2020陕西中考数学总复习三角形核心素养训练

合集下载

清单02全等三角形(8个考点梳理题型解读核心素养提升中考聚焦)(原卷版)

清单02全等三角形(8个考点梳理题型解读核心素养提升中考聚焦)(原卷版)

清单02 全等三角形(8个考点梳理+题型解读+核心素养提升+中考聚焦)【知识导图】【知识清单】考点一.全等图形(1)全等形的概念能够完全重合的两个图形叫做全等形.(2)全等三角形能够完全重合的两个三角形叫做全等三角形.(3)三角形全等的符号“全等”用符号“≌”表示.注意:在记两个三角形全等时,通常把对应顶点写在对应位置上.(4)对应顶点、对应边、对应角把两个全等三角形重合到一起,重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角.1.(2022秋•剑阁县期末)下列说法正确的是()A.两个面积相等的图形一定是全等图形B.两个全等图形形状一定相同C.两个周长相等的图形一定是全等图形D.两个正三角形一定是全等图形2.(2022秋•东莞市期末)下列各组图形中,是全等形的是()A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形考点二.全等三角形的性质(1)性质1:全等三角形的对应边相等性质2:全等三角形的对应角相等说明:①全等三角形的对应边上的高、中线以及对应角的平分线相等②全等三角形的周长相等,面积相等③平移、翻折、旋转前后的图形全等(2)关于全等三角形的性质应注意①全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.②要正确区分对应边与对边,对应角与对角的概念,一般地:对应边、对应角是对两个三角形而言,而对边、对角是对同一个三角形的边和角而言的,对边是指角的对边,对角是指边的对角.3.(2022秋•庄河市期末)如图,图中的两个三角形全等,则∠α等于()A.50°B.71°C.58°D.59°4.(2022秋•丹阳市校级期末)已知△ABC≌△DEF,AC=9cm,则DF=cm.考点三.全等三角形的判定(1)判定定理1:SSS﹣﹣三条边分别对应相等的两个三角形全等.(2)判定定理2:SAS﹣﹣两边及其夹角分别对应相等的两个三角形全等.(3)判定定理3:ASA﹣﹣两角及其夹边分别对应相等的两个三角形全等.(4)判定定理4:AAS﹣﹣两角及其中一个角的对边对应相等的两个三角形全等.(5)判定定理5:HL﹣﹣斜边与直角边对应相等的两个直角三角形全等.方法指引:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.5.(2022秋•莘县期末)如图,BC=BD,那么添加下列选项中的一个条件后,仍无法判定△ABC≌△ABD 的是()A.AC=AD B.∠BAC=∠BAD C.∠ABC=∠ABD D.∠C=∠D=90°6.(2022秋•嘉鱼县期末)如图,点A、D在线段BC的两侧,且∠A=∠D=90°.试添加一个条件,使△ABC≌△DBC.并写出证明过程.7.(2023春•渠县校级期末)已知:如图,AC∥DF,点B为线段AC上一点,连接BF交DC于点H,过点A作AE∥BF分别交DC、DF于点G、点E,DG=CH,求证:△DFH≌△CAG.8.(2023春•鄠邑区期末)如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.考点四.直角三角形全等的判定1、斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).2、直角三角形首先是三角形,所以一般三角形全等的判定方法都适合它,同时,直角三角形又是特殊的三角形,有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.9.(2022秋•衡山县期末)下列条件,不能判定两个直角三角形全等的是()A.两个锐角对应相等B.一个锐角和斜边对应相等C.两条直角边对应相等D.一条直角边和斜边对应相等10.(2022秋•磁县期末)如图,若要用“HL”证明Rt△ABC≌Rt△ABD,则还需补充的条件是()A.AC=AD或BC=BD B.AC=AD且BC=BDC.∠BAC=∠BAD D.以上都不对11.(2022秋•鄞州区校级期末)如图,AD∥BC,∠A=90°,E是AB上的一点,且AD=BE,∠1=∠2.求证:△ADE≌△BEC.12.(2023春•怀化期末)如图,在△ABC中,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足,AE=CF.求证:∠ACB=90°.13.(2022秋•雄县校级期末)如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.考点五.全等三角形的判定与性质(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.14.(2022秋•大田县期末)如图,正方形ABCD是一张边长为12cm的皮革.皮雕师傅想在此皮革两相邻的角落分别切下△PDQ与△PCR后得到一个五边形PQABR,其中P,Q,R三点分别在边CD,AD,BC 上,且PD=2DQ,PC=CR.(1)若DQ=x,将△PDQ的面积用含x的代数式表示;(2)五边形PQABR的面积是否存在最大值?若存在,请求出该最大值;若不存在,请说明理由.15.(2022秋•荣昌区期末)如图,AD是△ABC的中线,BE⊥AD,垂足为E,CF⊥AD,交AD的延长线于点F,G是DA延长线上一点,连接BG.(1)求证:BE=CF;(2)若BG=CA,求证:GA=2DE.16.(2022秋•宿城区校级期末)如图,△ABC和△ADE都是等腰三角形,BC、DE分别是这两个等腰三角形的底边,且∠BAC=∠DAE,求证:BD=CE.17.(2022秋•孝南区期末)如图,已知,点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=21,EC=9,求BC的长.考点六.全等三角形的应用(1)全等三角形的性质与判定综合应用用全等寻找下一个全等三角形的条件,全等的性质和判定往往是综合在一起应用的,这需要认真分析题目的已知和求证,分清问题中已知的线段和角与所证明的线段或角之间的联系.(2)作辅助线构造全等三角形常见的辅助线做法:①把三角形一边的中线延长,把分散条件集中到同一个三角形中是解决中线问题的基本规律.②证明一条线段等于两条线段的和,可采用“截长法”或“补短法”,这些问题经常用到全等三角形来证明.(3)全等三角形在实际问题中的应用一般方法是把实际问题先转化为数学问题,再转化为三角形问题,其中,画出示意图,把已知条件转化为三角形中的边角关系是关键.18.(2023春•长安区期末)王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B 分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.19.(2022秋•永城市校级期末)如图,点B,F,C,E在直线l上(点F,C之间不能直接测量),点A,D 在l的异侧,AB∥DE,∠A=∠D,测得AB=DE.(1)求证:△ABC≌△DEF;(2)若BE=10cm,BF=3cm,求FC的长.20.(2022秋•新化县期末)【问题背景】在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,试探究图1中线段BE、EF、FD之间的数量关系.【初步探索】小亮同学认为:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,则可得到BE、EF、FD之间的数量关系是.【探索延伸】在四边形ABCD中如图2,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,∠EAF=∠BAD,上述结论是否仍然成立?说明理由.【结论运用】如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角(∠EOF)为70°,试求此时两舰艇之间的距离.考点七.角平分线的性质角平分线的性质:角的平分线上的点到角的两边的距离相等.注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直角平分线的性质语言:如图,∵C在∠AOB的平分线上,CD⊥OA,CE⊥OB∴CD=CE21.(2022秋•双流区期末)已知:如图,△ABC中,∠ACB=90°,AD⊥AB,BD平分∠ABC交AD于D 点.(1)求证:∠ADE=∠AED;(2)若AB=6,CE=2,求△ABE的面积.22.(2022秋•巩义市期末)如图,在Rt△ABC中,∠C=90°,∠CAB的平分线AD交BC于点D,过点D 作DE⊥AB,垂足为E,此时点E恰为AB的中点.(1)求∠CAD的大小;(2)若BC=9,求DE的长.考点八.作图—尺规作图的定义(1)尺规作图是指用没有刻度的直尺和圆规作图.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.(2)基本要求它使用的直尺和圆规带有想像性质,跟现实中的并非完全相同.直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上画刻度.圆规可以开至无限宽,但上面亦不能有刻度.它只可以拉开成你之前构造过的长度.23.(2022秋•长安区校级期末)如图,Rt△ABC中,∠C=90°,∠B=30°,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形.其作法错误的是()A.B.C.D.24.(2022秋•青秀区校级期末)如图,是尺规作图中“画一个角等于已知角”的示意图,该作法运用了“全等三角形的对应角相等”这一性质,则判定图中两三角形全等的条件是()A.SAS B.ASA C.AAS D.SSS【核心素养提升】逻辑推理——构建全等三角形进行证明1.(2022秋•香坊区期末)如图,等边△ABC中,CH⊥AB于点H,点D、E分别在边AB、BC上,连接DE,点F在CH上,连接EF,若DE=EF,∠DEF=60°,BE=2,CE=8,则DH=.2.(2022秋•江岸区期末)如图所示,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD且AC=5,将BC沿BA方向平移至AE,连接CE、DE,若以AC、BD和DE为边构成的三角形面积是,则DE =.3.(2022秋•葫芦岛期末)在平面直角坐标系xOy中,△ABC为等腰直角三角形,∠ACB=90°,点A(0,5),点C(﹣2,0),点B在第四象限.(1)如图1,求点B的坐标;(2)如图2,若AB交x轴于点D,BC交y轴于点M,N是BC上一点,且BN=CM,连接DN,求证CD+DN=AM;(3)如图3,若点A不动,点C在x轴的负半轴上运动时,分别以AC,OC为直角边在第二、第三象限作等腰直角△ACE与等腰直角△OCF,其中∠ACE=∠OCF=90°,连接EF交x轴于P点,问当点C 在x轴的负半轴上移动时,CP的长度是否变化?若变化,请说明理由,若不变化,请求出其长度.【中考热点聚焦】热点1.三角形全等的判定1.(2023•衢州)已知:如图,在△ABC和△DEF中,B,E,C,F在同一条直线上.下面四个条件:①AB=DE;②AC=DF;③BE=CF;④∠ABC=∠DEF.(1)请选择其中的三个条件,使得△ABC≌△DEF(写出一种情况即可).(2)在(1)的条件下,求证:△ABC≌△DEF.2.(2023•云南)如图,C是BD的中点,AB=ED,AC=EC.求证:△ABC≌△EDC.热点2.三角形全等的判定和性质的综合应用3.(2023•苏州)如图,在△ABC中,AB=AC,AD为△ABC的角平分线.以点A圆心,AD长为半径画弧,与AB,AC分别交于点E,F,连接DE,DF.(1)求证:△ADE≌△ADF;(2)若∠BAC=80°,求∠BDE的度数.4.(2023•营口)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AB的两侧,且AE=BF,∠A=∠B,∠ACE=∠BDF.(1)求证:△ACE≌△BDF;(2)若AB=8,AC=2,求CD的长.5.(2023•南通)如图,点D,E分别在AB,AC上,∠ADC=∠AEB=90°,BE,CD相交于点O,OB=OC.求证:∠1=∠2.小虎同学的证明过程如下:证明:∵∠ADC=∠AEB=90°,∴∠DOB+∠B=∠EOC+∠C=90°.∵∠DOB=∠EOC,∴∠B=∠C.……第一步又OA=OA,OB=OC,∴△ABO≌△ACO.……第二步∴∠1=∠2.……第三步(1)小虎同学的证明过程中,第步出现错误;(2)请写出正确的证明过程.6.(2023•陕西)如图,在△ABC中,∠B=50°,∠C=20°.过点A作AE⊥BC,垂足为E,延长EA至点D.使AD=AC.在边AC上截取AF=AB,连接DF.求证:DF=CB.7.(2023•长沙)如图,AB=AC,CD⊥AB,BE⊥AC,垂足分别为D,E.(1)求证:△ABE≌△ACD;(2)若AE=6,CD=8,求BD的长.8.(2023•聊城)如图,在四边形ABCD中,点E是边BC上一点,且BE=CD,∠B=∠AED=∠C.(1)求证:∠EAD=∠EDA;(2)若∠C=60°,DE=4时,求△AED的面积.热点3.三角形全等的实际应用9.(2022•扬州)如图,小明家仿古家具的一块三角形状的玻璃坏了,需要重新配一块.小明通过给玻璃店老板提供相关数据,为了方便表述,将该三角形记为△ABC,提供下列各组元素的数据,配出来的玻璃不一定符合要求的是()A.AB,BC,CA B.AB,BC,∠B C.AB,AC,∠B D.∠A,∠B,BC 10.(2022•百色)校园内有一块四边形的草坪造型,课外活动小组实地测量,并记录数据,根据造型画如图的四边形ABCD,其中AB=CD=2米,AD=BC=3米,∠B=30°.(1)求证:△ABC≌△CDA;(2)求草坪造型的面积.热点4.角的平分线的性质11.(2023•广州)如图,已知AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,AE=12,DF=5,则点E到直线AD的距离为.12.(2022•北京)如图,在△ABC中,AD平分∠BAC,DE⊥AB.若AC=2,DE=1,则S△ACD=.。

聚焦中考陕西年中考数学总复习第四章三角形考点跟踪突破14全等三角形

聚焦中考陕西年中考数学总复习第四章三角形考点跟踪突破14全等三角形

考点跟踪突破14 全等三角形一、选择题1.如图,△ABC ≌△AEF ,AB =AE ,∠B =∠E,则对于结论:①AC=AF ;②∠FAB=∠EAB;③EF=BC ;④∠EAB=∠FAC.其中正确结论的个数是( C )A .1个B .2个C .3个D .4个,第1题图) ,第2题图)2.(2016·新疆)如图,在△ABC 和△DEF 中,∠B =∠DEF,AB =DE ,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是( D )A .∠A =∠DB .BC =EFC .∠ACB =∠FD .AC =DF3.如图,点O 是∠BAC 内一点,且点O 到AB ,AC 的距离OE =OF ,则△AEO≌△AFO 的依据是( A )A .HLB .AASC .SSSD .ASA,第3题图) ,第4题图)4.(2016·桐城模拟)在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC 是格点三角形(即顶点恰好是正方形的顶点),则与△ABC 有一条公共边且全等的所有格点三角形的个数是( D )A .5B .2C .3D .45.(导学号 30042181)(2015·十堰)如图,正方形ABCD 的边长为6,点E ,F 分别在AB ,AD 上,若CE =35,且∠ECF=45°,则CF 的长为( A )A .210B .3 5C.5310D.1035 点拨:延长FD 到G ,使DG =BE ,连接CG ,EF ,∵四边形ABCD 为正方形,在△BCE 与△DCG 中,⎩⎪⎨⎪⎧CB =CD ,∠CBE =∠CDG ,BE =DG ,∴△BCE ≌△DCG (SAS ),∴CG =CE ,∠DCG =∠BCE ,∴∠GCF =45°,在△GCF 与△ECF 中,⎩⎪⎨⎪⎧GC =EC ,∠GCF =∠ECF ,CF =CF ,∴△GCF ≌△ECF (SAS ),∴GF =EF ,∵CE =35,CB =6,∴BE =CE 2-CB 2=(35)2-62=3,∴AE =3,设AF =x ,则DF =6-x ,GF =3+(6-x )=9-x ,∴EF =AE 2+x 2=9+x 2,∴(9-x )2=9+x 2,∴x =4,即AF =4,∵GF =EF ,∴DF =2,∴CF =CD 2+DF 2=62+22=210,故选A二、填空题6.如图,已知△ABC≌△ADE,D 是∠BAC 的平分线上一点,且∠BAC=60°,则∠CAE =__30°__.,第6题图) ,第7题图)7.(2016·南昌)如图,OP 平分∠MON,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中有__3__对全等三角形.8.(导学号 30042182)如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,分别过点B ,C 作过点A 的直线的垂线BD ,CE ,若BD =4 cm ,CE =3 cm ,则DE =__7__cm.三、解答题9.(2016·衡阳)如图,点A ,C ,D ,B 四点共线,且AC =BD ,∠A =∠B,∠ADE =∠BCF,求证:DE =CF.证明:∵AC =BD ,∴AC +CD =BD +CD ,∴AD =BC ,在△AED 和△BFC 中,⎩⎪⎨⎪⎧∠A =∠B ,AD =BC ,∠ADE =∠BCF ,∴△AED ≌△BFC (ASA ),∴DE =CF10.(2009·陕西)如图,在平行四边形ABCD 中,点E 是AD 的中点,连接CE 并延长,交BA 的延长线于点F.求证:FA =AB.证明:∵四边形ABCD 是平行四边形,∴AB =DC ,AB ∥DC ,∴∠F =∠ECD ,又∵∠FEA =∠DEC ,EA =ED ,∴△AFE ≌△DCE (AAS ),∴AF =DC ,∴AF =AB11.如图,B ,C ,E 三点在同一条直线上,AC ∥DE ,AC =CE ,∠ACD=∠B .求证:BC =DE.证明:∵AC∥DE ,∴∠ACD =∠D ,∠BCA =∠E ,又∵∠ACD =∠B ,∴∠B =∠D ,在△ABC和△CDE 中,⎩⎪⎨⎪⎧∠B =∠D ,∠BCA =∠E ,AC =CE ,∴△ABC ≌△CDE (AAS ),∴BC =DE12.如图,在▱ABCD 中,点E 是CA 延长线上的点,点F 是AC 延长线上的点,且AE =CF.求证:(1)△ABE≌△CDF;(2)BE∥DF.证明:(1)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∴∠BAC =∠DCA ,∵∠BAC +∠BAE =∠DCA +∠DCF =180°,∴∠BAE =∠DCF ,又∵AE =CF ,∴△ABE ≌△CDF (SAS )(2)∵△ABE≌△CDF ,∴∠E =∠F ,∴BE ∥DF13.如图,△ABC 为等边三角形,AE =CD ,AD ,BE 相交于点P ,BQ ⊥AD 于点Q.(1)求证:△ADC≌△BEA;(2)若PQ =4,PE =1,求AD 的长.解:(1)∵△ABC 是等边三角形,∴AC =AB ,∠C =∠BAE =60°,在△ADC 与△BEA 中,⎩⎪⎨⎪⎧AC =BA ,∠C =∠BAC ,CD =AE ,∴△ADC ≌△BEA (SAS ) (2)∵△ADC≌△BEA ,∴∠DAC =∠EBA ,AD =BE ,∵∠BPQ =∠BAP +∠ABP ,∴∠BPQ =∠BAP +∠DAC =60°,∵BQ ⊥AD ,∴∠BQP =90°,∴∠PBQ =30°,∴BP =2PQ ,∵PQ =4,∴BP =8,∵PE =1,∴BE =BP +PE =9,∴AD =BE =914.(导学号 30042183)如图1,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AD 上.(1)求证:BE =CE ;(2)如图2,若BE 的延长线交AC 于点F ,且BF⊥AC,垂足为点F ,∠BAC =45°,原题设其他条件不变.求证:△AEF≌△BCF.证明:(1)∵AB =AC ,D 是BC 的中点,∴∠BAE =∠EAC ,在△ABE 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠BAE =∠CAE ,AE =AE ,∴△ABE ≌△ACE (SAS ),∴BE =CE (2)∵∠BA C =45°,BF ⊥AF ,∴△ABF 为等腰直角三角形,∴AF =BF ,∵AB =AC ,点D 是BC 的中点,∴AD ⊥BC ,∴∠EAF +∠C =90°,∵BF⊥AC ,∴∠CBF +∠C =90°,∴∠EAF =∠CBF ,在△AEF 和△BCF 中,⎩⎪⎨⎪⎧∠EAF =∠CBF ,AF =BF ,∠AFE =∠BFC =90°,∴△AEF ≌△BCF (ASA )。

2020年中考数学复习《三角形综合》练习(含解析)

2020年中考数学复习《三角形综合》练习(含解析)

2020年中考数学复习《三角形综合》练习1.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.2.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点O.(1)求证:△DBC≌△ECB;(2)求证:OB=OC.3.如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.4.如图,已知等边△ABC,CD⊥AB于D,AF⊥AC,E为线段CD上一点,且CE=AF,连接BE,BF,EG⊥BF于G,连接DG.(1)求证:BE=BF;(2)试说明DG与AF的位置关系和数量关系.5.例2 如图,在△ABC中,D,E分别是边BC,AB的中点,AD,CE相交于点G,求证:==证明:连结ED.请根据教材提示,结合图①,写出完整的证明过程.结论应用:在▱ABCD中,对角线AC、BD交于点O,E为边BC的中点,AE、BD交于点F.(1)如图②,若▱ABCD为正方形,且AB=6,则OF的长为.(2)如图③,连结DE交AC于点G,若四边形OFEG的面积为,则▱ABCD的面积为.6.如图,在△ABC中,内角A、B、C所对的边分别为a、b、c.(1)若a=6,b=8,c=12,请直接写出∠A与∠B的和与∠C的大小关系;(2)求证:△ABC的内角和等于180°;(3)若=,求证:△ABC是直角三角形.7.如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.8.已知,在Rt△ABC中,∠ACB=90°,D是BC边上一点,连接AD,分别以CD和AD 为直角边作Rt△CDE和Rt△ADF,使∠DCE=∠ADF=90°,点E,F在BC下方,连接EF.(1)如图1,当BC=AC,CE=CD,DF=AD时,求证:①∠CAD=∠CDF,②BD=EF;(2)如图2,当BC=2AC,CE=2CD,DF=2AD时,猜想BD和EF之间的数量关系?并说明理由.9.如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD与边BC 交于点P(不与点B,C重合),点B,E在AD异侧,I为△APC的内心.(1)求证:∠BAD=∠CAE;(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;(3)当AB⊥AC时,∠AIC的取值范围为m°<∠AIC<n°,分别直接写出m,n的值.10.在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段AM的长;(2)如图2,点E,F分别在AB,AC上,且∠EDF=90°,求证:BE=AF;(3)如图3,点M在AD的延长线上,点N在AC上,且∠BMN=90°,求证:AB+AN =AM.11.如图,是具有公共边AB的两个直角三角形,其中,AC=BC,∠ACB=∠ADB=90°.(1)如图1,若延长DA到点E,使AE=BD,连接CD,CE.①求证:CD=CE,CD⊥CE;②求证:AD+BD=CD;(2)若△ABC与△ABD位置如图2所示,请直接写出线段AD,BD,CD的数量关系.12.如图,△ABC是等腰直角三角形,∠ACB=90°,D是射线CB上一点(点D不与点B 重合),以AD为斜边作等腰直角三角形ADE(点E和点C在AB的同侧),连接CE.(1)如图①,当点D与点C重合时,直接写出CE与AB的位置关系;(2)如图②,当点D与点C不重合时,(1)的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)当∠EAC=15°时,请直接写出的值.13.如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF∥AB;(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1﹣S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.14.如图,△ABC中,AB=AC,∠BAC=90°,点D,E分别在AB,BC上,∠EAD=∠EDA,点F为DE的延长线与AC的延长线的交点.(1)求证:DE=EF;(2)判断BD和CF的数量关系,并说明理由;(3)若AB=3,AE=,求BD的长.15.如图,△ABC中,AB=AC,DE垂直平分AB,交线段BC于点E(点E与点C不重合),点F为AC上一点,点G为AB上一点(点G与点A不重合),且∠GEF+∠BAC=180°.(1)如图1,当∠B=45°时,线段AG和CF的数量关系是.(2)如图2,当∠B=30°时,猜想线段AG和CF的数量关系,并加以证明.(3)若AB=6,DG=1,cos B=,请直接写出CF的长.16.如图,在△ABC中,AB=7.5,AC=9,S△ABC=.动点P从A点出发,沿AB方向以每秒5个单位长度的速度向B点匀速运动,动点Q从C点同时出发,以相同的速度沿CA方向向A点匀速运动,当点P运动到B点时,P、Q两点同时停止运动,以PQ为边作正△PQM(P、Q、M按逆时针排序),以QC为边在AC上方作正△QCN,设点P运动时间为t秒.(1)求cos A的值;(2)当△PQM与△QCN的面积满足S△PQM=S△QCN时,求t的值;(3)当t为何值时,△PQM的某个顶点(Q点除外)落在△QCN的边上.17.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD =1,OB=,请直接写出当点C与点M重合时AC的长.18.(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是;位置关系是.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.19.如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E.点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.20.如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD =CE.(1)如图1,求证:∠CAE=∠CBD;(2)如图2,F是BD的中点,求证:AE⊥CF;(3)如图3,F,G分别是BD,AE的中点,若AC=2,CE=1,求△CGF的面积.答案与解析一.解答题(共20小题)1.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.【分析】(1)根据平行线的性质得到∠B=∠FCD,∠BED=∠F,由AD是BC边上的中线,得到BD=CD,于是得到结论;(2)根据全等三角形的性质得到BE=CF=2,求得AB=AE+BE=1+2=3,于是得到结论.【解答】(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF(AAS);(2)解:∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3,∵AD⊥BC,BD=CD,∴AC=AB=3.2.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点O.(1)求证:△DBC≌△ECB;(2)求证:OB=OC.【分析】(1)根据等腰三角形的性质得到∠ECB=∠DBC根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到∠DCB=∠EBC根据等腰三角形的判定定理即可得到OB=OC【解答】(1)证明:∵AB=AC,∴∠ECB=∠DBC,在△DBC与△ECB中,∴△DBC≌△ECB(SAS);(2)证明:由(1)知△DBC≌△ECB,∴∠DCB=∠EBC,∴OB=OC.3.如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.【分析】(1)根据等腰三角形的性质得到∠BAD=∠CAD,根据三角形的内角和即可得到∠BAD=∠CAD=90°﹣42°=48°;(2)根据等腰三角形的性质得到∠BAD=∠CAD根据平行线的性质得到∠F=∠CAD,等量代换得到∠BAD=∠F,于是得到结论.【解答】解:(1)∵AB=AC,AD⊥BC于点D,∴∠BAD=∠CAD,∠ADC=90°,又∠C=42°,∴∠BAD=∠CAD=90°﹣42°=48°;(2)∵AB=AC,AD⊥BC于点D,∴∠BAD=∠CAD,∵EF∥AC,∴∠F=∠CAD,∴∠BAD=∠F,∴AE=FE.4.如图,已知等边△ABC,CD⊥AB于D,AF⊥AC,E为线段CD上一点,且CE=AF,连接BE,BF,EG⊥BF于G,连接DG.(1)求证:BE=BF;(2)试说明DG与AF的位置关系和数量关系.【分析】(1)由等边三角形的性质可得AB=AC=BC,∠BAC=∠ACB=∠ABC=60°,BD=AD,∠BCD=30°,由“SAS”可证△ABF≌△CBE,可得BF=BE;(2)通过证明△BEF是等边三角形,可得BG=GF,由三角形中位线定理可得AF=2GD,AF∥DG.【解答】证明:(1)∵△ABC是等边三角形∴AB=AC=BC,∠BAC=∠ACB=∠ABC=60°∵CD⊥AB,AC=BC∴BD=AD,∠BCD=30°,∵AF⊥AC∴∠F AC=90°∴∠F AB=∠F AC﹣∠BAC=30°∴∠F AB=∠ECB,且AB=BC,AF=CE∴△ABF≌△CBE(SAS)∴BF=BE(2)AF=2GD,AF∥DG理由如下:连接EF,∵△ABF≌△CBE∴∠ABF=∠CBE,∵∠ABE+∠EBC=60°∴∠ABE+∠ABF=60°,且BE=BF∴△BEF是等边三角形,且GE⊥BF∴BG=FG,且BD=AD∴AF=2GD,AF∥DG5.教材呈现:如图是华师版九年级上册数学教材第78页的部分内容.例2 如图,在△ABC中,D,E分别是边BC,AB的中点,AD,CE相交于点G,求证:==证明:连结ED.请根据教材提示,结合图①,写出完整的证明过程.结论应用:在▱ABCD中,对角线AC、BD交于点O,E为边BC的中点,AE、BD交于点F.(1)如图②,若▱ABCD为正方形,且AB=6,则OF的长为.(2)如图③,连结DE交AC于点G,若四边形OFEG的面积为,则▱ABCD的面积为6.【分析】教材呈现:如图①,连结ED.根据三角形中位线定理可得DE∥AC,DE=AC,那么△DEG∽△ACG,由相似三角形对应边成比例以及比例的性质即可证明==;结论应用:(1)如图②.先证明△BEF∽△DAF,得出BF=DF,那么BF=BD,又BO=BD,可得OF=OB﹣BF=BD,由正方形的性质求出BD=6,即可求出OF =;(2)如图③,连接OE.由(1)易证=2.根据同高的两个三角形面积之比等于底边之比得出△BEF与△OEF的面积比==2,同理,△CEG与△OEG的面积比=2,那么△CEG的面积+△BEF的面积=2(△OEG的面积+△OEF的面积)=2×=1,所以△BOC的面积=,进而求出▱ABCD的面积=4×=6.【解答】教材呈现:证明:如图①,连结ED.∵在△ABC中,D,E分别是边BC,AB的中点,∴DE∥AC,DE=AC,∴△DEG∽△ACG,∴===2,∴==;结论应用:(1)解:如图②.∵四边形ABCD为正方形,E为边BC的中点,对角线AC、BD交于点O,∴AD∥BC,BE=BC=AD,BO=BD,∴△BEF∽△DAF,∴==,∴BF=DF,∴BF=BD,∵BO=BD,∴OF=OB﹣BF=BD﹣BD=BD,∵正方形ABCD中,AB=6,∴BD=6,∴OF=.故答案为;(2)解:如图③,连接OE.由(1)知,BF=BD,OF=BD,∴=2.∵△BEF与△OEF的高相同,∴△BEF与△OEF的面积比==2,同理,△CEG与△OEG的面积比=2,∴△CEG的面积+△BEF的面积=2(△OEG的面积+△OEF的面积)=2×=1,∴▱ABCD的面积=4×=6.故答案为6.6.如图,在△ABC中,内角A、B、C所对的边分别为a、b、c.(1)若a=6,b=8,c=12,请直接写出∠A与∠B的和与∠C的大小关系;(2)求证:△ABC的内角和等于180°;(3)若=,求证:△ABC是直角三角形.【分析】(1)根据三角形中大角对大边,即可得到结论;(2)画出图形,写出已知,求证;过点A作直线MN∥BC,根据平行线性质得出∠MAB =∠B,∠NAC=∠C,代入∠MAB+∠BAC+∠NAC=180°即可求出答案;(3)化简等式即可得到a2+c2=b2,根据勾股定理的逆定理即可得到结论.【解答】解:(1)∵在△ABC中,a=6,b=8,c=12,∴∠A+∠B<∠C;(2)如图,过点B作MN∥AC,∵MN∥AC,∴∠MBA=∠A,∠NBC=∠C(两直线平行,内错角相等),∵∠MBA+∠ABC+∠NBC=180°(平角的定义),∴∠A+∠ABC+∠C=180°(等量代换),即:三角形三个内角的和等于180°;(3)∵=,∴ac=(a+b+c)(a﹣b+c)=[(a2+2ac+c2)﹣b2],∴2ac=a2+2ac+c2﹣b2,∴a2+c2=b2,∴△ABC是直角三角形.7.如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.【分析】(1)利用等腰三角形的三线合一的性质证明∠ADB=90°,再利用等腰三角形的性质求出∠ABC即可解决问题.(2)只要证明∠FBE=∠FEB即可解决问题.【解答】(1)解:∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣36°=54°.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC,∵EF∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴FB=FE.8.已知,在Rt△ABC中,∠ACB=90°,D是BC边上一点,连接AD,分别以CD和AD 为直角边作Rt△CDE和Rt△ADF,使∠DCE=∠ADF=90°,点E,F在BC下方,连接EF.(1)如图1,当BC=AC,CE=CD,DF=AD时,求证:①∠CAD=∠CDF,②BD=EF;(2)如图2,当BC=2AC,CE=2CD,DF=2AD时,猜想BD和EF之间的数量关系?并说明理由.【分析】(1)①根据同角的余角相等证明;②作FH⊥BC交BC的延长线于H,证明△ACD≌△DHF,根据全等三角形的性质得到DH=AC,结合图形证明即可;(2)作FG⊥BC交BC的延长线于G,证明△ACD∽△DGF,根据相似三角形的性质得到DG=2AC,证明结论.【解答】(1)证明:①∵∠ACB=90°,∴∠CAD+∠ADC=90°,∵∠CDF+∠ADC=90°,∴∠CAD=∠CDF;②作FH⊥BC交BC的延长线于H,则四边形FECH为矩形,∴CH=EF,在△ACD和△DHF中,,∴△ACD≌△DHF(AAS)∴DH=AC,∵AC=CB,∴DH=CB,∴DH﹣CD=CB﹣CD,即HG=BD,∴BD=EF;(2)BD=EF,理由如下:作FG⊥BC交BC的延长线于G,∵∠CAD=∠GDF,∠ACD=∠DGF=90°,∴△ACD∽△DGF,∴===2,即DG=2AC,GF=2CD,∵BC=2AC,CE=2CD,∴BC=DG,GF=CE,∴BD=CG,∵GF∥CE,GF=CE,∠G=90°,∴四边形FECG为矩形,∴CG=EF,∴BD=EF.9.如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD与边BC 交于点P(不与点B,C重合),点B,E在AD异侧,I为△APC的内心.(1)求证:∠BAD=∠CAE;(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;(3)当AB⊥AC时,∠AIC的取值范围为m°<∠AIC<n°,分别直接写出m,n的值.【分析】(1)由条件易证△ABC≌△ADE,得∠BAC=∠DAE,∴∠BAD=∠CAE.(2)PD=AD﹣AP=6﹣x,∵点P在线段BC上且不与B、C重合,∴AP的最小值即AP⊥BC时AP的长度,此时PD可得最大值.(3)I为△APC的内心,即I为△APC角平分线的交点,应用“三角形内角和等于180°“及角平分线定义即可表示出∠AIC,从而得到m,n的值.【解答】解:(1)在△ABC和△ADE中,(如图1)∴△ABC≌△ADE(SAS)∴∠BAC=∠DAE即∠BAD+∠DAC=∠DAC+∠CAE∴∠BAD=∠CAE.(2)∵AD=6,AP=x,∴PD=6﹣x当AD⊥BC时,AP=AB=3最小,即PD=6﹣3=3为PD的最大值.(3)如图2,设∠BAP=α,则∠APC=α+30°,∵AB⊥AC∴∠BAC=90°,∠PCA=60°,∠P AC=90°﹣α,∵I为△APC的内心∴AI、CI分别平分∠P AC,∠PCA,∴∠IAC=∠P AC,∠ICA=∠PCA∴∠AIC=180°﹣(∠IAC+∠ICA)=180°﹣(∠P AC+∠PCA)=180°﹣(90°﹣α+60°)=α+105°∵0<α<90°,∴105°<α+105°<150°,即105°<∠AIC<150°,∴m=105,n=150.10.在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段AM的长;(2)如图2,点E,F分别在AB,AC上,且∠EDF=90°,求证:BE=AF;(3)如图3,点M在AD的延长线上,点N在AC上,且∠BMN=90°,求证:AB+AN =AM.【分析】(1)根据等腰三角形的性质、直角三角形的性质得到AD=BD=DC=,求出∠MBD=30°,根据勾股定理计算即可;(2)证明△BDE≌△ADF,根据全等三角形的性质证明;(3)过点M作ME∥BC交AB的延长线于E,证明△BME≌△AMN,根据全等三角形的性质得到BE=AN,根据等腰直角三角形的性质、勾股定理证明结论.【解答】(1)解:∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=BD=DC,∠ABC=∠ACB=45°,∠BAD=∠CAD=45°,∵AB=2,∴AD=BD=DC=,∵∠AMN=30°,∴∠BMD=180°﹣90°﹣30°=60°,∴∠MBD=30°,∴BM=2DM,由勾股定理得,BM2﹣DM2=BD2,即(2DM)2﹣DM2=()2,解得,DM=,∴AM=AD﹣DM=﹣;(2)证明:∵AD⊥BC,∠EDF=90°,∴∠BDE=∠ADF,在△BDE和△ADF中,,∴△BDE≌△ADF(ASA)∴BE=AF;(3)证明:过点M作ME∥BC交AB的延长线于E,∴∠AME=90°,则AE=AM,∠E=45°,∴ME=MA,∵∠AME=90°,∠BMN=90°,∴∠BME=∠AMN,在△BME和△NMA中,,∴△BME≌△NMA(ASA),∴BE=AN,∴AB+AN=AB+BE=AE=AM.11.如图,是具有公共边AB的两个直角三角形,其中,AC=BC,∠ACB=∠ADB=90°.(1)如图1,若延长DA到点E,使AE=BD,连接CD,CE.①求证:CD=CE,CD⊥CE;②求证:AD+BD=CD;(2)若△ABC与△ABD位置如图2所示,请直接写出线段AD,BD,CD的数量关系.【分析】(1)①根据四边形的内角和得到∠DAC+∠DBC=180°,推出∠DBC=∠EAC,根据全等三角形的性质得到CD=CE,∠BCD=∠ACE,求得∠DCE=90°,根据垂直的定义得到结论;②由已知条件得到△CDE是等腰直角三角形,求得DE=CD,根据线段的和差即可得到结论;(2)如图2,在AD上截取AE=BD,连接CE,根据等腰直角三角形的性质得到∠BAC =∠ABC=45°,求得∠CBD=∠CAE,根据全等三角形的性质得到CD=CE,∠BCD =∠ACE,求得∠DCE=90°,根据线段的和差即可得到结论.【解答】(1)证明:①在四边形ADBC中,∠DAC+∠DBC+∠ADB+∠ACB=360°,∵∠ADB+∠ACB=180°,∴∠DAC+∠DBC=180°,∵∠EAC+∠DAC=180°,∴∠DBC=∠EAC,∵BD=AE,BC=AC,∴△BCD≌△ACE(SAS),∴CD=CE,∠BCD=∠ACE,∵∠BCD+∠DCA=90°,∴∠ACE+∠DCA=90°,∴∠DCE=90°,∴CD⊥CE;②∵CD=CE,CD⊥CE,∴△CDE是等腰直角三角形,∴DE=CD,∵DE=AD+AE,AE=BD,∴DE=AD+BD,∴AD+BD=CD;(2)解:AD﹣BD=CD;理由:如图2,在AD上截取AE=BD,连接CE,∵AC=BC,∠ACB=90°,∴∠BAC=∠ABC=45°,∵∠ADB=90°,∴∠CBD=90°﹣∠BAD﹣∠ABC=90°﹣∠BAD﹣45°=45°﹣∠BAD,∵∠CAE=∠BAC﹣∠BAD=45°﹣∠BAD,∴∠CBD=∠CAE,∵BD=AE,BC=AC,∴△CBD≌△CAE(SAS),∴CD=CE,∠BCD=∠ACE,∵∠ACE+∠BCE=∠ACB=90°,∴∠BCD+∠BCE=90°,即∠DCE=90°,∴DE===CD,∵DE=AD﹣AE=AD﹣BD,∴AD﹣BD=CD.12.如图,△ABC是等腰直角三角形,∠ACB=90°,D是射线CB上一点(点D不与点B 重合),以AD为斜边作等腰直角三角形ADE(点E和点C在AB的同侧),连接CE.(1)如图①,当点D与点C重合时,直接写出CE与AB的位置关系;(2)如图②,当点D与点C不重合时,(1)的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)当∠EAC=15°时,请直接写出的值.【分析】(1)根据等腰直角三角形的性质、平行线的判定定理解答;(2)在AF上截取AF=CD,连接EF,证明△EAF≌△EDC,根据全等三角形的性质得到EF=EC,∠AEF=∠DEC,根据平行线的判定定理证明;(3)分图②、图③两种情况,根据全等三角形的性质、等腰直角三角形的性质计算,得到答案.【解答】解:(1)当点D与点C重合时,CE∥AB,理由如下:∵△ABC是等腰直角三角形,∴∠CAB=45°,∵△ADE是等腰直角三角形,∴∠ADE=45°,∴∠CAB=∠ADE,∴CE∥AB;(2)当点D与点C不重合时,(1)的结论仍然成立,理由如下:在AC上截取AF=CD,连接EF,∵∠AED=∠ACB=90°,∴∠EAF=∠EDC,在△EAF和△EDC中,,∴△EAF≌△EDC(SAS),∴EF=EC,∠AEF=∠DEC,∵∠AED=90°,∴∠FEC=90°,∴∠ECA=45°,∴∠ECA=∠CAB,∴CE∥AB;(3)如图②,∠EAC=15°,∴∠CAD=30°,∴AD=2CD,AC=CD,∴FC=(﹣1)CD,∵△CEF为等腰直角三角形,∴EC=FC=CD,∵△ABC是等腰直角三角形,∴AB=AC=CD,∴==,如图③,∠EAC=15°,由(2)得,∠EDC=∠EAC=15°,∴∠ADC=30°,∴CD=AC,AB=AC,延长AC至G,使AG=CD,∴CG=AG﹣AC=DC﹣AC=AC﹣AC,在△EAG和△EDC中,,∴△EAG≌△EDC(SAS),∴EG=EC,∠AEG=∠DEC,∴∠CEG=90°,∴△CEG为等腰直角三角形,∴EC=CG=AC,∴=,综上所述,当∠EAC=15°时,的值为或.13.如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF∥AB;(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1﹣S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.【分析】(1)由折叠的性质和等边三角形的性质可得∠DFC=∠A,可证DF∥AB;(2)过点D作DM⊥AB交AB于点M,由题意可得点F在以D为圆心,DF为半径的圆上,由△ACD的面积为S1的值是定值,则当点F在DM上时,S△ABF最小时,S最大;(3)过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,由勾股定理可求BG的长,通过证明△BGD∽△BHE,可求EC的长,即可求AE的长.【解答】解:(1)∵△ABC是等边三角形∴∠A=∠B=∠C=60°由折叠可知:DF=DC,且点F在AC上∴∠DFC=∠C=60°∴∠DFC=∠A(2)存在,过点D作DM⊥AB交AB于点M,∵AB=BC=6,BD=4,∴CD=2∴DF=2,∴点F在以D为圆心,DF为半径的圆上,∴当点F在DM上时,S△ABF最小,∵BD=4,DM⊥AB,∠ABC=60°∴MD=2∴S△ABF的最小值=×6×(2﹣2)=6﹣6∴S最大值=×2×3﹣(6﹣6)=﹣3+6(3)如图,过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,∵△CDE关于DE的轴对称图形为△FDE∴DF=DC=2,∠EFD=∠C=60°∵GD⊥EF,∠EFD=60°∴FG=1,DG=FG=∵BD2=BG2+DG2,∴16=3+(BF+1)2,∴BF=﹣1∵EH⊥BC,∠C=60°∴CH=,EH=HC=EC∵∠GBD=∠EBH,∠BGD=∠BHE=90°∴△BGD∽△BHE∴∴∴EC=﹣1∴AE=AC﹣EC=7﹣14.如图,△ABC中,AB=AC,∠BAC=90°,点D,E分别在AB,BC上,∠EAD=∠EDA,点F为DE的延长线与AC的延长线的交点.(1)求证:DE=EF;(2)判断BD和CF的数量关系,并说明理由;(3)若AB=3,AE=,求BD的长.【分析】(1)只要证明EA=ED,EA=EF即可解决问题;(2)结论:BD=CF.如图2中,在BE上取一点M,使得ME=CE,连接DM.想办法证明DM=CF,DM=BD即可;(3)如图3中,过点E作EN⊥AD交AD于点N.设BD=x,则DN=,DE=AE =,由∠B=45°,EN⊥BN.推出EN=BN=x+=,在Rt△DEN中,根据DN2+NE2=DE2,构建方程即可解决问题;【解答】(1)证明:如图1中,∵∠BAC=90°,∴∠EAD+∠CAE=90°,∠EDA+∠F=90°,∵∠EAD=∠EDA,∴∠EAC=∠F,∴EA=ED,EA=EF,∴DE=EF.(2)解:结论:BD=CF.理由:如图2中,在BE上取一点M,使得ME=CE,连接DM.∵DE=EF.∠DEM=∠CEF,EM=EC.∴△DEM≌△FEC,∴DM=CF,∠MDE=∠F,∴DM∥CF,∴∠BDM=∠BAC=90°,∵AB=AC,∴∠DBM=45°,∴BD=DM,∴BD=CF.(3)如图3中,过点E作EN⊥AD交AD于点N.∵EA=ED,EN⊥AD,∴AN=ND,设BD=x,则DN=,DE=AE=,∵∠B=45°,EN⊥BN.∴EN=BN=x+=,在Rt△DEN中,∵DN2+NE2=DE2,∴()2+()2=()2解得x=1或﹣1(舍弃)∴BD=1.15.如图,△ABC中,AB=AC,DE垂直平分AB,交线段BC于点E(点E与点C不重合),点F为AC上一点,点G为AB上一点(点G与点A不重合),且∠GEF+∠BAC=180°.(1)如图1,当∠B=45°时,线段AG和CF的数量关系是AG=CF.(2)如图2,当∠B=30°时,猜想线段AG和CF的数量关系,并加以证明.(3)若AB=6,DG=1,cos B=,请直接写出CF的长.【分析】(1)如图1,连接AE,根据线段垂直平分线的性质得到AE=BE,根据等腰直角三角形的性质得到∠BAE=∠B=45°,BE=EC=AE,∠BAE=∠EAC=∠C=45°,根据全等三角形的性质即可得到结论;(2)如图2,连接AE,根据等腰三角形的性质和三角形的内角和得到∠BAC=120°,根据线段垂直平分线的性质得到AE=BE,求得∠BAE=∠B=30°,根据相似三角形的性质得到,解直角三角形即可得到AG=CF;(3)①当G在DA上时,如图3,连接AE,根据线段垂直平分线的性质得到AD=BD =3,AE=BE,由三角函数的定义得到BE===4,根据相似三角形的性质得到=,过A作AH⊥BC于点H由三角函数的定义即可得到结论.②当点G在BD 上,如图4,方法同(1).【解答】解:(1)相等,理由:如图1,连接AE,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B=45°,∴AE⊥BC,∵AB=AC,∴BE=EC=AE,∠BAE=∠EAC=∠C=45°,∵∠GEF+∠BAC=180°,∴∠AGE+∠AFE=360°﹣180°=180°,∵∠AFE+∠CFE=180°,∴∠AGE=∠CFE,∵∠GAE=∠C=45°,∴△AEG≌△CEF(AAS),∴AG=CF;故答案为:AG=CF;(2)AG=CF,理由:如图2,连接AE,∵AB=AC,∴∠B=∠C=30°,∴∠BAC=120°,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B=30°,∴∠CAE=90°,∠BAE=∠C,∵∠GEF+∠BAC=180°,∴∠AGE+∠AFE=180°,∵∠CFE+∠AFE=180°,∴∠AGE=∠CFE,∴△AGE∽△CFE,∴,在Rt△ACE中,∵∠C=30°,∴=sin C=,∴=,∴AG=CF;(3)①当G在DA上时,如图3,连接AE,∵DE垂直平分AB,∴AD=BD=3,AE=BE,∵cos B=,∴BE===4,∴AE=BE=4,∴∠BAE=∠B,∵AB=AC,∴∠B=∠C,∴∠C=∠BAE,∵∠GEF+∠BAC=180°,∴∠AGE+∠AFE=360°﹣180°=180°,∵∠AFE+∠CFE=180°,∴∠CFE=∠AGE,∴△CFE∽△AGE,∴=,过A作AH⊥BC于点H,∵cos B=,cos45°=,∵>,∴∠B<45°,∴E在H的左侧,∵cos B=,∴BH=AB=×6=,∵AB=AC,∴BC=2BH=9,∵BE=4,∴CE=9﹣4=5,∵AG=AD﹣DG=3﹣1=2,∴=,∴CF=2.5;②当点G在BD上,如图4,同(1)可得,△CFE∽△AGE,∴=,∵AG=AD+DG=3+1=4,∴=,∴CF=5,综上所述,CF的长为2.5或5.16.如图,在△ABC中,AB=7.5,AC=9,S△ABC=.动点P从A点出发,沿AB方向以每秒5个单位长度的速度向B点匀速运动,动点Q从C点同时出发,以相同的速度沿CA方向向A点匀速运动,当点P运动到B点时,P、Q两点同时停止运动,以PQ为边作正△PQM(P、Q、M按逆时针排序),以QC为边在AC上方作正△QCN,设点P运动时间为t秒.(1)求cos A的值;(2)当△PQM与△QCN的面积满足S△PQM=S△QCN时,求t的值;(3)当t为何值时,△PQM的某个顶点(Q点除外)落在△QCN的边上.【分析】(1)如图1中,作BE⊥AC于E.利用三角形的面积公式求出BE,利用勾股定理求出AE即可解决问题;(2)如图2中,作PH⊥AC于H.利用S△PQM=S△QCN构建方程即可解决问题;(3)分两种情形:①如图3中,当点M落在QN上时,作PH⊥AC于H.②如图4中,当点M在CQ上时,作PH⊥AC于H.分别构建方程求解即可;【解答】解:(1)如图1中,作BE⊥AC于E.∵S△ABC=•AC•BE=,∴BE=,在Rt△ABE中,AE==6,∴coaA===.(2)如图2中,作PH⊥AC于H.∵P A=5t,PH=3t,AH=4t,HQ=AC﹣AH﹣CQ=9﹣9t,∴PQ2=PH2+HQ2=9t2+(9﹣9t)2,∵S△PQM=S△QCN,∴•PQ2=וCQ2,∴9t2+(9﹣9t)2=×(5t)2,整理得:5t2﹣18t+9=0,解得t=3(舍弃)或.∴当t=时,满足S△PQM=S△QCN.(3)①如图3中,当点M落在QN上时,作PH⊥AC于H.易知:PM∥AC,∴∠MPQ=∠PQH=60°,∴PH=HQ,∴3t=(9﹣9t),∴t=.②如图4中,当点M在CQ上时,作PH⊥AC于H.同法可得PH=QH,∴3t=(9t﹣9),∴t=,综上所述,当t=s或s时,△PQM的某个顶点(Q点除外)落在△QCN 的边上.17.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为1;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD =1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC ∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.18.(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是MG=NG;位置关系是MG⊥NG.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.【分析】(1)利用SAS判断出△ACD≌△AEB,得出CD=BE,∠ADC=∠ABE,进而判断出∠BDC+∠DBH=90°,即:∠BHD=90°,最后用三角形中位线定理即可得出结论;(2)同(1)的方法即可得出结论;(3)同(1)的方法得出MG=NG,最后利用三角形中位线定理和等量代换即可得出结论.【解答】解:(1)连接BE,CD相交于H,∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AC=AE,∠BAD=∠CAE=90°∴∠CAD=∠BAE,∴△ACD≌△AEB(SAS),∴CD=BE,∠ADC=∠ABE,∴∠BDC+∠DBH=∠BDC+∠ABD+∠ABE=∠BDC+∠ABD+∠ADC=∠ADB+∠ABD=90°,∴∠BHD=90°,∴CD⊥BE,∵点M,G分别是BD,BC的中点,∴MG CD,同理:NG BE,∴MG=NG,MG⊥NG,故答案为:MG=NG,MG⊥NG;(2)连接CD,BE相交于点H,同(1)的方法得,MG=NG,MG⊥NG;(3)连接EB,DC,延长线相交于H,同(1)的方法得,MG=NG,同(1)的方法得,△ABE≌△ADC,∴∠AEB=∠ACD,∴∠CEH+∠ECH=∠AEH﹣∠AEC+180°﹣∠ACD﹣∠ACE=∠ACD﹣45°+180°﹣∠ACD﹣45°=90°,∴∠DHE=90°,同(1)的方法得,MG⊥NG,∴△MGN是等腰直角三角形.19.如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E.点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【分析】(1)利用直角三角形斜边中线的性质定理即可证明;(2)利用四边形内角和定理求出∠CME即可解决问题;(3)首先证明△ADE是等腰直角三角形,△DEM是等边三角形,设FM=a,则AE=CM=EM=a,EF=2a,推出=,=,由此即可解决问题;【解答】(1)证明:如图1中,∵DE⊥AB,∴∠DEB=∠DCB=90°,∵DM=MB,∴CM=DB,EM=DB,∴CM=EM.(2)解:∵∠AED=90°,∠A=50°,∴∠ADE=40°,∠CDE=140°,∵CM=DM=ME,∴∠MCD=∠MDC,∠MDE=∠MED,∴∠CME=360°﹣2×140°=80°,∴∠EMF=180°﹣∠CME=100°.(3)证明:如图2中,设FM=a.∵△DAE≌△CEM,CM=EM,∴AE=ED=EM=CM=DM,∠AED=∠CME=90°∴△ADE是等腰直角三角形,△DEM是等边三角形,∴∠DEM=60°,∠MEF=30°,∴AE=CM=EM=a,EF=2a,∵CN=NM,∴MN=a,∴=,=,∴=,∴EM∥AN.(也可以连接AM利用等腰三角形的三线合一的性质证明)20.如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD =CE.(1)如图1,求证:∠CAE=∠CBD;(2)如图2,F是BD的中点,求证:AE⊥CF;(3)如图3,F,G分别是BD,AE的中点,若AC=2,CE=1,求△CGF的面积.【分析】(1)直接判断出△ACE≌△BCD即可得出结论;(2)先判断出∠BCF=∠CBF,进而得出∠BCF=∠CAE,即可得出结论;(3)先求出BD=3,进而求出CF=,同理:EG=,再利用等面积法求出ME,进而求出GM,最后用面积公式即可得出结论.【解答】解:(1)在△ACE和△BCD中,,∴△ACE≌△BCD,∴∠CAE=∠CBD;(2)如图2,记AE与CF的交点为M,在Rt△BCD中,点F是BD的中点,∴CF=BF,∴∠BCF=∠CBF,由(1)知,∠CAE=∠CBD,∴∠BCF=∠CAE,∴∠CAE+∠ACF=∠BCF+∠ACF=∠ACB=90°,∴∠AMC=90°,∴AE⊥CF;(3)如图3,记AE与CF的交点为M,∵AC=2,∴BC=AC=2,∵CE=1,∴CD=CE=1,在Rt△BCD中,根据勾股定理得,BD==3,∵点F是BD中点,∴CF=DF=BD=,同理:EG=AE=,连接EF,过点F作FH⊥BC,∵∠ACB=90°,点F是BD的中点,∴FH=CD=,∴S△CEF=CE•FH=×1×=,由(2)知,AE⊥CF,∴S△CEF=CF•ME=×ME=ME,∴ME=,∴ME=,∴GM=EG﹣ME=﹣=,∴S△CFG=CF•GM=××=.。

2020年中考数学复习专题练:《三角形综合 》(含答案)

2020年中考数学复习专题练:《三角形综合 》(含答案)

2020年中考数学复习专题练:《三角形综合》1.如图:在四边形ABCD中,AB∥CD,∠BCD=90°,且AB=2,DC=BC=4.(1)求sin∠ADC的值.(2)E是四边形内一点,F是四边形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF 的形状.(等腰直角三角形)(3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值.2.如图1,在△ABC中,∠B=60°,点M从点B出发沿射线BC方向,在射线BC上运动.在点M运动的过程中,连结AM,并以AM为边在射线BC上方,作等边△AMN,连结CN.(1)当∠BAM=°时,AB=2BM;(2)请添加一个条件:,使得△ABC为等边三角形;①如图1,当△ABC为等边三角形时,求证:CN+CM=AC;②如图2,当点M运动到线段BC之外(即点M在线段BC的延长线上时),其它条件不变(△ABC仍为等边三角形),请写出此时线段CN、CM、AC满足的数量关系,并证明.3.综合与实践:操作发现:如图,已知△ABC和△ADE均为等腰三角形,AB=AC,AD=AE,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;(2)在(1)的条件下,求∠BEC的度数;拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.4.如图,在△ABC中,AB=AC=5,BC=6,点D是边AB上的动点(点D不与点AB重合),点G在边AB的延长线上,∠CDE=∠A,∠GBE=∠ABC,DE与边BC交于点F.(1)求cos A的值;(2)当∠A=2∠ACD时,求AD的长;(3)点D在边AB上运动的过程中,AD:BE的值是否会发生变化?如果不变化,请求AD:BE的值;如果变化,请说明理由.5.如图1,OA=2,OB=4,以点A为顶点,AB为腰在第三象限作等腰直角△ABC.(Ⅰ)求C点的坐标;(Ⅱ)如图2,OA=2,P为y轴负半轴上的一个动点,若以P为直角顶点,PA为腰等腰直角△APD,过D作DE⊥x轴于E点,求OP﹣DE的值;(Ⅲ)如图3,点F坐标为(﹣4,﹣4),点G(0,m)在y轴负半轴,点H(n,0)x 轴的正半轴,且FH⊥FG,求m+n的值.6.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,动点P从点A出发沿线段AB以每秒3个单位长的速度运动至点B,过点P作PQ⊥AB射线AC于点Q.设点P的运动时间为t秒(t>0).(1)线段CQ的长为(用含t的代数式表示)(2)当△APQ与△ABC的周长的比为1:4时,求t的值.(3)设△APQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式.(4)当直线PQ把△ABC分成的两部分图形中有一个是轴对称图形时,直接写出t的值.7.如图,在平面内给定△ABC,AB=AC,点O到△ABC的三个顶点的距离均等于c(c为常数),到点O的距离等于c的所有点组成图形G,过点A作AB的垂线交BC于点E,交图形G于点D,延长DA,在DA的延长线上存在一点F,使得∠ABF=∠ABC.(1)依题意补全图形;(2)判断直线BF与图形G交点的个数并证明;(3)若AD=4,cos∠ABF=,求DE的长.8.如图,△ABC是等边三角形,AB=8,AH⊥BC,垂足为H点,点D是射线AH上的动点,连接CD,以CD为边在CD的下方作等边△CDE,连接BE.(1)当点D在线段AH上时,设AD=x,△CDE的面积为y,求y关于x的函数解析式,并求出自变量x的取值范围;(2)当△CDE的面积等于△ABC的面积的时,判断线段CE与△ABC的边是否存在特殊的位置关系?若存在,说出是什么关系并证明;若不存在,请说明理由.9.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为圆心以AM为半径作圆弧,以B为圆心以BN为半径作圆弧,两圆弧相交于点C构成△ABC,设AB=x.(1)求x的取值范围;(2)若△ABC为直角三角形,求x的值;(3)当∠CAB是锐角时,求△ABC的最大面积?10.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,D是边AC上一点,且CD=1cm.动点P从点D出发,以1cm/s的速度沿D→A向终点A匀速运动;同时动点Q从点B出发,以1m/s的速度沿B→C向终点C匀速运动,连结PQ,设点P的运动时间为ts,△CPQ的面积为Scm2(1)当PQ=3时,求t的值;(2)求S与t之间的函数关系式,并写出自变量t的取值范围;(3)连结DQ,当直线DQ将△CPQ分成面积比为1:2两部分时,直接写出t的值,并写出此时S的值.11.如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD=AC,联结BD、CD,BD交直线AC于点E.(1)当∠CAD=90°时,求线段AE的长.(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,①当∠CAD<120°时,设AE=x,y=(其中S△BCE 表示△BCE的面积,S△AEF表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;②当=7时,请直接写出线段AE的长.12.如图,平面直角坐标系中有点A(﹣1,0)和y轴上一动点B(0,a),其中a>0,以B点为直角顶点在第二象限内作等腰直角△ABC,设点C的坐标为(c,d)(1)当a=2时,则C点的坐标为(,);(2)动点B在运动的过程中,试判断c+d的值是否发生变化?若不变,请求出其值;若发生变化,请说明理由;(3)当a=2时,在第一象限内是否存在一点P,使△PAB与△ABC全等?若存在,直接写出P点坐标;若不存在,请说明理由13.平面直角坐标系中,若点A(a,b),且+=0,点B(m,m),其中m>1,R点在x轴正半轴上,RA⊥RB(1)求a、b的值;(2)连接AB交y轴于E,连接ER,若∠ARO=15°,求的值;(3)点D(﹣1,0)、C(0,1),射线DC分别交线段AR、AB于点S、T,若SC=n,CT =k,试用含n的式子表示k.14.在平面直角坐标系中,A(﹣3,﹣2),B(2,4).(1)如图1,求△AOB的面积;(2)如图2,求AB与两坐标轴的交点C,D坐标;(3)在坐标轴上求作点P,使△ABP的面积为6,求P点坐标,利用图3解答.15.如图,在平面直角坐标系中,点O为坐标原点,点A的坐标为(0,4),点B在x的负半轴上,△AOB的面积为8,作△AOB关于y轴的对称图形,点B的对应点为C.(1)求线段OC的长;(2)点D从A点出发,沿线段AO向终点O运动,同时点E从点C出发,沿x轴的正方向运动,且CE=AD,连接DE交AC于点G,判断DG和EG的数量关系,并说明理由.(3)在(2)的条件下,当∠CEG=∠ABD时,求点G点坐标.16.在Rt△ABC中,AC=BC,∠ACB=90°,点D是BC上一点.(1)如图1,AD平分∠BAC,求证:AB=AC+CD;(2)如图2,点E在线段AD上,且∠CED=45°,∠BED=30°,求证:BE=2AE;(3)如图3,CD=BD,过B点作BM⊥AD交AD的延长线于点M,连接CM,过C点作CN⊥CM交AD于N,求证:DN=3DM.17.如图,在Rt△ABC中,=nM为BC上的一点,连接BM.(1)如图1,若n=1,①当M为AC的中点,当BM⊥CD于H,连接AH,求∠AHD的度数;②如图2,当H为CD的中点,∠AHD=45°,求的值和∠CAH的度数;(2)如图3,CH⊥AM于H,连接CH并延长交AC于Q,M为AC中点,直接写出tan∠BHQ 的值(用含n的式子表示).18.如图1,在等边△ABC中,E、D两点分别在边AB、BC上,BE=CD,AD、CE相交于点F.(1)求∠AFE的度数;(2)过点A作AH⊥CE于H,求证:2FH+FD=CE;(3)如图2,延长CE至点P,连接BP,∠BPC=30°,且CF=CP,求的值.(提示:可以过点A作∠KAF=60°,AK交PC于点K,连接KB)19.在等边△ABC中,点E,F分别在边AB,BC上.(1)如图1,若AE=BF,以AC为边作等边△ACD,AF交CE于点O,连接OD.求证:①AF=CE;②OD平分∠AOC;(2)如图2,若AE=2CF,作∠BCP=∠AEC,CP交AF的延长线于点P,求证:CE=CP.20.已知等边△ABC和等腰△CDE,CD=DE,∠CDE=120°.(1)如图1,点D在BC上,点E在AB上,P是BE的中点,连接AD,PD,则线段AD与PD之间的数量关系为;(2)如图2,点D在△ABC内部,点E在△ABC外部,P是BE的中点,连接AD,PD,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)如图3,若点D在△ABC内部,点E和点B重合,点P在BC下方,且PB+PC为定值,当PD最大时,∠BPC的度数为.参考答案1.解:(1)如图1,过点A作AM⊥DC于M,∵∠BCD=90°,AM⊥CD,∴AM∥BC,AB∥CD,∴四边形ABCM是平行四边形,且∠BCD=90°,∴四边形ABCM是矩形,∴AM=CB=4,AB=CM=2,∴DM=2,∴AD===2,∴sin∠ADC===;(2)△DEF是等腰直角三角形,理由如下:∵∠EDC=∠FBC,DE=BF,BC=CD,∴△CDE≌△CBF(SAS)∴∠DCE=∠BCF,CE=CF,∴∠DCE+∠ECB=∠BCF+∠BCE,∴∠DCB=∠ECF=90°,且CE=CF,∴△DEF是等腰直角三角形;(3)设BE=k,则CE=CF=2k,∴EF=2k,∵∠BEC=135°,又∠CEF=45°,∴∠BEF=90°,∴BF===3k,∴sin∠BFE=.2.解:(1)当∠BAM=30°时,∴∠AMB=180°﹣60°﹣30°=90°,∴AB=2BM;故答案为:30;(2)添加一个条件AB=AC,可得△ABC为等边三角形;故答案为:AB=AC;①如图1中,∵△ABC与△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC,即∠BAM=∠CAN,在△BAM与△CAN中,,∴△BAM≌△CAN(SAS),∴BM=CN;②成立,理由:如图2中,∵△ABC与△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAC+∠MAC=∠MAN+∠MAC,即∠BAM=∠CAN,在△BAM与△CAN中,,∴△BAM≌△CAN(SAS),∴BM=CN.3.(1)证明:如图1中,∵∠ABC=∠ACB=∠ADE=∠AED,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△BAD≌△CAE(SAS).(2)解:如图1中,设AC交BE于O.∵∠ABC=∠ACB=55°,∴∠BAC=180°﹣110°=70°,∵△BAD≌△CAE,∴∠ABO=∠ECO,∵∠EOC=∠AOB,∴∠CEO=∠BAO=70°,即∠BEC=70°.(3)解:如图2中,∵∠CAB=∠EAD=120°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴∠BAD=∠ACE,BD=EC=4,同法可证∠BEC=∠BAC=120°,∴∠FEC=60°,∵CF⊥EF,∴∠F=90°,∴∠FCE=30°,∴EF=EC=2.4.解:(1)作AH⊥BC于H,BM⊥AC于M.∵AB=AC,AH⊥BC,∴BH=CH=3,∴AH===4,=•BC•AH=•AC•BM,∵S△ABC∴BM==,∴AM===,∴cos A==.(2)设AH交CD于K.∵∠BAC=2∠ACD,∠BAH=∠CAH,∴∠CAK=∠ACK,∴CK=AK,设CK=AK=x,在Rt△CKH中,则有x2=(4﹣x)2+32,解得x=,∴AK=CK=,∵∠ADK=∠ADC,∠DAK=∠ACD,∴△ADK∽△CDA,∴====,设AD=m,DK=n,则有,解得m=,n=.∴AD=.(3)结论:AD:BE=5:6值不变.理由:∵∠GBE=∠ABC,∠BAC+2∠ABC=180°,∠GBE+∠EBC+∠ABC=180°,∴∠EBC=∠BAC,∵∠EDC=∠BAC,∴∠EBC=∠EDC,∴D,B,E,C四点共圆,∴∠EDB=∠ECB,∵∠EDB+∠EDC=∠ACD+∠DAC,∠EDC=∠DAC,∴∠EDB=∠ACD,∴∠ECB=∠ACD,∴△ACD∽△BCE,∴==.5.解:(Ⅰ)如图1,过C作CM⊥x轴于M点,如图1所示:∵CM⊥OA,AC⊥AB,∴∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,∴∠MAC=∠OBA,在△MAC和△OBA中,,∴△MAC≌△OBA(AAS),∴CM=OA=2,MA=OB=4,∴OM=6,∴点C的坐标为(﹣6,﹣2),故答案为(﹣6,﹣2);(Ⅱ)如图2,过D作DQ⊥OP于Q点,则四边形OEDQ是矩形,∴DE=OQ,∵∠APO+∠QPD=90°,∠APO+∠OAP=90°,∴∠QPD=∠OAP,在△AOP和△PDQ中,,∴△AOP≌△PDQ(AAS),∴AO=PQ=2,∴OP﹣DE=OP﹣OQ=PQ=OA=2;(Ⅲ)如图3,过点F分别作FS⊥x轴于S点,FT⊥y轴于T点,则∠HSF=∠GTF=90°=∠SOT,∴四边形OSFT是正方形,∴FS=FT=4,∠EFT=90°=∠HFG,∴∠HFS=∠GFT,在△FSH和△FTG中,,∴△FSH≌△FTG(AAS),∴GT=HS,又∵G(0,m),H(n,0),点F坐标为(﹣4,﹣4),∴OT═OS=4,∴GT=﹣4﹣m,HS=n﹣(﹣4)=n+4,∴﹣4﹣m=n+4,∴m+n=﹣8.6.解:(1)在Rt△ABC中,tan A===,由题意得,AP=3t,在Rt△APQ中,tan A==,∴PQ=AP=4t,根据勾股定理得,AQ===5t.当0<t≤时,如图1所示:CQ=AC﹣AQ=6﹣5t;当<t≤时,如图2所示:CQ=AQ﹣AC=5t﹣6;故答案为:6﹣5t或5t﹣6;(2)∵PQ⊥AB,∴∠APQ=90°=∠ACB,∵∠A=∠A,∴△APQ∽△ACB,∴==,即=,解得:t=,即当△APQ与△ABC的周长的比为1:4时,t为秒.(3)分两种情况:①当0<t≤时,如图1所示:△APQ与△ABC重叠部分图形的面积为S=△APQ的面积=×3t×4t=6t2;即S=6t2(0<t≤);②当<t≤时,如图2所示:由(1)得:PQ=3t,PQ=4t,AQ=5t,同(2)得:△CDQ∽△PAQ,∴==,即==,解得:CD=(5t﹣6),∴△APQ与△ABC重叠部分图形的面积为S=△APQ的面积﹣△CDQ的面积=×3t×4t ﹣×(5t﹣6)×(5t﹣6)=﹣t2+t﹣;即S=﹣t2+t﹣(<t≤);(4)由(1)知,AQ=5t,PQ=4t,CQ=6﹣5t或CQ=5t﹣6,当CQ=PQ时,四边形BCQP是轴对称图形,则4t=6﹣5t,∴t=;当<t≤时,设PQ和BC相交于D,当AC=AP时,四边形ACDP是轴对称图形,则6=3t,∴t=2.综上所述,当直线PQ把△ABC分成的两部分图形中有一个是轴对称图形时,t的值为秒或2秒.7.解:(1)如图,作AB,AC的垂直平分线交于点O,以O为圆心,OB长为半径作圆,⊙O 为图形G;(2)直线BF与图形G交点只有一个,理由如下:∵AD⊥AB,∴∠BAD=90°,∴BD是直径,∠ADB+∠ABD=90°,∵AB=AC,∴∠ACB=∠ABC,∵∠ACB=∠ADB,∠ABF=∠ABC,∴∠ABF=∠ADB,∴∠ABF+∠ABD=90°,∴∠DBF=90°,∴BD⊥BF,且OB是半径,∴BF是圆O的切线,∴直线BF与图形G交点的只有一个;(3)∵cos∠ABF=cos∠ADB==,∴BD=5,∴AB===3,∵∠ABE=∠ADB,∠BAE=∠BAD=90°,∴△ABE∽△ADB,∴,∴∴AE=,∴DE=AD﹣AE=.8.解:(1)∵△ABC是等边三角形,AB=8,AH⊥BC,∴BC=AC=AB=8,BH=HC=4,∠HAC=30°,∴AH=HC=4,∴DH=4﹣x,∴DC2=DH2+CH2=(4﹣x)2+16∵△CDE是等边三角形,=CD2=[(4﹣x)2+16]=x2﹣6x+16(0≤x≤4)∴y=S△CDE(2)∵当△CDE的面积等于△ABC的面积的,∴x2﹣6x+16=××64,∴x=或,当x=时,即AD=,如图1,∴DH=AH﹣AD=,∵tan∠DCH===,∴∠DCH=30°,∴∠ACD=∠ACB﹣∠DCH=30°,∴∠ACE=∠DCE+∠ACD=90°,∴CE⊥AC;当x=时,即AD=,如图2,∴DH=AD﹣AH=,∵tan∠DCH===,∴∠DCH=30°,∴∠BCE=∠DCH+∠DCE=90°,∴CE⊥BC.9.解:(1)∵在△ABC中,AC=1,AB=x,BC=3﹣x.,解得1<x<2;(2)①若AC为斜边,则1=x2+(3﹣x)2,即x2﹣3x+4=0,无解,②若AB为斜边,则x2=(3﹣x)2+1,解得x=,满足1<x<2,③若BC为斜边,则(3﹣x)2=1+x2,解得x=,满足1<x<2,综上,x=或;(3)在△ABC中,作CD⊥AB于D,设CD=h,△ABC的面积为S,则S=xh,①若点D在线段AB上,则+=x,∴(3﹣x)2﹣h2=x2﹣2x+1﹣h2,即x=3x﹣4,∴x2(1﹣h2)=9x2﹣24x+16,即x2h2=﹣8x2+24x﹣16.∴S2=x2h2=﹣2x2+6x﹣4=﹣2(x﹣)2+(≤x<2),当x=时(满足≤x<2),S2取最大值,从而S取最大值;②若点D在线段MA上,则﹣=x,同理可,得S2=x2h2=﹣2x2+6x﹣4=﹣2(x﹣)2+(1<x≤),易知此时S<,综合①②得,△ABC的最大面积为.10.解:(1)由题意PC=1+t,CQ=3﹣t,在Rt△PQC中,∵∠C=90°,PQ=3,PC=1+t,CQ=3﹣t,∴32=(1+t)2+(3﹣t)2,解得t=.∴PQ=3时,t的值为.(2)S=•PC•CQ=•(1+t)(3﹣t)=﹣t2+t+(0≤t≤3).(3)∵直线DQ将△CPQ分成面积比为1:2两部分,∴CD=2PD或PD=2CD,∴1=2t或t=2,解得t=或2,当t=时,S=﹣×++=,当t=2时,S=﹣×4+2+=,∴t=s或2s时,直线DQ将△CPQ分成面积比为1:2两部分.11.解:(1)∵△ABC是等边三角形,∴AB=BC﹣AC=2,∠BAC=∠ABC=∠ACB=60°.∵AD=AC,∴AD=AB,∴∠ABD=∠ADB,∵∠ABD+∠ADB+∠BAC+∠CAD=180°,∠CAD=90°,∠ABD=15°,∴∠EBC=45°.过点E作EG⊥BC,垂足为点G.设AE=x,则EC=2﹣x.在Rt△CGE中,∠ACB=60°,∴,,∴BG=2﹣CG=1+x,在Rt△BGE中,∠EBC=45°,∴,解得.所以线段AE的长是.(2)①设∠ABD=α,则∠BDA=α,∠DAC=∠BAD﹣∠BAC=120°﹣2α.∵AD=AC,AH⊥CD,∴,又∵∠AEF=60°+α,∴∠AFE=60°,∴∠AFE=∠ACB,又∵∠AEF=∠BEC,∴△AEF∽△BEC,∴,由(1)得在Rt△CGE中,,,∴BE2=BG2+EG2=x2﹣2x+4,∴(0<x<2).②当∠CAD<120°时,y=7,则有7=,整理得3x2+x﹣2=0,解得x=或﹣1(舍弃),.当120°<∠CAD<180°时,同法可得y=当y=7时,7=,整理得3x2﹣x﹣2=0,解得x=﹣(舍弃)或1,∴AE=1.12.解:(1)如图1中,过点C作CE⊥y轴于E,则∠CEB=∠AOB.∵△ABC是等腰直角三角形,∴BC=BA,∠ABC=90°,∴∠BCE+∠CBE=90°=∠BAO+∠CBE,∴∠BCE=∠ABO,在△BCE和△BAO中,,∴△CBE≌△BAO(AAS),∵A(﹣1,0),B(0,2),∴AO=BE=1,OB=CE=2,∴OE=1+2=3,∴C(﹣2,3),故答案为:﹣2,3;(2)动点A在运动的过程中,c+d的值不变.过点C作CE⊥y轴于E,则∠CEA=∠AOB,∵△ABC是等腰直角三角形,∴BC=BA,∠ABC=90°,∴∠BCE+∠CBE=90°=∠ABO+∠CBE,∴∠BCE=∠ABO,在△BCE和△BAO中,,∴△CBE≌△BAO(AAS),∵B(﹣1,0),A(0,a),∴BO=AE=1,AO=CE=a,∴OE=1+a,∴C(﹣a,1+a),又∵点C的坐标为(c,d),∴c+d=﹣a+1+a=1,即c+d的值不变;(3)存在,使△PAB与△ABC全等,如图2中,过C作CM⊥x轴于M,过P作PE⊥x轴于E则∠CMB=∠PEB=90°,∵△CAB≌△PAB,∴∠PBA=∠CBA=45°,BC=BP,∴∠CBP=90°,∴∠MCB+∠CBM=90°,∠CBM+∠PBE=90°,∴∠MCB=∠PBE,在△CMB和△BEP中,,∴△CMB≌△BEP(AAS),∴PE=BM,CM=BE,∵C(﹣2,3),B(﹣1,0),∴PE=1,OE=BE﹣BO=3﹣1=2,即P的坐标是(2,1).13.解:(1)∵+=0,又∵≥0,≥0,∴a=﹣1,b=1.(2)如图1中,作AM⊥x轴于M,AH⊥y轴于H,在RM上取一点K,使得AK=KR,连接AK,AO.∵A(﹣1,1),∴AM=AH=1,∵AK=KR,∴∠KRA=∠KAR=15°,∴∠AKM=∠KAR+∠KRA=30°,∴AK=KR=2AM=2,MK=,∴MR=2+,∴AR===+,∵B(m,m),∴OB平分∠EOB,∵OA平分∠EOM,∴OA⊥OB,∴∠AOB=∠ARB=90°,∴A,O,R,B四点共圆,∴∠BAR=∠BOR=45°,∴△ABR是等腰直角三角形,∴AB=AR=2+2,∵AH∥MR,∴∠HAR=∠ARM=15°,∴∠EA=30°,∴AE==,∴==.(3)如图,作SH⊥AD于H.由题意四边形ADOC是正方形,∴∠ACD=45°=∠CAT+∠ATC,∵∠CAT+∠SAC=45°,∴∠SAC=∠ATC,∵∠ASC=∠TSA,∴△SAC∽△STA,∴=,∴SA2=SC•ST,∵CS=n,CT=k,CD=,∴SH=DH=(﹣n),AH=n,∴AS2=AH2+HS2=n2+(﹣n)2=n(n+k),∴k=(0<n<).14.解:(1)如图1,过A作AC∥x轴,过B作BC⊥AC于C,BC交x轴于E,AC交y轴于D,∵A (﹣3,﹣2),B (2,4),∴△AOB 的面积=S △ACB ﹣S △AOD ﹣S △BOE ﹣S 长方形ODCE , =﹣﹣﹣2×2,=15﹣3﹣4﹣4,=4;(2)设直线AB 的解析式为:y =kx +b (k ≠0), 则,解得:,∴直线AB 的解析式为:y =x +,当x =0时,y =,∴C (0,),当y =0时,x +=0,解得:x =﹣,∴D (,0);(3)①当点P 在x 轴上时,∵△ABP 的面积为6, ∴=6,∴PD =2,如图3,点P 在x 轴的正半轴上,P (,0);同理得当点P在x轴的负半轴上,P(﹣,0);②当点P在y轴上时,=6,∴CP=,∴P(0,4)或(0,﹣);综上,点P的坐标是(,0)或(,0)或(0,4)或(0,).15.解:(1)如图1中,∵A(0,4),∴OA=4,=×OB×OA=8,∵S△AOB∴OB=4,∵△AOB与△AOC关于y轴对称,∴OC=OB=4.(2)如图2中,结论:DG=GE.理由:作DH∥EC交AC于H.∵OA=OC,∠AOC=90°,∴∠DAH=∠ACO=45°,∵DH∥OC,∴∠AHD=∠ACO=45°,∴∠DAH=∠AHD,∴AD=DH,∵AD=EC,∴DH=EC,∵∠DHG=∠GCE,∠DGH=∠CGE,∴△DGH≌△EGC(AAS),∴DG=EG.(3)如图3中,连接DB,DC,作DH∥EC交AC于H.设AD=DH=x,则AH=x,HC=4﹣x,∵HG=CG,∴HG=HC=2﹣x,∵OA⊥BC,OB=OC,∴AB=AC,DB=DC,∴∠ABC=∠ACB,∠DBO=∠DCO,∴∠ABD=∠ACD,∵∠CEG=∠ABD,∴∠ACD=∠CEG,∵DH∥CE,∴∠HDG=∠CEG=∠DCH,∵∠DHG=∠DHC,∴△DHG∽△CHD,∴=,∴=,解得x=2,∴AH=CH=2,∴H(2,2),∵GH=GC,∴G(3,1).16.证明:(1)如图1中,作DH⊥AB于H.∵∠ACD=∠AHD=90°,AD=AD,∠DAC=∠DAH,∴△ADC≌△ADH(ASA),∴AC=AH,DC=DH,∵CA=CB,∠C=90°,∴∠B=45°,∵∠DHB=90°,∴∠HDB=∠B=45°,∴HD=HB,∴BH=CD,(2)如图2中,作BM⊥AD交AD的延长线于M,连接CM.∵∠ACB=∠AMB=90°,∴C,A,B,M四点共圆,∴∠AMC=∠ABC=45°,∵∠CEM=45°,∴∠CEM=∠CME,∴CE=CM,∴∠ECM=∠ACB=90°,∴∠ACE=∠BCM,∵CA=CB,CE=CM,∴△ACE≌△BCM(SAS),∴AE=BM,∵在Rt∠EMB中,∠MEB=30°,∵BE=2BM=2AE.(3)如图3中,作CH⊥MN于H.∵∠ACB=∠AMB=90°,∴C,A,B,M四点共圆,∵CN⊥CM,∴∠NCM=90°∴∠CNM=∠CMN,∴CN=CM,∵CH⊥MN,∴HN=HM.∵CD=DB,∠CHD=∠BMD=90°,∠ADH=∠BDM,∴△CHD≌△BMD(AAS),∴DH=DM,∵HN=HM,∴DN=3DM.17.解:(1)①如图1中,作AK⊥CD交CD的延长线于K.∵CD⊥BM,AK⊥CK,∠ACB=90°,∴∠CHB=∠K=90°,∠CBH+∠BCH=90°,∠BCH+∠ACK=90°,∴∠CBH=∠ACK,∵CB=CA,∴△CHB≌△AKC(AAS),∴AK=CH,∵∠CHM=∠K=90°,∴MH∥AK,∵AM=BM,∴CH=KH,∴AK=KH,∵∠K=90°,∴∠AHD=45°.②如图2中,作AK⊥CD交CD的延长线于K,作CM⊥AB于M.设DH=CH=a.∵CA=CB,∠ACB=90°,∴∠CAB=45°,∵∠AHD=45°,∠AHD=∠ACH+∠CAH,∴∠ACH+∠CAH=∠CAH+∠DAH,∴∠DAH=∠ACD,∵∠ADH=∠CAD,∴△ADH∽△CDA,∴=,∴=,∴AD=a,∵CA=CB,∠ACB=90°,CM⊥AB,∴AM=BM,∴CM=AM=BM,设AM=CM=BM=x,在Rt△CMD中,∵CM2=DM2+CD2,∴x2+(x﹣a)2=4a2,解得x=a(负根已经舍弃).∴BD=AB﹣AD=(+)a﹣a=a,∴==.∵△ADH∽△CDA,∴==,设AH=m,则AC=m,AK=KH=m,∴tan∠ACK==,∴∠ACH=30°,∴∠CAH=∠AHD﹣∠ACH=45°﹣30°=15°.(2)作AJ⊥BM交BM的延长线于J.设AM=CM=y,则BC=2yn.∵CH⊥BM,BM===•y,∴CH===•y,∴HM==•y,∵AJ⊥BJ,CH⊥BJ,∴∠J=∠CHM=90°,∵∠AMJ=∠CMH,AM=CM,∴△AMJ≌△CMH(AAS),∴AJ=CH=•y,HM=JM=•y,∵∠BHQ=∠AHJ,∴tan∠BHQ=tan∠AHJ===n.18.(1)解:如图1中.∵△ABC为等边三角形,∴AC=BC,∠BAC=∠ABC=∠ACB=60°,在△EBC和△DCA中,,∴△EBC≌△DCA(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)证明:如图1中,∵AH⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵△EBC≌△DCA,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一点K使得KF=AF,连接AK、BK,∵∠AFK=60°,AF=KF,∴△AFK为等边三角形,∴∠KAF=60°,∴∠KAB=∠FAC,在△ABK和△AFC中,,∴△ABK≌△AFC(SAS),∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴FP=CK,∴PK=CK,∵FP=FK+PK∴FP=AF+CF,∵CF=CP,设CP=9a,∵CF=2a,∴FP=7a,∴AF=5a,∴==.19.(1)证明:①如图1中,∵△ABC是等边三角形,∴AB=BC,∠B=∠BAC=60°,∵AE=BF,∴△ABF≌△CAE(SAS),∴AF=EC.②如图1中,∵△ABF≌△CAE,∴∠BAF=∠ACE,∵∠AOE=∠OAC+∠ACO=∠OCA+∠BAF=∠BAC=60°,又∵△ACD是等边三角形,∴∠ADC=∠DAC=∠DCA=60°,∴∠AOE=∠ADC,∵∠AOE+∠AOC=180°,∴∠ADC+∠AOC=180°,∴A,D,C,O四点共圆,∴∠AOD=∠ACD=60°,∠COD=∠CAD=60°,∴∠AOD=∠COD,∴OD平分∠AOC.(2)证明:如图2中,取AE的中点M,连接CM.∵AE=2CF,AM=ME,∴AM=CF,∵∠CAM=∠ACF=60°,AC=CA,∴△ACM≌△CAF(SAS),∴∠ACM=∠CAF,∵∠CME=∠CAM+∠ACM=60°+∠ACM,∠CFP=∠ACF+∠CAF=60°+∠CAF,∴∠CME=∠CFP,∵EM=CF,∠PCF=∠CEM,∴△CME≌△PFC(ASA),∴CE=PC.20.解:(1)结论:AD=2PD.理由:如图1中,∵△ABC是等边三角形,∴∠B=60°,∵∠EDC=120°,∴∠EDB=180°﹣120°=60°,∴∠B=∠EDB=∠BED=60°,∴△BDE是等边三角形,∵BP=PE,∴DP⊥AB,∴∠APD=90°,∵DE=DC,DE=DB,∴BD=CD,∵AB=AC,∠BAC=60°,∴∠PAD=∠BAC=30°,∴AD=2PD.(2)结论成立.理由:延长DP到N,使得PN=PD,连接BN,EN,延长ED到M,使得DM=DE,连接BD,BM,CM.∵DE=DC=DM,∠MDC=180°﹣∠EDC=60°,∴△DCM是等边三角形,∵CA=CB,CM=CD,∠DCM=∠ACB=60°,∴∠BCM=∠ACD,∴△BCM≌△ACD(SAS),∴AD=BM,∵PB=PE,PD=PN,∴四边形BNED是平行四边形,∴BN∥DE,BN=DE,∵DE=DM,∴BN=DM,BN∥DM,∴四边形BNDM是平行四边形,∴BM=DN=2PD,∴AD=2PD.(3)如图3中,作∠PDK=∠BDC=120°,且PD=PK,连接PK,CK.∵DB=DC,DP=DK,∠BDC=∠PDK,∴∠BDP=∠CDK,∴△PDB≌△KDC(SAS),∴PB=CK,∵PB+PC=PC+CK=定值,∴P,C,K共线时,PK定值最大,此时PD的值最大,此时,∠DPB=∠DKP=∠DPK=30°,∠BPC=∠DPB+∠DPK=60°.故答案为60°.。

陕西专版中考数学新突破复习第一部分教材同步复习第四章三角形4.3特殊的三角形课件

陕西专版中考数学新突破复习第一部分教材同步复习第四章三角形4.3特殊的三角形课件

直角三角形与勾股定理
【例3】 (2015·西宁)如图,Rt△ABC 中,∠B=90°,AB=4,BC=3,AC的垂直平 分线DE分别交AB,AC于D,E两点,则CD的
25 长为___8___.
【思路点拨】 本题主要考查了勾股定理及线段的垂直 平分线的性质.先根据线段垂直平分线的性质得出 CD= AD , 故 AB = BD + AD = BD + CD , 设 CD = x , 则 BD = 4 - x,然后在Rt△BCD中根据勾股定理求出x的值即可.
∴BD=BC,∴△BCD是等腰三角形; ∵BE=BC,∴BD=BE,∴△BDE是等腰三角形; ∴∠BED=(180°-36°)÷2=72°, ∴∠ADE=∠BED-∠A=72°-36°=36°, ∴∠A=∠ADE,∴DE=AE, ∴△ADE是等腰三角形; ∴图中的等腰三角形有5个.
等边三角形的性质与判定
►知识点二 等边三角形
1.等边三角形的性质 (1)三边相等. (2)三角相等,且每一个角都等于__6_0_°____. (3)内、外心重合. (4)是轴对称图形,有__3___条对称轴. 2.等边三角形的判定 (1)三边都相等的三角形是等边三角形. (2)三角都相等的三角形是等边三角形. (3)有一个角是__6_0_°____的等腰三角形是等边三角形.
第一部分 教材同步复习
第四章 三角形
4.3 特殊的三角形
知识要点 ·归纳
►知识点一 等腰三角形
1.等腰三角形的性质 (1)两腰相等,__底__角____相等. (2)顶角的角平分线、底边上的高、底边上的中线互相重 合. (3)是轴对称图形,有__1____条对称轴. 2.等腰三角形的判定 (1)有两边相等的三角形是等腰三角形. (2)有两角相等的三角形是等腰三角形.

2020年陕西中考教材同步复习解直角三角形及应用

2020年陕西中考教材同步复习解直角三角形及应用

教材同步复习解直角三角形及其应用知识点一锐角三角函数1.锐角三角函数的定义在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,如图所示:正弦:sin A=∠A的对边斜边=ac;余弦:cos A=∠A的邻边斜边=①______;正切:tan A=∠A的对边∠A的邻边=②________.2.特殊角的三角函数值α的度数三角函数30°45°60°sinα12③______32cosα3222④______tanα331⑤______例题:1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则BC=______,sinA=______.2.计算:cos30°+tan60°=______;cos45°-tan30°sin60°=______.知识点二解直角三角形1.解直角三角形的有关概念(1)概念:在直角三角形中,除直角外,由已知元素求未知元素的过程就是解直角三角形.(2)依据:在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,则A.边角关系:sin A=ac,cos A=bc,tan A=ab;B.三边之间的关系:⑥____________________;C.三角之间的关系:∠A+∠B=∠C.(3)面积公式:S△ABC=12ab=⑦__________.(h为斜边c上的高)(4)边角间关系:sin A=cos B=ac,cos A=sin B=bc,tan A=ab,tan B=ba.2.解直角三角形的常见类型和解法练习:3.如图,在Rt△ABC中,∠ACB=90°,CD是AB边的中线,AC=8,BC =6,则∠ACD的正切值是()A.43B.35C.53D.34知识点三解直角三角形的实际应用1.解直角三角形的实际应用的有关概念概念定义图形仰角、俯角在视线与水平线所成的锐角中,视线在水平线上方的角叫仰角,视线在水平线下方的角叫俯角坡度(坡比)、坡角坡面的铅直高度h与水平宽度l的比叫坡度(坡比),用字母i表示;坡面与水平面的夹角α叫坡角,i=tanα=⑧______方向角一般指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标方向线所成的角(一般指锐角),通常表示成北(南)偏东(西)多少度,方向角的角度值在0°~90°之间.如图,点A,B,C关于O点的方向角分别是北偏东30°,南偏东60°,北偏西45°(也称西北方向)2.解直角三角形的实际应用的步骤解直角三角形的实际应用主要涉及测量、航空、航海、工程等领域,解此类问题一般按以下步骤进行:(1)根据题中图形标出已知长度和角度,以及待求长度或高度.(2)构造直角三角形,一般需构造两个,它们共直角边.如果题中图形是锐角三角形,一般采用切割法;如果题中图形是钝角三角形,一般采用拼补法.(3)先解一个直角三角形,通过重叠的直角边,将数据转化到第二个直角三角形.(4)解第二个直角三角形,求出题中要求的长度或高度,并作答.4.如图,校园内一棵树与地面垂直,两次测量它在地面的影长,第一次为太阳光线与地面成60°角时,第二次为太阳光线与地面成30°角时,两次影长差8米,则树高为________米.(结果保留根号)重点一解直角三角形1、如图,在△ABC中,∠C=90°,AC=12,AB的垂直平分线EF交AC于点D,连接BD.若cos∠BDC=57,则BC的长是()A.10B.8 C.43D.26【解答】∵∠C=90°,cos∠BDC=CDBD=57,∴设CD=5x,BD=7x,∴BC=26x.∵AB的垂直平分线EF交AC于点D,∴AD=BD=7x,∴AC=12x.∵AC =12,∴x=1,∴BC=2 6.1.如图,在△ABC中,sin B=45,BC=2,D是BC的中点,AC=2AD,则AB的长为()A.45B.85C.35D.3重点二解直角三角形的实际应用1、如图所示,巡逻船在A处测得灯塔C在北偏东45°方向上,距离A处30 km.在灯塔C的正南方向B处有一渔船发出求救信号,巡逻船接到指示后立即前往施救.已知B处在A处的北偏东60°方向上,这时巡逻船与渔船的距离是多少?(精确到0.01 km.参考数据:2≈1.414,3≈1.732,6≈2.449)【解题思路】延长CB交过A点的正东方向于点D,则∠CDA=90°,由题意得AC=30 km,∠CAD=45°,∠BAD=30°,由直角三角形的性质得出AD=CD=22AC=152(km),AD=3BD,BD=1523=56(km),即可得出答案.【解答】如答图,延长CB交过A点的正东方向于点D,则∠CDA=90°.由题意,得AC=30 km,∠CAD=90°-45°=45°,∠BAD=90°-60°=30°,∴AD=CD=22AC=152(km),AD=3BD,∴BD=1523=56(km),∴AB=2BD=106≈24.49(km).答:巡逻船与渔船的距离约为24.49 km.2.某校九年级数学兴趣小组的同学进行社会实践活动时,想利用所学的解直角三角形的知识测量某大楼高度.如图所示,大楼AB的正前方有一斜坡CD,坡长CD=4米,坡角∠DCE=30°,他们先在斜坡下的点C处测得楼顶B的仰角为60°,再在斜坡上的点D处测得楼顶B的仰角为45°,求楼AB的高度.(结果保留根号)解:如答图,过点D作DH⊥AB于点H,过点C作CM⊥DH于点M.在Rt △CDE 中,∵∠DEC =90°,∠DCE=30°,CD =4米,∴DE =12CD =2(米),CE =2 3 米. 在Rt △DHB 中,∵∠BDH =45°, ∴BH =DH ,设BH =DH =x 米, 则MH =AC =(x -23)米. 在Rt △ACB 中,∵∠ACB =60°, ∴AB =3AC ,∴x +2=3(x -23),解得x =4(3+1), ∴AB =4(3+1)+2=(43+6)米. 答:楼AB 的高度为(43+6)米.作业练习1.如图,在△ABC 中,AC =8,∠ABC =60°,∠C =45°,AD ⊥BC ,垂足为D ,∠ABC 的平分线交AD 于点E ,则AE 的长为( C )A .432B .22C .832D .322.如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为__27.8°__.(用科学计算器计算,结果精确到0.1°)3. 某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着测倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用测倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米;然后,小军在A处蹲下,用测倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.390 7,cos23°≈0.920 5,tan23°≈0.424 5,sin24°≈0.406 7,cos24°≈0.913 5,tan24°≈0.445 2)解:如答图,作BD⊥MN,CE⊥MN,垂足分别为D,E.答图设AN=x米,则BD=CE=x米,在Rt△MBD中,MD=x·tan23°,在Rt△MCE中,ME=x·tan24°.∵ME-MD=DE=BC,∴x·tan24°-x·tan23°=1.7-1,∴x=0.7tan24°-tan23°,解得x≈34.答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米.。

2020中考数学 三角形 综合训练(含答案)

2020中考数学 三角形 综合训练(含答案)

2020中考数学三角形综合训练(含答案)一、选择题(本大题共6道小题)1. 如图,在△ABC中,AD平分△BAC交BC于点D,△B=30°,△ADC=70°,则△C的度数是()A.50°B.60°C.70°D.80°2. 如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD 的面积为()A.√3B.3C.√5D.53. 如图所示,线段AC的垂直平分线交线段AB于点D,△A=50°,则△BDC=()A.50°B.100°C.120°D.130°4. 如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2B.3C.4D.55. 如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=22,BD=3,则AB的长为()A. 2B. 3C. 4D. 56. △ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的度数是()A. 120°B. 125°C. 135°D. 150°二、填空题(本大题共6道小题)7. 如图,直线AB∥CD,OA⊥OB,若∠1=142°,则∠2=度.8. 已知:∠AOB,求作:∠AOB的平分线.作法:①以点O为圆心,适当长为半径画MN的长为半弧,分别交OA,OB于点M,N;②分别以点M,N为圆心,大于12径画弧,两弧在∠AOB内部交于点C;③画射线OC.射线OC即为所求.上述作图用到了全等三角形的判定方法,这个方法是.9. 如图,已知Rt△ABC中,CD是斜边AB上的高,AC=4,BC=3,则AD=.10. 长为4 m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了________m.11. 如图,等边三角形ABC内有一点P,分别连接AP,BP,CP,若AP=6,BP=8,CP=10,则S△ABP+S△BPC=.12. 在边长为4的等边三角形ABC中,D为BC边上的任意一点,过点D分别作DE⊥AB,DF⊥AC,垂足分别为E,F,则DE+DF=.三、解答题(本大题共5道小题)AB,点E,13. 如图,已知:在△ABC中,∠BAC=90°,延长BA到点D,使AD=12F分别是边BC,AC的中点.求证:DF=BE.14. 如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D 落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.15. 如图,已知△ABC内接于☉O,AB是直径,点D在☉O上,OD∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE.16. 如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,连接CE,求:(1)线段BE的长;(2)∠ECB的正切值.17. 如图,对折矩形纸片ABCD,使AB与DC重合,得到折痕MN,将纸片展平;再一次折叠,使点D落到MN上的点F处,折痕AP交MN于E;延长PF交AB 于G.求证:(1)△AFG≌△AFP;(2)△APG为等边三角形.2020中考数学 三角形 综合训练-答案一、选择题(本大题共6道小题)1. 【答案】C [解析]∵∠ADC=70°,∠B=30°, ∴∠BAD=∠ADC -∠B=70°-30°=40°. ∵AD 平分∠BAC ,∴∠BAC=2∠BAD=80°,∴∠C=180°-∠B -∠BAC=180°-30°-80°=70°,故选C . 2. 【答案】B 3. 【答案】B 4. 【答案】C5. 【答案】B 【解析】由垂径定理可得DH =2,所以BH =BD 2-DH 2=1,又可得△DHB ∽△ADB ,所以有BD 2=BH·BA ,(3)2=1×BA ,AB =3.6. 【答案】C 【解析】由CD 为腰上的高,I 为△ACD 的内心,则∠IAC +∠ICA =12(∠DAC +∠DCA)=12(180°-∠ADC)=12(180°-90°)=45°,所以∠AIC =180°-(∠IAC +∠ICA)=180°-45°=135°.又可证△AIB ≌△AIC ,得∠AIB =∠AIC =135°.二、填空题(本大题共6道小题)7. 【答案】52 [解析]设OA 与CD 相交于点E , ∵OA ⊥OB , ∴∠O=90°. ∵∠1=142°,∴∠OED=∠1-∠O=142°-90°=52°. ∵AB ∥CD ,∴∠2=∠OED=52°.故填52.8. 【答案】SSS[解析]由作图可得OM=ON ,MC=NC ,而OC=OC ,∴根据“SSS”可判定△MOC ≌△NOC.9. 【答案】165[解析]在Rt△ABC 中,AB=√AC 2+BC 2==5,由等面积法得12AC ·BC=12CD ·AB ,CD=CA ·BC AB =3×45=125,∴AD=√AC 2-CD 2=√42-(125) 2=165.10. 【答案】2(3-2) 【解析】开始时梯子顶端离地面距离为4×sin 45°=4×22=22,移动后梯子顶端离地面距离为4×sin 60°=4×32=23,故梯子顶端沿墙面升高了 23-22=2(3-2)m .11. 【答案】16√3+24[解析]将△ABP 绕点B 顺时针旋转60°到△CBP',连接PP',所以P'C=P A=6,BP=BP',∠PBP'=60°,所以△BPP'是等边三角形,其边长BP 为8,所以PP'=8,S △BPP'=16√3,因为PC=10,所以PP'2+P'C 2=PC 2,所以△PP'C 是直角三角形,S △PP'C =24,所以S △ABP +S △BPC =S △BPP'+S △PP'C =16√3+24.12. 【答案】2√3[解析]如图,作AG ⊥BC 于G ,∵△ABC 是等边三角形, ∴∠B=60°, ∴AG=√32AB=2√3,连接AD ,则S △ABD +S △ACD =S △ABC , ∴12AB ·DE +12AC ·DF=12BC ·AG , ∵AB=AC=BC=4,∴DE +DF=AG=2√3.三、解答题(本大题共5道小题)13. 【答案】证明:连接AE ,∵点E ,F 分别是边BC ,AC 的中点,∴EF 是△ABC 的中位线, ∴EF ∥AB ,即EF ∥AD 且EF=12AB. 又∵AD=12AB ,∴AD=EF ,∴四边形ADFE 是平行四边形,∴DF=AE. ∵在Rt△ABC 中,点E 是BC 的中点,BC=BE,∴BE=DF.∴AE=1214. 【答案】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠BCD.由折叠可知:∠A=∠ECG,∴∠BCD=∠ECG,∴∠BCD-∠ECF=∠ECG-∠ECF,∴∠ECB=∠FCG.(2)由折叠可知:∠D=∠G,AD=CG.∵四边形ABCD是平行四边形,∴∠D=∠B,AD=BC,∴∠B=∠G,BC=GC.又∵∠ECB=∠FCG,∴△EBC≌△FGC.15. 【答案】证明:(1)∵AB是☉O的直径,∴∠ACB=90°.∵DE⊥AB,∴∠DEO=90°,∴∠DEO=∠ACB.∵OD∥BC,∴∠DOE=∠ABC,∴△DOE∽△ABC.(2)∵△DOE∽△ABC,∴∠ODE=∠A.⏜所对的圆周角,∵∠A和∠BDC都是BC∴∠A=∠BDC,∴∠ODE=∠BDC.∴∠ODF=∠BDE.16. 【答案】解:(1)∵AD=2CD,AC=3,∴AD=2,∵在Rt△ABC中,∠ACB=90°,AC=BC=3,∴∠A=∠B=45°,AB=2+BC2=√32+32=3√2,∵DE⊥AB,∴∠AED=90°,=√2,∴AE=AD·cos45°=2×√22∴BE=AB-AE=3√2−√2=2√2,即线段BE的长为2√2.(2)过点E作EH⊥BC,垂足为点H,如图所示.∵在Rt△BEH中,∠EHB=90°,∠B=45°,=2,∴EH=BH=BE·cos45°=2√2×√22∵BC=3,∴CH=1,=2,在Rt△CHE中,tan∠ECB=EHCH即∠ECB的正切值为2.17. 【答案】证明:(1)∵对折矩形纸片ABCD,使AB与CD重合,得到折痕MN,∴MN∥AB,M,N分别为AD,BC中点,由平行线的性质可知PF=GF.由折叠的性质得∠PF A=∠GF A=90°,∴△AFG≌△AFP(SAS).(2)∵△AFG≌△AFP,∴AP=AG,∠2=∠3.又∵∠2=∠1,∴∠1=∠2=∠3.又∵∠1+∠2+∠3=90°,∴3∠2=90°,∴∠2=30°,∠P AG=2∠2=60°,∴△APG 为等边三角形.。

陕西专版中考数学新突破复习第一部分教材同步复习第四章三角形4.2三角形课件

陕西专版中考数学新突破复习第一部分教材同步复习第四章三角形4.2三角形课件
【解答】 ∵AD是其角平分线,CG⊥AD于F,∴△
AGC是等腰三角形,∴AG=AC=3,GF=CF,
∵AB=4,AC=3,∴BG=1,
∵AE是中线,∴BE=CE,∴EF为△CBG的中位线,
∴EF=12BG=12.
15
谢谢观看!
16
形外角性质,也考查了角平分线的定义.先根据角平分线的
定义以及三角形外角性质求得12∠DAC+12∠ACF=12(∠B+ ∠B+∠1+∠2),然后在△AEC 中利用三角形内角和定理可
以求得∠AEC 的度数.
12
【解答】 如右图所示,∵三角形的外
角∠DAC和∠ACF的平分线交于点E,∴∠
EAC=
1 2
第一部分 教材同步复习
第四章 三角形
4.2 三角形
1
知识要点 ·归纳
2
►知识点一 三角形及其分类
• 1.三角形定义:三条___线__段___首尾顺次连 接所得到的图形叫三角形.
2.三角形的分类 不等边三角形
(1)按边分等腰三角形腰 等和边底三不角相形等的三角形 直角三角形
∠DAC,∠ECA=
1 2
∠ACF80°,

1 2
∠DAC+
1 2
∠ACF=
1 2
(∠B+∠2)+
1 2
(∠B+∠1)=
1 2
(∠B+∠B+∠1+∠2)=110°,∴∠AEC=180°-(
1 2
∠DAC
+12∠ACF)=70°.
13
三角形中重要线段
【例3】 (名师特约题)如图△ABC中,
AB=4,AC=3,AD、AE分别是其角平分线
和中线,过点C作CG⊥AD于F,交AB于G,
连接EF,则线段EF的长为( A )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.6 B. 6 C. 18D.
第3题图
参考答案
核心素养提升
1.A【解析】∵52+122=132,∴该沙田为直角三角形沙田,又∵5里=5×500=2500米=2.5千米,12里=12×500=6000米=6千米,S△ABC= ×6×2.5=7.5平方千米.
2.B【解析】设折断处离地面的距离为x尺,则折断处离尖端的距离为(10-x)尺,根据题意可得x2+32=(10-x)2,解得x=4.55.
参考答案
核心素养提升
1.B【解析】设竹竿的长度为x尺,∵竹竿的影长为一丈五尺=15尺,标杆长为一尺五寸=1.5尺,影长五寸为0.5尺,∴ = ,解得x=45,即竹竿的长为四丈五尺.
2.C【解析】设她应穿高跟鞋的高度为ycm,根据题意,得 ,l=165,∴x=0.6l=99,∵当人体下半身长与身高的比值越接近0.618时,越给人美感,∴ =0.618,解得y≈8,故选C.
在Rt△CDB中,∵∠BCD=90°,∠BDC=30.56°,
∴BC=x·tan∠BDC=xtan30.56°.
在Rt△ACD中,
∵∠ACD=90°,∠ADC=77.44°,
∴AC=CD·tan∠ADC=xtan77.44°.
∵AC=BC+AB,AB=2m,
∴xtan77.44°=xtan30.56°+2,
问题解决:
根据上述方案及数据,求遮阳篷CD的长.
(结果精确到0.1 m,参考数据:sin30.56°≈0.51,cos30.56°≈0.86,tan30.56°≈0.59,sin77.44°≈0.98,cos77.44°≈0.22,tan77.44°≈4.49)
题图
参考答案
核心素养提升
解:设CD=xm,
3.A【解析】∵a=5,b=6,c=7,∴p= = =9.∴S△ABC= = = =6 .
第四章 三角形
第三节 全等三角形
(2019郴州)我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A=90°,BD=4,CF=6,则正方形ADOF的边长是()
A. B. 2C. D. 4
题图
参考答案
核心素养提升
B【解析】设正方形ADOF的边长为x,则AB=x+4,AC=x+6.∵△BOD≌△BOE,∴BE=BD=4.∵△COE≌△COF,∴CE=CF=6.∴BC=BE+CE=4+6=10.∵∠A=90°,∴AB2+AC2=BC2.∴(x+4)2+(x+6)2=102.解得x1=2,x2=-12(舍去).∴正方形ADOF的边长为2.
方案设计:
如图②,该数学课题研究小组通过调查研究设计了垂直于墙面AC的遮阳篷CD.
数据收集:
通过查阅相关资料和实际测量:兰州市一年中,夏至这一天的正午时刻,太阳光线DA与遮阳篷CD的夹角∠ADC最大(∠ADC=77.44°);冬至这一天的正午时刻,太阳光线DB与遮阳篷CD的夹角∠BDC最小(∠BDC=30.56°);窗户的高度AB=2m.
A. 5.45尺B. 4.55尺C. 5.8尺D. 4.2尺
3. (2019宜昌)古希腊几何学家海伦和我国南宋数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是a,b,c,记p= ,那么三角形的面积为S= .如图,在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若a=5,b=6,c=7,则△ABC的面积为()
A.五丈B.四丈五尺
C.一丈D.五尺
第1题图
2.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165 cm,下半身长x与身高l的比值是0.6,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为()
A. 4 cmB. 6 cm
C. 8 cmD. 10 cm
第2题图
第四章 三角形
第四节 相似三角形及其应用
1. 《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()
第四章 三角形
第二节 三角形及其性质
1. 我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为()
解得x≈0.5,
∴CD≈0.5m.
答:遮阳篷CD的长约为0.5 m.
第四章 三角形
第一节 线段、角、相交线与平行线
(建议时间:_____分钟)
基础过关
1.(2019常州)如图,在线段PA、PB、PC、PD中,长度最小的是()
3.B【解析】由题意,可知EF∥AB,∴△CFE∽△CBA,∴ = = ,∴ = ,故选B.
第四章 三角形
第五节 锐角三角函数及其应用
(2019兰州)某数学课题研究小组针对兰州市住房窗户“如何设计遮阳篷”这一课题进行了探究,过程如下:
问题提出:
如图①是某住户窗户上方安装的遮阳篷,要求设计的遮阳篷既能最大限度地遮挡夏天炎热的阳光,又能最大限度地使冬天温暖的阳光射入室内.
3. 中国古代在利用“计里画方”(比例缩放和直角坐标网格体系)的方法制作地图时,会利用测杆、水准仪和照板来测量距离.在如图所示的测量距离AB的示意图中,记照板“内芯”的高度为EF,观测者的眼睛(图中用点C表示)与BF在同一水平线上,则下列结论中,正确的是()
AБайду номын сангаас = B. =
C. = D. =
第3题图
A. 7.5平方千米B. 15平方千米C. 75平方千米D. 750平方千米
2. (2019德阳)《九章算术》是我国古代一部著名的数学专著,其中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?其意思是:有一根与地面垂直且高一丈的竹子(1丈=10尺),现被大风折断成两截,尖端落在地面上,竹尖与竹根的距离为三尺,问折断处离地面的距离为()
相关文档
最新文档