采油工艺原理

合集下载

第三篇 第一章 海上采油工艺原理

第三篇 第一章 海上采油工艺原理

1第一章 海上采油工艺原理第一节 流入动态油井产量与井底流动压力的关系曲线称为流入动态曲线(Inflow Performance Relationship Curve),简称为IPR 曲线。

它反映了油藏向该井供油的能力,有些书中也称指示曲线(Index Curve),即油井产量与生产压差的关系曲线,因一定时间内油层压力可看作稳定不变,生产压差的变化即井底流压的变化。

对单井来说,IPR 曲线表示了油层的工作特性,因此,它既是确定油井合理工作制度的依据,也是分析油井动态的基础。

典型的油井流入动态曲线如图1-7所示。

由图可看出,IPR 曲线的基本形状与油藏的驱动类型有关,在同一驱动方式下p wf -q 关系的具体数值将取决于油层压力、渗透率及流体物性。

有关不同驱动方式下p wf -q 关系与油藏物理参数及完井状况之间的定量关系已在渗流力学中作了详细的讨论。

这里,我们仅从研究油井生产动态的角度来讨论不同条件下的流入动态曲线及其绘制方法。

一、单相流体的流入动态井底流压高于原油在地层条件下的饱和压力时,油藏中流体的流动为单相流动。

根据达西定律,等厚均质圆形地层中心一口井的产量公式为:)(ln )(543.0o wf r 0s b X B p p h k q o o +--=μ (1-1a)式中 q 0 ── 油井产量(地面),m 3/d ; h ──油层有效厚度,m ;k ── 油层中油的有效渗透率,10-3μm 2; r p ──油井平均地层压力,MPa ; p wf ── 油井井底流压,MPa ; μ0 ── 地层油的粘度,mPa ·s ; B 0 ── 原油体积系数,无因次; r e ── 油井供油边缘半径,m ; r w ── 油井半径,m ;b —— 常数,圆形封闭边界,b=3/4;圆形定压边界,b=0.5;X ——与泄油面积形状和井的位置有关的系数,圆形油藏X= r e / r w ;其余查表1-1。

石油开采原理

石油开采原理

石油开采原理
石油开采原理是指通过一系列的地质勘探、钻探和生产工艺,从地下石油储层中将石油开采出来的过程。

具体的石油开采原理如下:
1.地质勘探:石油开采前需进行地质勘探,包括地质调查、地
质测量和地质钻探等。

通过分析地层构造、岩性和含油层的特征,确定石油储层的位置和性质。

2.钻井:钻井是石油开采的关键过程。

钻井设备将钢管(套管)垂直或水平穿过地层,进入石油储层。

通过旋转钻头和循环泥浆,将地层打开并将石油带回地面。

3.完井和封井:一旦达到石油层,钻井工作就结束。

通过在井
中安装套管和水泥封井,确保井壁的稳定性,并防止石油泄漏。

4.人工提升:当石油层压力不足以让石油自行上升到地面时,
需要使用人工提升技术。

这包括抽油杆泵和电泵等设备,通过机械力将石油从井底抽出。

5.压裂技术:压裂是一种通过注入高压液体进入石油层,使石
油层裂缝扩大并增加石油流动性的方法。

这样可以提高石油的开采效率。

6.次生采收:当初始开采无法满足需求时,可以采用次生采收
技术。

这包括注入压裂液、水和二氧化碳等来增加储层压力,使原本无法开采的石油达到经济可开采的状态。

7.油井管理和监测:完成开采后,需对油井进行管理和监测。

这包括定期检查和维护井身、提取生产数据以确定采收效果,并确保井底设备的正常运行。

综上所述,石油开采原理包括地质勘探、钻井、完井和封井、人工提升、压裂技术、次生采收以及油井管理和监测等一系列工艺和技术。

这些步骤的合理应用和掌握,能够有效地开采地下储层的石油资源。

《采油工艺机械原理》课件

《采油工艺机械原理》课件

优点:效率高,适应性强,适用于 各种油井条件
潜油电泵是一种将电能转化为机械能的 装置,用于将油井中的原油提升到地面。
潜油电泵主要由电机、泵体、泵轴、叶 轮、导流管等部件组成。
电机将电能转化为机械能,驱动泵轴旋 转,带动叶轮旋转。
叶轮旋转时,叶片对液体产生压力,将 液体提升到地面。
导流管将液体从叶轮出口引导到泵体, 然后输送到地面。
潜油电泵的工作原理简单,但需要精确 控制,以保证油井的正常生产。
定期检查:检查机械部件是否磨损、松动或损坏 润滑保养:定期添加润滑油,保持机械部件的润滑状态 清洁保养:定期清洁机械部件,保持清洁状态 安全检查:定期检查机械的安全装置,确保其正常运行
定期检查:检查机 械部件的磨损情况, 及时更换磨损严重 的部件
天然气开采:用于天然气开采过程中的钻 井、压裂、完井等环节
地热能开发:用于地热能开发过程中的钻 井、压裂、完井等环节
页岩气开发:用于页岩气开发过程中的钻 井、压裂、完井等环节
煤层气开发:用于煤层气开发过程中的钻 井、压裂、完井等环节
地热能开发:用于地热能开发过程中的钻 井、压裂、完井等环节
工作原理:通过 抽油杆将油井中 的原油抽出
智能化:采用先进 的自动化技术,提 高采油效率和安全 性
环保化:注重环境 保护,减少对环境 的污染和破坏
节能化:采用节能 技术,降低能源消 耗,提高能源利用 率
集成化:将多种采 油工艺集成在一起 ,提高采油效率和 稳定性
智能化:采用 先进的传感器 和自动化技术, 提高采油效率
和安全性
环保化:采用 环保材料和工 艺,减少对环 境的污染和破
定期润滑:定期对 机械进行润滑,保 持机械部件的润滑 状态
定期清洁:定期对 机械进行清洁,保 持机械部件的清洁 状态

采油工艺--压裂工艺技术

采油工艺--压裂工艺技术

采油工艺–压裂工艺技术1. 简介压裂工艺技术是一种常用的采油工艺,旨在通过增加油井的产能和压裂储量来提高油井的采油效果。

本文将介绍压裂工艺技术的原理、分类、应用以及发展趋势。

2. 压裂工艺技术原理压裂工艺技术通过注入高压液体(常用的是水和添加剂)到油井中,使岩石破裂并形成裂缝,从而增加油井的渗透性和储量。

其原理主要有以下几个方面:•液体注入:通过注入高压液体进入油井,增加油井的压力,从而使岩石发生破裂。

•裂缝形成:液体的高压作用下,使岩石产生裂缝,从而增加孔隙度和渗透性。

•井壁固化:使用添加剂将油井周围的裂缝固定,防止裂缝的闭合。

•液体回收:通过回收注入的液体,减少资源的浪费。

3. 压裂工艺技术分类压裂工艺技术可根据不同的标准进行分类,下面是一些常见的分类方式:3.1 挤压压裂挤压压裂是一种常用的压裂技术,其特点是施加持续的高压来形成裂缝,适用于一些密度高、渗透性差的岩石。

3.2 爆炸压裂爆炸压裂是一种利用爆炸产生的冲击波来形成裂缝的技术,适用于一些硬度高的岩石。

3.3 液压压裂液压压裂是一种利用高压液体来形成裂缝的技术,适用于一些渗透性较好的岩石。

4. 压裂工艺技术应用压裂工艺技术在石油工业中有广泛的应用,其主要应用领域包括:•陆地油田:压裂工艺技术可以提高陆地油田的产能和采收率。

•海洋油田:压裂工艺技术可以应用于海洋油田,提高海洋油田的开发效率。

•页岩气开采:压裂工艺技术可以用于页岩气的开采,改善页岩气的渗透性。

5. 压裂工艺技术的发展趋势随着石油行业的不断发展,压裂工艺技术也在不断创新和发展。

未来压裂工艺技术的发展趋势主要包括:•绿色环保:未来的压裂工艺技术将更加注重环境保护,减少对地下水资源和环境的影响。

•高效节能:未来的压裂工艺技术将更加注重能源的利用效率,提高工艺的能源利用率。

•智能化:未来的压裂工艺技术将趋向智能化,通过自动化控制和人工智能等技术手段,提高工艺的自动化程度和智能化水平。

精选气举采油工艺技术讲座

精选气举采油工艺技术讲座
一、什么是气举采油?
1、定义:气举采油是指当地层供给的能量不足把
原油从井底举升到地面时,油井就停止自喷,为了使油井 继续出油,需要人为地把气体(天然气)压入井底,使原 油喷出地面的方法。
2、原理:气举采油是通过向油套环空(或油管)注入
高压气体,用以降低井筒液体的密度,在井底流压的作用下, 将液体排除井口。同时,注入气在井筒上升过程中,体积逐渐 增大,气体膨胀功对液体也产生携带作用。它是油井停喷后用 人工方法使其恢复自喷的一种机械采油方式。
增压气举地面工艺流程图
二、为什么要采用气举采油 的方式?
1、气举采油的优越性:
举升度高,举升高度可达3600m以上; 产液量适应范围广,可适应不同产液量的油井; 适用于斜井、定向井; 适应于液体中有腐蚀介质和出砂井; 特别适应于高气油比井; 操作管理简单,改变工作制度灵活。
2、气举采油的局限性:
注气量(m3/d)
气举采油配套工艺技术
5.生产管理技术---压缩机管理
提高运行效率:
压缩机作为气举工艺的动力源,要求其供气平稳。在实际中控制 排气量,保持平衡主要采用以下三种方法: 转速调节:通过提高或降低发动机的转速来调节排气量,通过排气压 力的变化来决定其气量是否平衡; 吸入压力调节:由压缩机的示功图知,当吸人压力降低时,其排气量减 少,反之,则增加,因而根据这一原理来调节; 余隙调节:通过调节压缩机一级缸的余隙来满足气量平衡,其调节量 仅为排量的10%。
1.气举采油优化设计技术
根据气举采油方案确定的气举方式,对油管尺寸、注气压力、井 口回压等参数进行敏感性分析,在优化参数的基础上,结合完井工 具的性能,即可进行气举井的单井设计。
设计方法:
基础 资料
动态曲 线建立

聚合物采油工艺原理课件

聚合物采油工艺原理课件

EOR Lab
28
aC 1 bC
2024/3/19
EOR Lab
29
2024/3/19
EOR Lab
30
不可入孔隙体积(IPV)
• 聚合物流经多孔介质时,并不是所有聚合物都 全部能够进入多孔介质的孔隙及喉道,只有一 部分尺寸较大的孔隙,聚合物才能进入。即这 一部分孔隙相对于注入的聚合物来说是可以进 入的,而剩余部分孔隙相对于注入聚合物分子 来说是不可进入的,即“不可入”。
(5-9)
c0 C
c 0
C
(5-8)
R
s Cs
(5-10)
式中:ηs——溶剂粘度,mPa.s;
ηr——相对粘度,R
s
,无因次;
ηR——对比粘度,R
s Cs
,单位是浓度的倒数,dl/g;
η——在非常低的粘度下测定的聚合物溶液的粘度,mPa.s;
[η]——聚合物特性粘数单位是浓度的倒数,dl/g。
2024/3/19
EOR Lab
13
2024/3/19
EOR Lab
14
2024/3/19
EOR Lab
15
2024/3/19
EOR Lab
16
描述聚合物溶液的流变性的模型
模型 PowerLaw
Ellis
Carreau
表达式
K n1
0
1
1
1/
2
0
n1
1 2 2
常数 K—稠度系数(mPas sn-1), K1 为牛顿流体的粘度 n—流变指数(无因次)假塑
节上有静电斥力,在水中分子链较伸展,故增粘性好。它
在带负电的砂岩表面上吸附量较少,因此,是目前最适合

采油工艺原理(完)

采油工艺原理(完)

采油工艺原理名词解释:1采油方法:指将流到井底的原油采到地面上所采用的方法。

2自喷采油:利用油层本身的能量使油喷到地面的方法称自喷采油法。

3气举采油:为了使停喷井继续出油,人为地把气体压入井底,使原油喷出地面,这种采油方法为气举采油。

4机械采油:需要进行人工补充能量才能将原油采出地面的方法称机械采油法。

5油井流入动态:是指油井产量与井底流压的关系,它反映了油藏向该井供油的能力。

6 IPR曲线:油井流入动态的简称,它是表示产量与流压关系的曲线,也称指示曲线。

7采油指数:它是一个反映油层性质、流体参数、完井条件及泄油面积等与产量之间的关系的综合指标。

其数值等于单位压差下的油井产量。

8流动效率:理想情况的生产压降与实际情况的生产压降之比,反映了实际油井的完善性。

9产液指数:它是一个反映油层性质、流体参数、完井条件及泄油面积等与产液量之间的关系。

10产水指数:它是一个反映油层性质、流体参数、完井条件及泄油面积等与产水量之间的关系的综合指标,即反映油层向该井的供液能力。

其数值等于单位生产压差下的产水量。

11井底流压:单相垂直管流的能量来自液体的压力12流动型态:流动过程中,气液两相在管内的分布状态。

13滑脱现象:在气液两相垂直管流中,由于气、液的密度差导致气体超越液体流动的现象。

14滑脱损失由于滑脱现象而产生的附加压力损失。

15气相存容比:计算管段中气相体积与管段容积之比。

16液相存容比:计算管段中液相体积与管段容积之比。

17临界流动:流体通过油嘴时流速达到压力波在该介质中的传授速度时的流动状态。

18临界压力比:流体通过油嘴时,随着嘴后与嘴前压力比的减小流量不断增大,当流量达到最大值时所对应的压力。

19节点系统分析:通过节点把从油藏到地面分离器所构成的整个油井生产系统按其计算压力损失的公式或相关式分成段,从而实现对整个生产系统进行分析的方法。

20节点:由不同压力损失公式或相关式所定义的部分设置。

21求解点:使问题获得解决的节点。

石油采油机工作原理

石油采油机工作原理

石油采油机工作原理
石油采油机的工作原理是利用机械设备将地下储存的石油从油井中提取出来。

具体来说,石油采油机的工作原理包括以下几个方面:
1. 油井完井:在地下埋设油井并进行完井作业,包括钻井、套管、封隔等步骤,以确保油井通畅且能够将石油有效地输送到地面。

2. 人工举升或自动抽油泵:石油采油机主要通过人工举升或自动抽油泵来提取地下的油藏。

当人工举升时,工作人员使用人力或机械力以固定的速度拉升油管,将地下的石油带至地表。

自动抽油泵则利用靠泵入口处空气压力的变化,驱动泵体往复运动,从而将石油抽上地面。

3. 油管系统:石油采油机通过油管系统将地下的石油输送到地面。

油管系统包括油管、管道、阀门等设备,能够有效地将地下石油运输到炼油厂或储油罐等目的地。

4. 控制系统:石油采油机配备有相应的控制系统,用于监测和控制石油采集过程中的各项参数,如油井压力、油井流量等。

控制系统能够实时地监控石油采油机的工作状态,确保其正常运行。

总的来说,石油采油机通过完整的井下设备和地上设备结合,利用机械力量将地下储存的石油提取到地面,从而实现对石油资源的开发和利用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⑵ 按照储层孔隙结构可划分为:孔隙性油气藏、 裂缝性油气藏、溶洞性油气藏、复合型油气藏。
⑶按照岩性可划分为:砂岩、碳酸盐岩、砾岩、 变质岩、岩浆岩等。
⑷按照储层形态可划分为:层状油藏、块状 油藏、断块油藏等。
⑸按照油、气、水分布特点划分为: 带气顶的油藏、边水油藏、底水油藏等。
⑹ 按照油气藏渗透性可划分为: 高渗油藏、低渗油藏、特低渗油藏。
本课程:
解决的问题:怎样把地下的原油拿出来。 特点:内容多、时间紧,注重基本概念和理论。
研究对象:地层向井筒的流动 井底向井口的流动 嘴流 地面管线的流动
主要内容
自喷采油:利用天然能量开采。
气举采油
有杆泵采油
无杆泵采油
(人工补充能量)
注水
水力压裂 酸化
(降低阻力)
气 连续气举 举 间歇气举
一般情况下为:1.8~5.5℃/100m, 全球平均为2.6℃/100m。 在生产过程中,油藏温度基本保持不变。
四、油藏压力(Reservoir Pressure) 为油藏中流体所承受的压力.
• 压力系数: 油藏中部的实测油藏压力与同一深
度的静水柱压力之比。 • 正常压力系统
0.8<压力系数<1.2.如油藏连通地表, 其油藏压力通常就为正常压力。
Crude oil contains many different heterocompounds that contain elements other than hydrogen and carbon. The principal ones are oxygen, nitrogen and sulfur, together with rare metal atoms, commonly nickel and vanadium.
为油藏中储集的油、气、水。 水:包括共生水、边水和底水 气:溶解气(solution gas)和自由气(free gas)
4、流体的宏观分布
根据重力分异原理,当油藏中同时存在油、 自由气和水时,气则处于油藏的顶部(称为 气顶,gas cap),自由水则处于油藏的边部 或底部,油则处于油藏的中部。
5、岩石的润湿性(wettability) 润湿,就是液体在表面分子力的作用下,在
它包括原油和天然气(Oil and Gas)。
这是石油的广义定义。
• Crude oil is defined as “a mixture of hydrocarbons that existed in the liquid phase in natural underground reservoirs and remains liquid at atmospheric pressure after passing through surface separating facilities”.
JS
J
ቤተ መጻሕፍቲ ባይዱ
/
h
h
q (Pr
Pwf
)
( 8-1g )
(2)影响采油指数的因素
Jo
Pe
qo Pwf
o
Bo
CKoh
ln re rw
S
采油指数反映了地层参数,反过 来说,地层参数影响采油指数。
(3) 流入动态关系曲线
①流入动态关系
产量与井底流压的关系叫流入动态关系(IPR) ——Inflow Performance Relationship
或油套管环形空间(井下油嘴和井下安全阀); 4)人工举升装置——用于补充人工能量的深井
泵或气举阀等;
5)井口阻件——地面用于控制油井产量的 油嘴、节流装置;
6)地面集油管线——水平、倾斜或起伏管线; 7)计量站、油气分离器。
油井系统总压降为:
总压降可分解为以下部分:
第一章 储层及流体基本概念
储层孔隙中只存在油水两相时,so+sw=1 soi=1-swi soi —原始含油饱和度;
swi—束缚水饱和度.(irreducible water saturation)
三、油藏温度(Reservoir Temperature) 油藏温度随埋藏深度的增加而增加。
地温梯度:埋藏深度每增加100米, 地温增加的℃数。
2、石油的分类 原油(Crude Oil):是石油的基本类型,在
常温常压条件下呈液态; 天然气(Natural Gas):是石油的主要类型,
在常温常压条件下呈气态; 沥青(Bitumen):常温常压条件下呈固态。 注意:凡是有原油的地方,就有天然气;
但在有天然气的地方,不一定有原油。
3、油藏流体:
Natural gas is composed primarily of 4 hydrocarbon molecules.These range from 1 to 4 carbons in length and are methane,ethane,propane,and butane.
石油的代名词有: 黑色的金子(Black Gold); 工业的血液
常规有杆泵
人工举升
利用抽油杆传递能量 地面驱动螺杆泵
(机械采油) 泵 利用电缆传递电能
电动潜油离心泵 电动潜油螺杆泵
举 利用液体传递能量
水力活塞泵 射流泵
涡轮泵
注水:利用液体携带、补充能量。 水力压裂(hydraulic fracturing)
是用压裂液使地层破裂形成裂缝。并 在缝内填以支撑剂。填砂裂缝的高渗透 能力起到油井增产的作用。
如果 Pwf ,则P, qA ,qB 若 qB qA ,则B井产能大。
q —衡量产能: 采油指数 P
采油指数:油井日产量与生产压差的比值。
它表示单位生产压差下油井的日产量, 用以衡量油井的生产能力。 如果油井既产油,又产水:
( 8-1f ) 产液指数
比采油指数:单位油层厚度上的采油指数 。
K —绝对渗透率(absolute permeability)
多流体共存时,岩石允许每一相流体通过的能 力称为有效渗透率(effective permeability)。 分别以Kw、Ko、Kg表示。
Kw+Ko+Kg <K
多流体共存时, 每一相的有效渗透率与绝对渗透率的
比值称为相对渗透率(relative permeability)。 分别以Krw、Kro、Krg 表示。 Krw+Kro+Krg <1
对于储集层,孔隙度一般为10%到30%,渗透 率为1至1000毫达西。
在一定条件下,孔隙性的好坏决定了油气储量 (reserve)的大小,渗透率的高低决定了油气井产 量(production rate)的大小。
3、储集层的类型: 砂岩(sandstone):目前世界上所发 现 的40%的油气储集在砂岩中。 灰岩(limestone):目前世界上所发现的 50%以上的油气储集在灰岩中。 其他岩石(如变质岩、泥岩等):
一、储集层
储集层就是有能力含有油、 气、水或其他流体的地下岩石。 储集层具有两个基本特性。 1、孔隙性:
具有能够容纳油气的孔隙空间, 其大小用孔隙度(porosity)度量。
绝对孔隙度
有效孔隙度 2、渗透性:
孔隙空间之间是相互连通的,其允许流 体通过的能力用渗透率(permeability)度量。
油(气)井生产时压力波传播示意图
原始压力Pi
Q
井筒
岩石的弹性能
影像
流体的弹性能
影像
气顶能量
影像
边水压能驱油
影 像
原油重力驱油
影像
思考题一
1.充分理解和掌握各个概念. 2.简述和图示油藏中流体的宏观和微观分布? 3.如某一油藏中部的深度为3000米,实测油藏
压力为330大气压,则其压力系数是多少? 4.油藏有哪些类型? 5.油藏有哪些类型的驱动方式?
酸化(acidizing) 是向油井挤入专门配制的酸液,依
靠其化学溶蚀作用以解除油层污染和 提高近井地带油层渗透率。
压裂酸化(简称酸压) 基质酸化
生产系统:
1)油层——多孔介质; 2)完井——井眼结构发生改变的近井地带
(钻井、固井、完井和增产措施作业所致); 3)举升管柱——垂直、倾斜或弯曲油管、套管
这类储集层所占比例很小。
4、油藏(Reservoir):
单一圈闭中,具有同一压力系统的原油
聚集,或者说水动力学上相互连通的含油气
的封闭体系。



上图是几个油藏?
水 断层
油气藏分类(Reservoir Classification)
由于油气藏的类型不同,对应的合理开 发方式可能也不同。
⑴ 按照流体组分及性质可划分为: 气藏 (Natural Gas R.); 凝析气藏 (Condensate R.); 轻质油藏 (Light Oil R.); 油藏 (Oil R.); 重质油藏 (Heavy Oil R.);
异常高压引起井喷和自喷!
• 异常高压: 水面
压力系数>1.2.如 油藏周围环绕着 不渗透地层,它 不能与地表连通 时,则其压力可 能为异常高压。
五、油气藏驱动方式(Driving Pattern)
天然能量 驱油能量
人工补充能量
1.弹性驱动(原油、束缚水及岩石的弹性能) 2.溶解气驱 3.气顶驱(依靠气顶能量) 4.水驱(边、底水或人工注水) 5. 重力驱动
2、采油指数及流入动态
可简化成: qo=Jo ( Pr - Pwf )
(8-1)
其中:
Jo
CK 0 h
0B0 (ln
re rw
1 2
S)
Jo
CK0h
0B0 (ln
re rw
3 4
S)
(8-1c) (8-1d)
相关文档
最新文档