁素体不锈钢Ferritic Stainless Steelsc 6 5.8 1.1 1 Gray Irons (cast)c 6 - 1.1 - Beryllium Carbided 5.8 - 1 - Low Expansion Nickel Alloysc 5.5 1.5 1 0.3 Beryllia & Thoriae 5.3 - 0.9 - Alumina Cermetsd 5.2 4.7 0.9 0.8 Molybdenum Disilicidec 5.1 - 0.9 - Rutheniumb 5.1 - 0.9 - Platinumc 4.9 - 0.9 - Vanadiumb 4.8 - 0.9 - Rhodiumb 4.6 - 0.8 - Tantalum Carbided 4.6 - 0.8 - Boron Nitrided 4.3 - 0.8 -
铌及其合金Columbium & its Alloys 4.1 3.8 0.7 0.68 Titanium Carbided 4.1 - 0.7 - Steatitec 4 3.3 0.7 0.6 Tungsten Carbide Cermetc 3.9 2.5 0.7 0.4 铱Iridiumb 3.8 - 0.7 - Alumina Ceramicsc 3.7 3.1 0.7 0.6 Zirconium Carbided 3.7 - 0.7 - Osmium and Tantalumb 3.6 - 0.6 -
锆及其合金Zirconium & its Alloysb 3.6 3.1 0.6 0.55 Hafniumb 3.4 - 0.6 - Zirconiae 3.1 - 0.6 -
钼及其合金Molybdenum & its Alloys 3.1 2.7 0.6 0.5
Silicon Carbidee 2.4 2.2 0.4 0.39 钨Tungstenb 2.2 - 0.4 - Electrical Ceramicsc 2 - 0.4 - Zirconc 1.8 1.3 0.3 0.2 Boron Carbidee 1.7 - 0.3 - Carbon and Graphitec 1.5 1.3 0.3 0.2。

相关文档
最新文档