初中数学教案 变量与函数(1)

合集下载

《变量与函数》教学设计

《变量与函数》教学设计

《变量与函数》教学设计一.内容和内容解析本节教学内容源于人教版初中数学义务教育课程标准实验教材八年级上册第十四章《一次函数》的《14.1 变量与函数》.数学是以数量关系和空间形式为主要研究对象的科学,数量关系和空间形式是从现实世界中抽象出来的,世界永远是处于运动变化之中的,因此无论是数量关系中还是空间形式中都充满了有关运动变化的问题.函数正是研究运动变化的重要数学模型,它来源于客观实际又服务于客观实际,反映的是变量之间的单值对应规律;它在对数量关系和空间形式的研究中发挥了巨大作用,在当今数学的各个领域都是极为重要的角色.函数是数量化地表达变化与对应思想的数学工具,变化规律表现在变量(自变量与函数)之间的对应关系上,函数通过数或形定量地描述这种对应关系.变化与对应思想正是本章内容中蕴涵的基本思想.所谓变化与对应的思想包括两个基本意思:1.世界是变化的,客观事物中存在大量的变量;2.在同一个变化过程中,变量之间不是孤立的,而是相互联系的,一个变量的变化会引起其他变量的相应变化,这些变化之间存在对应关系.函数概念来源于客观实际需要,也来自数学内部发展的需要.它是以变化与对应的思想为基础的数学概念.函数概念的实质就是运动变化与联系对应.基于上述分析,确定本节的教学重点是:以实际问题为学习背景,探索具体问题中的数量关系和变化规律,初步理解函数的概念.函数的概念是数学中极为重要的基本概念,它的抽象性较强,接受并理解它有一定难度,因此,函数概念的形成过程也是本节的难点.二.目标和目标解析1.了解常量、变量的概念,能分清实例中的常量与变量;2.结合实例,理解函数的概念,体会“变化与对应”的思想.世界是变化的,客观事物中存在大量的变量;在同一个变化过程中,变量之间不是孤立的,而是相互联系的,一个变量的变化会引起其他变量的相应变化,这些变化之间存在对应关系,这就是“变化与对应”的思想;3.以探索实际问题中的数量关系和变化规律为背景,正确地理解问题情境,经历“找出常量和变量,建立并表示函数模型”的过程,体会函数是刻画现实世界中变化规律的重要数学模型;三.教学问题诊断就学生而言,在前学段的学习中已经对“用字母表示数”和方程中的未知数的含义都有了较深理解,同时初步具备分析和解决各种简单实际问题的能力,也初步体会到建模的数学思想,但对客观世界中现存的大量的运动变化问题还不甚了解,特别是对同一变化过程中变量之间存在的对应关系更是难以理解,对“函数”这个抽象性强的概念的接受和理解就会有很大难度;教师可能出现的问题:1.对“函数”的含义和“变化与对应”数学思想的理解不够深刻,认识上不到位;2.用以理解“函数”概念和“变化与对应”思想的实际事例没有很好地贴近学生的生活,致使学生不能很好地正确地理解问题情境;3.不能通过设计有效的数学问题,使学生通过有思维含量的数学活动,达到真正理解“函数”概念的目的,过分强调知识的获得,忽略了“变化与对应”数学思想的揭示.本节教学内容遵循“问题情境——建立模型——对比分析——揭示本质”的模式.理解函数的基本概念,其问题的关键是如何从实际问题情境中抽象出数学问题,从而建立数学模型,重点是理解函数的本质.鉴于上述分析,确定本节课的教学难点是:理解函数的概念.四.教学支持条件分析以问题串的方式,通过PPT恰当的呈现形式,帮助学生准确地从实际问题中抽象出数学问题,以问题引导进行分析与研究,更好地揭示函数的本质,理解“变化与对应”的数学思想,形象、直观,提高课堂教学效率.五.教学过程设计(一)创设问题情境,揭示变量与常量的含义问题一:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米.•行驶时间为t小时.先填写下表,再试用含t的式子表示s.设计目的:该问题反映了匀速行驶的汽车所行驶的里程随行驶时间的变化过程,旨在让学生初步体会变化过程中的某些量是按照某种规律变化的,如上例中的时间t、里程s;有些量的数值是始终不变的,如上例中的速度60千米/小时,同时初步体验数学建模的思想.活动方式:学生思考并完成上述问题,小组交流意见,然后回答.学生解答:表中依次填写:60,120,180,240,300;关系式为:s=60t.问题二:1.每张电影票售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元,怎样用含x的式子表示y?2.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm•,每1kg重物使弹簧伸长0.5cm,设物体质量为m kg,受力后的弹簧长度为l cm,怎样用含有m的式子表示l?设计目的:挖掘和利用实际生活中与变量有关的问题情景,让学生进一步经历探索具体情景中两个变量关系的过程,直接获得探索变量关系的体验.活动方式:独立思考,小组交流,个别回答,教师引导学生通过合理.正确的思维方法探索出变化规律.学生解答:1.早场电影票房收入:150×10=1500(元);日场电影票房收入:205×10=2050(元);晚场电影票房收入:310×10=3100(元);关系式:y=10x 2.挂1kg重物时弹簧长度:1×0.5+10=10.5(cm);挂2kg重物时弹簧长度:2×0.5+10=11(cm);挂3kg重物时弹簧长度:3×0.5+10=11.5(cm);关系式:l=0.5m+10问题三:1.要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含有圆面积S的式子表示圆半径r?2.用10m长的绳子围成长方形,试改变长方形长度.观察长方形的面积怎样变化.记录不同的长方形的长度值,计算相应的长方形面积的值,探索它们的变化规律:设长方形的长度为xcm,面积为Scm2.怎样用含有x的式子表示S?设计目的:通过动手实验,学生的学习积极性被充分调动起来,进一步深刻体会了变量间的关系,学会了运用表格形式来表示实验信息.出于从具体到抽象地认识事物的考虑而设计了上述5个问题.这些问题的内容有物理问题、销售问题、几何问题等,问题的形式有填表、求值、写解析式等,都含有变量之间的单值对应关系,通过讨论这些问题不仅可以引出常量与变量的概念,而且也为后面引出变量间的单值对应关系进而学习函数的定义作了铺垫.围绕学生比较熟悉其背景的几个例子,系统地认识有关概念,有助于认识相关概念之间的联系和区别.活动方式:独立思考,小组合作,教师引导的方式进行.学生解答:1.要求已知面积的圆的半径,可利用圆的面积公式经过变形求出S=πr2⇒面积为10cm2的圆半径≈1.78(cm);面积为20cm2的圆半径.52(cm)关系式:r2.因长方形两组对边相等,所以它一条长与一条宽的和应是周长10cm的一半,即5cm.若长为1cm,则宽为5-1=4(cm)据长方形面积公式:S=1×4=4(cm2)若长为2cm,则宽为5-2=3(cm)面积S=2×(5-2)=6(cm2)… …若长为xcm,则宽为(5-x)(cm)面积S=x·(5-x)=5x-x2(cm2)教师小结:上述问题反映了不同事物的变化过程,其中有些量(例如时间t,里程s;售出票数x,票房收入y……)的值是按照某种规律变化的.在一个变化过程中,我们称数值发生变化的量为变量(variable).有些量的数值是始终不变的,我们称它们为常量(constant).如上述问题中的速度60千米/时.票价10元,弹簧原长10cm及长方形的长、宽之和5cm……都是常量.随堂练习:请具体指出上述问题中,哪些是变量,哪些是常量?设计目的:在具体的问题情境中认识变量和常量,加深对变量和常量的理解.学生解答:(二)引导总结规律,理解函数概念;问题四:上述各问题中是否各有两个变量?同一个问题中的变量之间有什么关系?也就是说当其中一个变量取定一个值时,另一个变量是否也随之有唯一的对应值呢?设计目的:在教师的引导下,经历从具体到抽象的认识过程,理解变化过程中有两个变量,且变量之间的存在这单值对应关系,为进一步揭示函数的概念奠定基础.活动方式:教师引导,学生归纳,师生小结.教师引导:先观察问题一,观察填出的表格发现:该问题中存在两个变量时间t小时和里程s千米,并且每当行驶时间t取定一个数值,行驶里程s就随之确定一个值,例如t=1,则s=60;t=2,则s=120……t=5,则s=300.再来看问题二中的两个小问题,均满足上述特点:问题(1)中,•经计算可以发现:每当售票数量x取定一个值时,票房收入y就随之确定一个值.例如早场x=150,则y=1500;•日场x=205,则y=2050;晚场x=310,则y=3100.问题(2)中,通过试验可以看出:每当重物质量m确定一个值时,弹簧长度l•就随之确定一个值.如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm.当m=10kg时,则l =15cm,当m=20kg时,则l =20cm.继续验证,观察问题三中的两个问题,看看它们中的变量又怎样呢?问题(1)中,很容易算出,当S=10cm2时,r=1.78cm;当S=20cm2时,r=2.52cm.•每当S取定一个值时,r随之确定一个值,它们的关系为2)中,我们可以根据题意,每确定一个长方形的一边长,•即可得出另一边长,再计算出长方形的面积.如:当x=1cm时,则S=1×(5-1)=4cm2,当x=2cm时,则S =2×(5-2)=6cm2……它们之间存在关系S=x(5-x)=5x-x2.因此可知,•每当长方形长度x取定一个值时,面积S就随之确定一个值.由以上观察,我们可以归纳这样的结论:上面每个问题中的两个变量互相联系,当其中一个变量取定一个值时,另一个变量随之就有_______________(唯一确定的值与它对应).问题五:思考下列用图表和表格表达的问题中,两个变量之间是否同样存在上述关系?(1)下图是体检时的心电图.其中横坐标x表示时间,纵坐标y•表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每个确定的值,y都有唯一确定的对应值吗?(2)在下面的我国人口数统计表中,年份与人口数可以记作两个变量x与y,•对于表中每个确定的年份(x),都对应着个确定的人口数(y)吗?中国人口数统计表设计目的:通过表格和图象等多种形式深入体会函数中存在两个变量,以及变量之间的单值对应关系,一方面有助于全面地了解变量之间的单值对应关系,进而形成对函数的较全面的认识;另一方面也为后面学习函数的三种表示方法进行了适当的准备.活动方式:思考后由学生个别作答.学生解答:通过观察不难发现在问题(1)的心电图中,对于x的每个确定值,y•都有唯一确定的值与其对应;在问题(2)中,对于表中每个确定的年份x,都对应着一个确定的人口数y教师小结:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x•的每个确定的值,y•都有唯一确定的值与其对应,•那么我们就说x•是自变量(independent variable),y是x的函数(function).如果当x=a时,y=b,那么b•叫做当自变量的值为a时的函数值.据此可以认为:上节情景问题中时间t是自变量,里程s是t的函数.t=1时的函数值s=60,t=2时的函数值s=120,t=2.5时的函数值s=150,…,同样地,在以上心电图问题中,时间x是自变量,心脏电流y是x的函数;人口数统计表中,•年份x是自变量,人口数y是x的函数.当x=1999时,函数值y=12.52亿.(三)深入理解函数概念,提高问题解决能力:[活动一]判断下列问题中的变量之间是否存在函数关系.1.在计算器上按照下面的程序进行操作:填表:x 1 3 -4 0 101y显示的数y是输入的数x的函数吗?为什么?2.在计算器上按照下面的程序进行操作.下表中的x与y是输入的5个数与相应的计算结果:x 1 2 3 0 -1y 3 5 7 2 -1所按的第三.四两个键是哪两个键?y是x的函数吗?如果是,写出它的表达式(用含有x的式子表示y).设计目的:通过探究这样的问题可以引导学生以函数的观点重新认识已经学习过的数学内容.活动方式:小组讨论,得出结果.学生解答:1.从计算结果完全可以看出,每输入一个x的值,操作后都有一个唯一的y值与其对应,所以在这两个变量中,x是自变量,y是x的函数.2.从表中两行数据中不难看出第三.四按键是1这两个键,且每个x•的值都有唯一的一个y值与其对应,所以在这两个变量中,x是自变量,y是x 的函数.关系式是:y=2x+1[活动二]例1 一辆汽车油箱现有汽油50L,如果不再加油,那么油箱中的油量y(L)随行驶里程x(km)的增加而减少,平均耗油量为0.1 L/km.1.写出表示y与x的函数关系式.2.指出自变量x的取值范围.3.汽车行驶200km时,油桶中还有多少汽油?设计目的:本节的例1包括三个小题,它们的要求分别为写函数解析式、指出自变量的取值范围和计算函数值.目的是要加强联系实际,同时也使现在所学的内容与前面所学的不等式内容联系起来,以旧带新.活动方式:独立完成,小组交流,引导解答.学生解答:1.行驶里程x是自变量,油箱中的油量y是x的函数.行驶里程x时耗油为:0.1x(L)油箱中剩余油量为:(50-0.1x)L所以函数关系式为:y=50-0.1x2.仅从式子y=50-0.1x上看,x可以取任意实数,但是考虑到x•代表的实际意义是行驶里程,所以不能取负数,并且行驶中耗油量为0.1x L,它不能超过油箱中现有汽油50L,即0.1x≤50,x≤500.因此自变量x的取值范围是:0≤x≤500 3.汽车行驶200km时,油箱中的汽油量是函数y=50-0.1x在x=200时的函数值,将x=200代入y=50-0.1x得:y=50-0.1×200=30所以,汽车行驶200km时,油箱中还有30升汽油.六.目标检测设计下列问题中哪些量是自变量?哪些量是自变量的函数?试写出用自变量表示函数的式子.1.改变正方形的边长x,正方形的面积S随之改变.2.秀水村的耕地面积是106m2,这个村人均占有耕地面积y(m2)随这个村人数n(人)的变化而变化.设计目的:从具体的实际问题中,进一步深入理解变量、常量和函数的含义,体会“变化与对应”的数学思想.学生解答:1.正方形边长x是自变量,正方形面积S是x的函数.函数关系式:S=x22.这个村人口数n是自变量,人均占有耕地面积y是n的函数.106函数关系式:y=n七.教学反思附1:教学设计理念:变量与函数的概念把学生由常量数学引入变量数学,是学生数学认识上的一次飞跃.因此,设计本课时应根据学生的认识基础,创设在一定历史条件下的现实情境,使学生从中感知到变量函数的存在和意义,体会变量之间的相互依存关系和变化规律.遵循从具体到抽象、感性到理性的渐进认识规律和以教师为主导、学生为主体的教学原则,引导学生探究新知,引导学生在观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,并在概念的形成过程中培养学生的观察、分析概括和抽象等的能力.同时在引导学生探索变量之间的规律、抽象出函数概念的过程中,要注重学生的过程经历和体验,让学生领悟到现实生活中存在着多姿多彩的数学问题,并能从中提出问题、分析问题和解决问题.还要培养一种团队合作精神,提高探索、研究和应用的能力,使学生真正成为数学学习的主人.附2:教材范围人教版义务课程标准实验教材八年级数学上册P94—P99.二O O八年十一月三日。

19.1.1-变量与函数-教案

19.1.1-变量与函数-教案

19.1.1 变量与函数八年级科目:数学主备人:范德彪时间:年月日课时安排与说明:1课时一、教学设计1、教学目标(1)理解变量与常量、自变量与函数的含义,能指出具体问题中的常量、变量,并会用含一个变量的代数式表示另一个变量;(2)理解两个变量间的特殊对应关系,能指出由哪一个变量唯一确定另一变量,会判断两个变量是否具有函数关系,并会求自变量的取值范围;(3)通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,体验“发现、创造”数学知识的乐趣.引导学生探索实际问题中的数量关系,让学生体会“变化与对应”的数学思想,培养学生提高分析问题和解决问题的能力。

2、内容分析(1)函数是数学中最重要的基本概念之一,它刻画了现实世界中一类数量关系之间的“特殊对应关系”。

方程、不等式、函数是初中数学的核心概念,它们从不同的角度刻画一类数量关系。

本节课是函数入门课,要从数学的角度研究变化现象,把握变化规律,首先必须准确认识变量与常量的特征,关注变化过程中量的变化,这就是变量.有了变量的概念,便为研究成函数关系的两变量的“运动与对应”关系打下基础.本课从四个简单的实际问题入手,通过分析问题中数值的变与不变,引出变量与常量的概念,而且问题中变量的单值对应关系也为学习函数的定义作了铺垫.(2)基于以上分析,确定本节课的教学重点是能找出一个变化过程中的变量与常量,教学难点是能判断两个变量是否具有函数关系。

3、学情分析(1)学生的认知基础:变量是学生第一次接触,对一个运动变化过程中的两个变量的关系,学生往往只认为是一种确定的数量关系。

类似于一元一次方程,学生直知道代数式中的字母可以表示数,方程中的未知数求出来后也是一个“已知数”,从“静态”的角度理解字母所表示的数,并没有用运动与变化的观点去体会两个变量之间相互依赖的关系。

另外,学生在日常生活中也接触到函数图象、两个变量的关系等朴素的函数关系的生活实例.但是学生初次接触函数的概念,难以理解定义中“唯一确定”的准确含义.(2)学生是年龄心理特点:八年级学生具有很强的感性认知基础,活泼好动,思维敏捷,表现欲强,对一些具体的实践活动十分感兴趣,但思考问题单一,不会延伸运用。

变量与函数说课内容(与课件配套)

变量与函数说课内容(与课件配套)

《变量与函数》说课稿各位评委、老师:大家好!我是来自虎门外语学校的黄耀兵。

今天我说课的内容是新人教版数学八年级下册第十九章第一节的内容——《变量与函数》。

说课内容我将从“教材分析、目标分析、方法分析、过程分析及评价分析”五个方面来说明。

《变量与函数》它是由常量数学转变成变量数学的一个基础概念课,它是整个初中阶段函数知识学习的基础,学生对它的“变化与对应”思想的理解也将直接影响到一次函数、二次函数、反比例函数的学习。

教参建议安排本节分六课时完成,出于考虑变量之间的相互依存关系和变化规律反映了函数的特征,是一个有机的整体,所以我将常量、变量与函数等概念的学习安排在了本节课中。

根据新课标,结合教材的特点和学生的知识现状,确定本节课的三维教学目标:(1)知识目标:①理解常量与变量.能指出具体问题中的常量、变量.②初步理解函数的定义,能判断两个变量是否具有函数关系.(2)能力目标:借助简单实例,引领学生参与变量的发现和函数概念的形成过程,体会从生活实例抽象出数学知识的方法,感知现实世界中变量之间联系的复杂性,数学研究从最简单的情形入手,化繁为简.(3)情感目标:①从学生熟悉、感兴趣的实例引入课题,学生初步感知实际生活蕴藏着丰富的数学知识,感知数学是有用、有趣的学科.② 借助简单实例,引领学生参与变量的发现和函数概念的形成过程,体验“发现、创造”数学知识的乐趣.教学重点、难点:重点:借助简单实例,从两个变量间的特殊对应关系抽象出函数的概念难点:引导学生怎样理解“唯一对应”三、教法、学法分析(1)教学方法教法:采用师生互动探究式教学.函数概念具有高度的抽象性,借助学生熟悉的生活实例,引领学生经历从具体实例中抽象出常量、变量与函数的过程,初步理解抽象的函数概念.(2)学习方法利用导学案让学生通过自主探究与合作交流.在有针对性的问题中,明确研究方向,进而能够抽象出概念,抓住函数的本质“唯一对应”.(3)课前准备教师:导学案和课件学生:学习用具四、过程分析本节课我的整体教学思路是:创设情境,铺垫迁移 自主探究、合作交流 应用知识,提升能力课堂小结,分层作业评价分析,教学反思第一环节:创设情境,铺垫迁移。

初中数学变量与函数--精品教学设计

初中数学变量与函数--精品教学设计

变量与函数(第1课时)教学设计一、内容和内容解析1. 内容人教版《义务教育课程标准实验教科书数学》八年级下册:“19.1.1变量与函数”第1课时.2. 内容解析本节内容为《一次函数》第一课时. 在学生学习了二元一次方程和找规律的基础上,学生对变量和常量已有一些模糊的认识. 通过生活实例的感悟,由具体到抽象,抽象出量的意义,并对量进行分类得出变化的量和不变的量,归纳出变量与常量的概念. 同时在讨论问题过程中,引出变量间的单值对应关系,体会建模思想,为学习函数的定义、函数的表达方式、函数的取值范围及函数的应用做出铺垫,为《一次函数》全章的学习打下基础.根据以上的分析,本节课的教学重点确定为:通过列举生活实例,理解量的意义,逐步形成常量与变量的概念,并能指出实际问题中的常量与变量.二、目标和目标解析1. 目标(1)理解量的意义、常量与变量的概念,并能指出实际问题中的常量与变量;(2)在实际问题的探究过程中,感受生活中变量间的对应关系,学会分辨不同表达方式中的变量与常量,经历从具体到抽象、从感性认识到理性分析的思维过程,体会函数与方程、数形结合和分类讨论的数学思想,提升数学抽象和数学建模的核心素养.2. 目标解析本节内容从学生熟悉的实际问题出发,让学生体会变量间的单值对应关系,感受一个变量随另一个变量的变化而变化,渗透自变量与函数的关系,从具体到抽象,通过表格、关系式及图象让学会生认识运动过程中的变量和常量概念,进而认识相关概念的联系和区别.达成目标(1)的标志:在探究过程中,正确找到变量与常量,并找出变化规律;达成目标(2)的标志:在练习和拓展中,找到图表中隐藏的变量与常量,能读取不同的数量关系和表达方式.三、教学问题诊断分析学生在字母表示数中,接触过当字母取值变化时,代数式的值随之变化,但学生对量的意义较为模糊.学生在生活中具有对两个量之间关联的体验,如气温随时间变化等,学生对变量与常量的定义理解困难不大,但是对变化中的单值对应关系及在变化过程中寻找变量与常量较难把握,特别是函数中的“唯一确定”仅局限于通过公式求出的唯一值,对不能用公式求出值的单值对应关系难以理解.因此教学难点确定为:理解变化过程中的变量与常量,以及变量与常量的相对性.四、教学支持条件分析从学生学过的小学课文《秋天来了》,引导学生观察现实世界和日常生活中的变化现象,让学生会用“变”的眼光观察现实世界,会用数学思维思考现实世界,会用数学语言表达现实世界.以李强的活动情境为主线引出生活中的变化事例,发现生活中变化的量和不变的量,引出变量与常量,在事例中感悟一个量随另一个量的变化现象,为刻画变量间的依赖关系,形成函数概念做出铺垫.以大量生活问题题材引导学生发现生活中变化的量和不变的量,以及变量间的单值对应关系,引导学生分析、分类、归纳出变量与常量的概念,结合式子、表格和图形给学生多种变量对应关系的呈现方式,帮助学生使用变量与常量准确地表述数学的研究对象,学会用数学的语言表达和交流数学问题,积累抽象思维的经验,提升数学抽象素养。

北师版八年级上册数学《4.1函数》教案 (1)

北师版八年级上册数学《4.1函数》教案  (1)

【课题】北师版八年级上册第四章 一次函数第一节:函数【课程标准陈述】1.结合实例,了解函数的概念和三种表示法,能举出函数的实例.2.能确定简单实际问题中函数自变量的取值范围.【课时学习目标】1.经历从具体实例中抽象出函数概念的过程,知道函数常见的三种表示法;(重点)2.会描述函数、函数值的概念,能判断两个变量间的关系是不是函数关系.(难点)【评价活动方案】1.通过提出三个具体实例引发的问题串,引导学生合作探究自变量与因变量的对应关系,进一步概括实例的相同抽象出函数概念,概括实例的不同归纳函数常见的三种表示法.(以达到目标1)2.通过抽象、归纳、概括、交流等活动描述函数、函数值的概念,例题1及课堂小测中的变式及反例练习强化学生对函数、函数值的概念的理解.(以达到目标2)【教学活动设计】第一环节:创设情境、导入新课展示一些与学生实际生活有关的图片,如心电图片,天气随时间的变化图片,抛掷铅球球形成的轨迹,k 线图等,提醒学生思考问题:在图片中有哪些量?他们是固定不变的吗?第二环节:合作探究探究活动一:经历从具体实例中抽象出函数概念的过程,知道函数常见的三种表示法;问题1:如图是壮壮同学骑自行车上学的路程与时间的关系图像,你能获取什么信息?(目标1) (1)右图反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)10t =时,路程是多少?15t =呢?30t =呢?(3)是否在0-30分钟内,每个时间都对应一个路程? 问题2:壮壮在上学路上的文具店买了一个笔袋花了15元,又买了几只圆珠笔,每只2元,你能提出什么数学问题?(目标1)(1)本题反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)设圆珠笔支数为x ,总费用为y . 1x =时,y 是多少?5x =呢?(3)y 与x 存在什么关系?是否给定一个x ,就有一个y 与之对应?(分钟)问题3:壮壮放学后打了辆出租车回家。

这辆出租车起步价是9元(路程小于或等于3公里),超过3公里每增加1公里加收1.7元。

八年级数学下册第19章一次函数19.1变量与函数19.1.1变量与函数课件(新版)新人教版

八年级数学下册第19章一次函数19.1变量与函数19.1.1变量与函数课件(新版)新人教版

例2 下列变量间的关系是函数关系的是
.
①长方形的长与面积;②圆的面积与半径;
③y=± x ;④S= 1 ah中的S与h.
2
解析 ①因为长方形的长、宽、面积都不确定,有三个变量,所以长方
形的长与面积不是函数关系.②因为圆的面积公式为S=πr2,当半径r取一
个确定的值时,面积S就唯一确定,所以圆的面积与半径是函数关系.③当
解析 (1)根据函数的定义可知,对于底面半径的每个值,都有一个确定 的体积的值按照一定的法则与之相对应,所以自变量是底面半径,因变 量是体积. (2)体积增加了(π×102-π×12)×3=297π cm3.
2.(2018湖北咸宁咸安模拟)若函数y=

x
2

2(
x

2),
则当函数值y=8时,自
答案 B 把h=2代入T=21-6h,得T=21-6×2=9.故选B.
5.在函数y=3x+4中,当x=1时,函数值为 为10.
,当x=
时,函数值
答案 7;2
解析 当x=1时,y=3x+4=3×1+4=7.当函数值为10时,3x+4=10,解得x=2.
知识点三 自变量的取值范围
6.(2018江苏宿迁中考)函数y= 1 中,自变量x的取值范围是( )
知识点一 常量与变量 1.(2017河北唐山乐亭期中)一辆汽车以50 km/h的速度行驶,行驶的路程 s(km)与行驶的时间t(h)之间的关系式为s=50t,其中变量是 ( ) A.速度与路程 B.速度与时间 C.路程与时间 D.三者均为变量
答案 C 在s=50t中路程随时间的变化而变化,所以行驶时间是自变 量,行驶路程是因变量,速度为50 km/h,是常量.故选C.

初中数学《变量与函数》教案

初中数学《变量与函数》教案

初中数学《变量与函数》教案一、教学目标1. 让学生理解变量的概念,能够识别常量和变量。

2. 让学生掌握函数的定义,能够判断两个变量之间的函数关系。

3. 培养学生运用函数解决实际问题的能力。

二、教学内容1. 常量与变量的概念。

2. 函数的定义及其相关性质。

3. 函数关系的判断。

三、教学重点与难点1. 教学重点:常量与变量的概念,函数的定义及其性质。

2. 教学难点:函数关系的判断。

四、教学方法1. 采用问题驱动法,引导学生主动探究常量与变量、函数的关系。

2. 利用实例分析,让学生直观理解函数的概念。

3. 运用小组合作学习,培养学生解决实际问题的能力。

五、教学过程1. 导入新课:通过展示生活中常见的变化现象,引导学生认识常量和变量。

2. 自主学习:让学生通过教材自主学习常量与变量的概念,并尝试判断生活中的常量和变量。

3. 课堂讲解:讲解常量与变量的概念,并通过实例让学生理解函数的定义。

4. 课堂练习:设计相关练习题,让学生判断生活中的函数关系。

5. 拓展应用:让学生运用函数解决实际问题,如计算购物时的折扣等。

6. 总结反馈:对本节课的内容进行总结,收集学生反馈,为后续教学做好准备。

六、教学评价1. 课后作业:布置有关常量、变量和函数的练习题,要求学生在课后进行自主复习和巩固。

2. 课堂表现:观察学生在课堂上的参与程度、提问回答以及合作学习的表现,了解学生的学习情况。

3. 实际问题解决:评估学生在解决实际问题时的应用能力,如购物折扣、行程规划等。

七、教学拓展1. 介绍函数在现实生活中的应用,如经济学中的需求函数、物理学中的速度与时间函数等。

2. 引导学生探究函数的图像,如直线、曲线等,并了解它们的特点和应用。

八、教学资源1. 教材:提供《变量与函数》的相关章节内容,供学生自主学习和参考。

2. 实例素材:收集生活中的实例,用于讲解和展示函数的应用。

3. 练习题库:准备不同难度的练习题,用于课堂练习和课后巩固。

八年级数学下册第19章一次函数 函数第1课时变量说课稿新版新人教版

八年级数学下册第19章一次函数 函数第1课时变量说课稿新版新人教版

变量各位领导各位老师,你们好!今天我将要为大家说课的内容九义初中数学人教版的第19章第一节第一课时《变量》首先,我对本节教材进行一些分析一、教材结构与内容简析本节内容的地位和作用:《变量》是本章的第一课,本节知识是理解函数概念的前提知识,是学习正比例函数、一次函数、反比例函数、二次函数的基础。

学好本届知识为过渡到学习本章正比例函数、一次函数起着铺垫作用。

本节内容是第一部分,因此,在本章中,占据重要的地位。

二、教学理念及学情分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识;在新的课改理念的指导下如何调动学生的学习激情和让学生自主学习、合作探究成为课堂教学的主流。

考虑到初二学生已有的认知结构心理特征 ,以及本章知识与生活和生产实践联系非常紧密,教师要抓住这一特点让学生感知数学即生活,生活即数学,同时让学生感受数学的有用性,从而更加热爱数学学习。

三、教学目标1、知识与技能:在具体情境中了解变量、自变量、因变量等概念,理解反映变量之间关系的实例;能够从表格中获得有关变量之间关系的信息;2、过程与方法:经历探索具体情境中两个变量之间关系的过程,体验变量之间的辩证关系;3、情感与价值观:在探索的过程中,感知数学即生活,培养学生参与数学活动的积极性和良好的学习态度。

四、重点、难点本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点重点:能从具体事件中分清什么是变量、自变量与因变量,理解因变量随自变量的变化的规律。

通过让学生自主学习与合作探究的方式突出重点难点:理解两个变量之间的依赖关系。

通过小组交流,课堂展示,和试一试,做一做的习题训练突破难点五、教法数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。

我采用了启发式教学法,让学生成为课堂的主人,学生自主学习、合作探究。

从而激活课堂开启学生智慧。

六、学法我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注:(1)让学生充分发表意见,然后教师进行点评。
(2)挖掘和利用实际生活中与变量有关的问题情景,让学生经历探索具体情景中两个变量关系的过程,直接获得探索变量关系的体验。
动手实验
1.在一根弹簧秤上悬挂重物,改变并记录重物的质量,
观察并记录弹簧长度的变化,填入下表:
悬挂重物的质量m(kg)
弹簧长度l(cm)
如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用重物质量m(kg)的式子表示受力后的弹簧长度l(cm)?
2.用10dm长的绳子围成矩形.试改变矩形的长,观察矩形的面积怎样变化,记录不同的矩形的长的值,计算相应的矩形面积的值,探索它们的变化规律(用表格表示)。设矩形的长为xdm,面积为Sdm2,怎样用含x的式子表示S?
科目
数学
年级
八·下
编写人
修订人
教学内容
19.1.1变量与函数(1)
教学目标
知识与技能
运用丰富的实例,使学生在具体情境中领悟函数概念的意义,了解常量与变量的含义。能分清实例中的常量与变量,了解自变量与函数的意义
过程与方法
通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,以提高分析问题和解决问题的能力
情感态度
与价值观
引导学生探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情.在解决问题的过程中体会数学的应用价值并感受成功的喜悦
教学重点
函数概念的形成过程。
教学难点
正确理解函数的概念
教学方法
导学法讲授法
媒体设计
多媒体
师生活动
备注
教学过程
提出问题:
1.汽车以60千米/时的速度匀速行驶。行驶里程为s千米,行驶时间为t小时。先填写下面的表,再试着用含t的式子表示s:
t(小时)
1
2
3
4
5
s(千米)
2.已知每张电影票的售价为10元。如果早场售出150张,日场售出205张,晚场售出310张,那么三场电影的票房收入各为多少元?设一场电影售出x张票,票房收人为y元,怎样用含x的式子表示y?
3.要画一个面积为10cm2的圆,圆的半径应取多少?画面积为20cm2的圆呢?怎样用含圆面积S的式子表示圆半径r?
2.请具体指出上面这些问题和实验中,哪些量是变量,哪些量是常量。
3.举出一些变化的实例,指出其中的变量和常量。
注:分组活动.先独立思考,然后组内交流并作记录,最后各组选派代表汇报。
培养学生主动参与、合作交流并能用数学的眼光看待世界的意识,提高观察、分析、概括和抽象等的能力。
(二)函数的概念
1.在前面的每个问题和实验中,是否各有两个变量?同一个问题中的变量之间有什么联系?
注:分组进行实验活动,然后各组选派代表汇报。
通过动手实验,学生的学习积极性被充分调动起来,进一步深刻体会了变量间的关系,学会了运用表格形式来表示实验信息。
探究新知
(一)变量与常量的概念
1.在学生动手实验并充分发表自己意见的基础上,师生共同归纳:上面的问题和实验都反映了不同事物的变化过程。其中有些量(时间t、里程s、售出票数x、票房收入y等)的值是按照某种规律变化的。在一个变化过程中,数值发生变化的量,我们称之为变量。也有些量是始终不变的,如上面问题中的速度60(千米/时)、票价10(元)等,我们称之为常量。
总结归纳
1.常量与变量的概念
2.函数的定义
3.函数的三种表示方式
注:通过总结归纳,完善学生已有的知识结构。
布置作业
P.81习题1 P71,练习
练习与思考
P.81习题1 P71,练习
课后反思
同样,在心电图中,时间x是自变量,心脏电流y是x的函数;在人口统计表中,年份x是自变量,人口数y是x的函数.当x=1999时,函数值y=12.52。
巩固新知
下列各题中分别有几个变量?你能将其中的某个变量看成是另一变量的函数吗?
1.右图是北京某日温度变化图
2.如图,已知菱形ABCD的对角线AC长为4,BD的长在变化,设BD的长为x,则菱形的面积为y= ×4×x
师生分析得出:上面的每个问题和实验中的两个变量互相联系.当其中一个变量取定一个值时,另一个变量就有惟一确定的值。
2.分组讨论教科书P.71问题。
注:使学生加深对各种表示函数关系的表达方式的印象。
3.一般来说,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么,我们就说x是自变量,y是x的函数。如果当x=a时,y=b,那么,b叫做当自变量的值为a时的函数值。例如在问题1中,时间t是自变量,里程s是t的函数。t=1时,其函数值s为60,t=2时,其函数值s为120。
相关文档
最新文档