华东师大2002数学分析考研真题

合集下载

2002全国研究生考研数学二真题及解析

2002全国研究生考研数学二真题及解析
3
线性表出矛盾.故向量组

线性无关,选
1, 2, 3
2
(A) 方法 2:用排除法
B 选项:取 k
0 ,向量组
,k
1, 2, 3
1
1, 2, 3 k
1
2
即 1, 2 , 3 ,
2
2
线性相关不成
立,否则因为
, 线性相关,又
1, 2, 3
线性无关,故 可由
1, 2 , 3
线性表出.即存在常数
2
,使得
1, 2 , 3
2.
(2)【答案】 1 【详解】面积
S xe dx
xde
x
x
0
0
xe e dx
x
x
0
b
xe e
xe e
x
x
x
x
lim
0
b
0b
b
1
其中

lim be b lim
lim 0

b
b
b
e
e
b
b
lim be b e b
11
(3)【答案】 y
x1
【详解】方法 1:这是属于缺 x 的 y
f ( y, y ) 类型.

dp dp dy . dp
y p, y
p
dx dy dx
dy
原方程 yy
y 2 0 化为 yp dp p2 0 ,得
dy
p
y dp p 0
0

dy
p
dy 0
'
0
y
,即
,不满足初始条件
x0
dx
1

华师大 02年 数学分析

华师大 02年 数学分析

华东师范大学2002年攻读硕士研究生数学分析入学考试试题一(12分)计算:1.()1002sin 2lim 22-++∞→n n n n n 。

解:()222sin lim 02100n n n n n →∞+=+-2.⎪⎭⎫⎝⎛--→x e xx x 11sin lim 20解:22232000sin 1sin 1sin cos 2lim lim lim 31x x x x x x x x x e x x x xe x x x e →→→-++-⎛⎫-== ⎪-⎝⎭2220cos cos sin 24lim 06x x x x x x x e x e x→+---== 3.设F 为3R 上的可微函数,由方程()0,,32=zx yz xy F 确定了z 为x 与y 的函数,求y x z z ,在点()1,1的值。

解:321232(3)0x xF y zyF z x z x z F +++=,1232(3)0x x F zF z z z F +++=, 1323(3)/(2)x z F zF zF F =-++,21223()/(2)y z F z F zF F =-++。

二(15分)设函数,f g 均在()b a ,内有连续导数,且对于任何()b a x ,∈,有()()()()()0>'-'=x f x g x g x f x F 。

求证:1. ,f g 不可能有相同的零点; 2. f 的相邻零点之间必有g 的零点。

3. 在()x f 的每个极值点()b a x ,0∈,存在0x 的某邻域,使得()x g 在该邻域中是严格单调的。

证明:1、反证,若,f g 有相同的零点0x ,则()()()()()000000F x f x g x g x f x ''=-=,矛盾; 2、反证,()()120f x f x ==,12()x x <,且当12[,]x x x ∈,()0g x ≠,且12(,)x x x ∈,()0f x ≠, 所以()g x 保号,不妨设()0g x >,令()()/()G x f x g x =,则()()120G x G x ==()()()()2()[]/()0G x f x g x g x f x g x '''=->,()G x 在12[,]x x 严格单调上升,所以()()12G x G x <矛盾;3、0()0f x '=,所以()()000g x f x '>,即有()00g x '≠,不妨设()00g x '>,由g '在()b a ,连续,则存在()00,x x δδ-+,使得()00,x x x δδ∈-+时,()()0/20g x g x ''>>,因此g 在()00,x x δδ-+内严格单调。

华东师范大学《数学分析》历年考研真题(1997年-2010年)

华东师范大学《数学分析》历年考研真题(1997年-2010年)

华东师范大学数学分析历年考研真题(1997年-2010年)华东师范大学1997年攻读硕士学位研究生入学试题一(12分)设f(x)是区间I 上的连续函数。

证明:若f(x)为一一映射,则f(x)在区间I 上严格单调。

二(12分)设1,()0x D x x ⎧=⎨⎩为有理数,为无理数证明:若f(x), D(x)f(x) 在点x=0处都可导,且f(0)=0,则'(0)0f =三(16分)考察函数f(x)=xlnx 的凸性,并由此证明不等式: 2()(0,0)a b a ba b ab a b +≥>>四(16分)设级数1n a∞=∑收敛,试就1n n d ∞=∑为正项级数和一般项级数两种情况分别证明1nn a∞=∑五(20分)设方程(,)0F x y =满足隐函数定理条件,并由此确定了隐函数y=f(x)。

又设(,)Fx y 具有连续的二阶偏导数。

(1) 求''()f x(2)若0000(,)0,()F x y y f x ==为f(x)的一个极值,试证明:当00(,)y F x y 与00(,)xx F x y 同号时,0()f x 为极大值; 当00(,)y F x y 与00(,)xx F x y 异号时,0()f x 为极小值。

(3)对方程2227xxy y ++=,在隐函数形式下(不解出y )求y=f(x)的极值,并用(2)的结论判别极大或极小。

六(12分)改变累次积分4204842(4)x x xI dx y dy --=-⎰⎰的积分次序,并求其值。

七(12分)计算曲面积分222(cos cos cos )sI x y z ds αβγ=++⎰⎰其中s 为锥面z =上介于0z h ≤≤的一块,{}c o s,c o s ,c o s αβγ为s 的下侧法向的方向余弦。

华东师范大学1998年攻读硕士学位研究生入学试题一. 简答题(20分) (1) 用定义验证:22323lim 212n n n n →∞+=++;(2) '2cos ,0(),()ln(1),0x x f x f x x x <⎧=⎨+≥⎩求; (3)计算3.二(12分)设f(x)有连续的二阶导函数,且''0()2,[()()]sin 5,f f x f x xdx ππ=+=⎰求f(0).三(20分)(1)已知1n n a ∞=∑为发散的一般项级数,试证明11(1)n n a n∞=+∑也是发散级数。

2002考研数学一真题及答案

2002考研数学一真题及答案

2002考研数学一真题及答案一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1)错误!未找到引用源。

= .(2)已知函数错误!未找到引用源。

由方程错误!未找到引用源。

确定,则错误!未找到引用源。

= .(3)微分方程错误!未找到引用源。

满足初始条件错误!未找到引用源。

的特解是.(4)已知实二次型错误!未找到引用源。

经正交变换错误!未找到引用源。

可化成标准型错误!未找到引用源。

,则错误!未找到引用源。

= .(5)设随机变量错误!未找到引用源。

服从正态分布错误!未找到引用源。

,且二次方程错误!未找到引用源。

无实根的概率为错误!未找到引用源。

,则错误!未找到引用源。

=.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)考虑二元函数错误!未找到引用源。

的下面4条性质:①错误!未找到引用源。

在点错误!未找到引用源。

处连续; ②错误!未找到引用源。

在点错误!未找到引用源。

处的两个偏导数连续;③错误!未找到引用源。

在点错误!未找到引用源。

处可微; ④错误!未找到引用源。

在点错误!未找到引用源。

处的两个偏导数存在.若用“错误!未找到引用源。

”表示可由性质错误!未找到引用源。

推出性质错误!未找到引用源。

,则有(A) ②错误!未找到引用源。

③错误!未找到引用源。

①.(B) ③错误!未找到引用源。

②错误!未找到引用源。

①.(C) ③错误!未找到引用源。

④错误!未找到引用源。

①.(D) ③错误!未找到引用源。

①错误!未找到引用源。

④.(2)设错误!未找到引用源。

,且错误!未找到引用源。

,则级数错误!未找到引用源。

(A) 发散. (B) 绝对收敛.(C) 条件收敛. (D) 收敛性根据所给条件不能判定.(3)设函数错误!未找到引用源。

在错误!未找到引用源。

内有界且可导,则(A) 当错误!未找到引用源。

时,必有错误!未找到引用源。

华东师范大学数学分析考研真题

华东师范大学数学分析考研真题

1 n )an
也是发散级数。
四(12 分)设
D : x2 y 2 z 2 t 2 , F (t) f (x2 y2 z2)dxdydz, 其中 f 为连续
D
函数,f(1)=1.证明 F '(1) 4.
五(12 分)设 D 为由两抛物线 y x2 1 与 y x2 1 所围成的闭
的下侧法向的方向余弦。
2
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

华东师范大学《数学分析》与《高等代数》考研真题(1997年-2013年)

华东师范大学《数学分析》与《高等代数》考研真题(1997年-2013年)
x →+∞
续.
19
五、设 f ( x) 在 [a, b] 上二阶可导,且 f ( x) ≥ 0 , f ′′( x) < 0 . 证明: f ( x) ≤
2 b f (t )dt , x ∈ [ a, b] . b − a ∫a
六、设 f ( x , y ) 在 D = [ a, b] × [ c, d ] 上有二阶连续偏导数.
15
六、 ( 15 分)假设 σ 是 n 维欧氏空间 V 的线性变换, τ 是同一空间 V 的变换 . 且对
∀α , β ∈ V , 有 (σα , β ) = (α ,τβ ).
证明: 1) τ 是线性变换, 2) σ 的核等于 τ 的值域的正交补.
七、 (15 分)证明:任意方阵可表为两个对称方阵之积,其中一个是非奇异的。
n →∞ a≤ x≤ b a≤ x≤ b a≤ x≤ b n →∞
八、设 S ⊂ R 2 , P0 ( x0 , y0 ) 为 S 的内点, P 1 ( x1 , y1 ) 为 S 的外点. 证明:直线段 P0 P 1 至少与 S 的边界 ∂S 有一个交点.
华东师范大学 1997 年攻读硕士学位研究生入学试题
考试科目:数学分析
一、 (12 分)设 f ( x) 是区间 I 上的连续函数. 证明:若 f ( x) 为一一映射,则 f ( x) 在 区间 I 上严格单调.
二、 (12 分)设
⎧1, x为有理数 D ( x) = ⎨ ⎩0, x为无理数
证明:若 f ( x) , D ( x) f ( x) 在点 x = 0 处都可导,且 f (0) = 0 ,则 f '(0) = 0.
二、(10 分)证明:方程组
⎧ a11 x1 + a12 x2 + ... + a1n xn = 0 ⎪a x + a x + ... + a x = 0 ⎪ 21 1 22 2 2n n ⋯ (1) ⎨ ............ ⎪ ⎪ ⎩ as1 x1 + as 2 x2 + ... + asn xn = 0

2002考研数学真题+答案

2002考研数学真题+答案

c
d

c a c a f (t )dt f (t )dt f (t )dt , d b ab d b ab bc
2002 年 • 第 3 页
bc
cd
cd
郝海龙:考研数学复习大全·配套光盘·2002 年数学试题参考解答及评分标准
cd
当 ab cd 时,
ab
f (t )dt 0 ,由此得 I d b .
(1) 证明曲线积分 I 与路径 L 无关; (2) 当 ab cd 时,求 I 的值.
1 1 x 2 2 [1 y f ( xy)] f ( xy) 2 xyf ( xy) 2 [ y f ( xy) 1] 在 y y y x y 上半平面内处处成立,所以在上半平面内曲线积分 I 与路径无关.
D ( x, y) x 2 y 2 xy 75 ,小山的高度函数为 h( x, y) 75 x2 y2 xy ,
(1) 设 M ( x0 , y0 ) 为区域 D 上一点,问 h( x, y ) 在该点沿平面上什么方向导数最大?若 记此方向导数的最大值为 g ( x0 , y0 ) ,试写出 g ( x0 , y0 ) 的表达式. (2) 现欲利用此小山开展攀岩活动,为此需要在山脚寻找一上山坡度最大的点作为攀登 的起点,也就是说,要在 D 的边界线 x2 y2 xy 75 上找出使(1)中的 g ( x, y ) 达到最 大值的点.试确定攀登起点的位置. 解:(1) 由梯度的几何意义知, h( x, y ) 在点 M ( x0 , y0 ) 处沿梯度
x 0
1 ,故所求切线方程为 y x .
e
D
max{ x 2 , y 2 }

2002考研数一真题及解析

2002考研数一真题及解析

2002年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上) (1)2eln dxx x+∞=⎰(2) 已知函数()y y x =由方程2610ye xy x ++-=确定,则''(0)y = . (3) 微分方程2'''0yy y +=满足初始条件11,'2yy x x ====的特解是 . (4) 已知实二次型222123123121323(,,)()444f x x x a x x x x x x x x x =+++++经正交变换x Py =可化成标准型216f y =,则a = .(5) 设随机变量X 服从正态分布2(,)(0),N μσσ>且二次方程240y y X ++=无实根的概 率为12,则μ=二、选择题(本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1) 考虑二元函数(,)f x y 的下面4条性质:①(,)f x y 在点00(,)x y 处连续, ②(,)f x y 在点00(,)x y 处的两个偏导数连续, ③(,)f x y 在点00(,)x y 处可微, ④(,)f x y 在点00(,)x y 处的两个偏导数存在. 若用""P Q ⇒表示可由性质P 推出Q ,则有 ( ) (A) ②⇒③⇒①. (B)③⇒②⇒①. (C) ③⇒④⇒①. (D)③⇒①⇒④.(2) 设0(1,2,3,...),n u n ≠=且lim1,n nnu →∞=则级数11111(1)()n n n n u u ∞+=+-+∑ ( ) (A) 发散. (B)绝对收敛.(C)条件收敛. (D)收敛性根据所给条件不能判定.(3) 设函数()y f x =在(0,)+∞内有界且可导,则 ( )(A) 当lim ()0x f x →+∞=时,必有lim '()0x f x →+∞=.(B)当lim '()x f x →+∞存在时,必有lim '()0x f x →+∞=.(C) 当0lim ()0x f x +→=时,必有0lim '()0x f x +→=. (D)当0lim '()x f x +→存在时,必有0lim '()0x f x +→=.(4) 设有三张不同平面的方程123,1,2,3,i i i i a x a y a z b i ++==它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为 ( )(5) 设1X 和2X 是任意两个相互独立的连续型随机变量,它们的概率密度分别为1()f x 和2()f x ,分布函数分别为1()F x 和2()F x ,则 ( )(A)12()()f x f x +必为某一随机变量的概率密度. (B)12()()f x f x 必为某一随机变量的概率密度. (C) 12()()F x F x +必为某一随机变量的分布函数. (D) 12()()F x F x 必为某一随机变量的分布函数.三、(本题满分6分)设函数()f x 在0x =的某邻域内具有一阶连续导数,且(0)0,'(0)0,f f ≠≠若()(2)(0)af h bf h f +-在0h →时是比h 高阶的无穷小,试确定,a b 的值.四、(本题满分7分)已知两曲线()y f x =与2arctan 0xt y e dt -=⎰在点(0,0)处的切线相同,写出此切线方程,并求极限2lim ().n nf n→∞五、(本题满分7分)计算二重积分22max{,},x y De dxdy ⎰⎰其中{(,)|01,01}D x y x y =≤≤≤≤.六、(本题满分8分)设函数()f x 在(,)-∞+∞内具有一阶连续导数,L 是上半平面(0)y >内的有向分段光滑曲线,其起点为(,)a b ,终点为(,)c d .记2221[1()][()1],L x I y f xy dx y f xy dy y y=++-⎰ (1)证明曲线积分I 与路径L 无关; (2)当ab cd =时,求I 的值.七、(本题满分7分)(1)验证函数3693()13(3)!nx x x x y x x n =+++++∞<<+∞L L +(-)!6!9!满足微分方程''';x y y y e ++=(2)利用(1)的结果求幂级数30(3)!nn x n ∞=∑的和函数.八、(本题满分7分)设有一小山,取它的底面所在的平面为xoy 坐标面,其底部所占的区域为{}22(,)75D x y x y xy =+-≤,小山的高度函数为22(,)75h x y x y xy =--+.(1)设00(,)M x y 为区域D 上的一点,问(,)h x y 在该点沿平面上什么方向的方向导数最大?若记此反向导数的最大值为00(,)g x y ,试写出00(,)g x y 表达式.(2)现欲利用此小山开展攀岩活动,为此需要在山脚寻找一上山坡度最大的点作为攀登的起点.也就是说,要在D 的边界线2275x y xy +-=上找出使(1)中的(,)g x y 达到最大值的点.试确定攀登起点的位置.九、(本题满分6分)已知4阶方阵1234(,,,),A αααα=1234,,,αααα均为4维列向量,其中234,,ααα线性无关,1232ααα=-.如果1234βαααα=+++,求线性方程组Ax β=的通解.十、(本题满分8分)设,A B 为同阶方阵,(1)如果,A B 相似,试证,A B 的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立. (3)当,A B 均为实对称矩阵时,试证(1)的逆命题成立.十一、(本题满分8分)设随机变量X 的概率密度为1cos0()220,x x f x π⎧≤≤⎪=⎨⎪⎩其他对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望.十二、(本题满分8分)其中0<<)2θθ(是未知参数,利用总体X 的如下样本值3,1,3,0,3,1,2,3,求θ的矩阵估计值和最大似然函数估计值.2002年全国硕士研究生入学统一考试数学一试题解析一、填空题(1)【答案】 1【详解】先将其转化为普通定积分,求其极限即得广义积分.222ee e ln 11lim lim lim lim 11ln ln ln ln ln b b b b b b b dx dx d x e x x x x x x b +∞→+∞→+∞→+∞→+∞⎡⎤⎡⎤===-=-+=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰(2)【答案】 -2【详解】y 是由2610ye xy x ++-=确定的x 的函数,两边对x 求导,6620,y e y xy y x ''+++=所以 62,6yy xy e x+'=-+两边再对x 求导,得 2(6)62(62)(6),(6)y y y e x y y x e y y e x ''++++''=-+()- 把0x =代入,得(0)0y =,(0)0y '=,代入y '',得(0)2y ''=-.(3)【答案】y =【详解】方法1:这是属于缺x 的(,)y f y y '''=类型. 命,dp dp dy dp y p y p dx dy dx dy'''====. 原方程20yy y '''+=化为20dpypp dy+=,得 0p =或0dpyp dy+= 0p =,即0dy dx =,不满足初始条件1'02y x ==,弃之;所以0p ≠ 所以,0dp yp dy +=,分离变量得dy dp y p =-,解之得1.C p y = 即1.C dy dx y= 由初始条件11,'2yy x x ====,可将1C 先定出来:1111,212C C ==. 于是得12dy dx y=解之得,22,y x C y =+=以01x y ==代入,得1=“+”号且21C =.于是特解是y =方法2:将20yy y '''+=改写为()0yy ''=,从而得1yy C '=. 以初始条件1(0)1,(0)2y y '==代入,有1112C ⨯=,所以得12yy '=. 即21yy '=,改写为2()1y '=. 解得2,y x C =+y =再以初值代入,1=""+且21C =. 于是特解y =(4)【答案】2【详解】方法1:二次型f 的对应矩阵222222a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,经正交变换x Py =,可化成标准型216f y =,故P 为正交矩阵,有1T P P -=,且对实对称矩阵A ,有600T P AP ⎛⎫ ⎪= ⎪⎪⎝⎭,故1600T P AP P AP -⎛⎫ ⎪== ⎪ ⎪⎝⎭,即 600000000A ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦:因为矩阵的n 个特征值之和等于它的主对角元素之和,33113iii i i aa λ====∑∑,相似矩阵具有相同的特征值,316006ii λ==++=∑故有36a =,得2a =.方法2:二次型f 的对应矩阵222222a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,经正交变换x Py =,可化成标准型216f y =,故P 为正交矩阵,有1T P P -=,且对实对称矩阵A ,有1600T P AP P AP -⎛⎫⎪== ⎪ ⎪⎝⎭,即600000000A ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦:相似矩阵具有相同的特征值,知0是A 的特征值,根据特征值的定义,有00E A A -==222222a A a a =4222314242a a a a a+++把第,列加到第列 1221(4)1212a a a +提取第列的公因子12221(4)02031002a a a -+---行行行行2(4)(2)0a a =+-=,得 4a =-或2a =, (1) 又6是A 的特征值,根据特征值的定义,有60E A -=,由6226226622262622226a a E A a a a a ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-=---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦(对应元素相减)两边取行列式,6226262226aE A a a----=------222231262226a a aa a---------把第,列加到第列1221(2)162126a a a -------提取第列的公因子12221(2)08031008a a a -------行行行行2(2)(8)0a a =--=得 2a =或8a = (2)因为(1),(2)需同时成立,取它们的公共部分,得2a =.方法3:f 的对应矩阵为222222a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,经正交变换x Py =,可化成标准型216f y =,故P 为正交矩阵,有1T P P -=,且对实对称矩阵A ,有1600T P AP P AP -⎛⎫ ⎪== ⎪ ⎪⎝⎭,即 600000000A ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦:相似矩阵具有相同的特征值,知A 的特征值,其中一个单根是6,一个二重根应是0,直接求A 的特征值,即由222222222222a a E A a a a a λλλλλλλ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-=---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦(对应元素相减)两边取行列式,222222aE A a a λλλλ----=------4222342142a a a a aλλλλλ------------把第,列加到第列1221(4)1212a aa λλλ--------提取第列的公因子12221(4)0(2)03100(2)a a a λλλ----------行行行行2[(4)][(2)]a a λλ=----其中单根为4a +,二重根为2a -,故46a +=,及20a -=,故知2a =.方法4:f 的对应矩阵为222222a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,经正交变换x Py =,可化成标准型216f y =,故P 为正交矩阵,有1T P P -=,且对实对称矩阵A ,有1600T P AP P AP -⎛⎫⎪== ⎪ ⎪⎝⎭,即 226220220a A a a ⎡⎤⎡⎤⎢⎥⎢⎥=Λ=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦:故()()1r A r =Λ=,222222a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦22122322a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦u u u u u u u u u u u u u u r 交换第和第行的顺序222210223120222a a a a a a ⎡⎤-⎢⎥⎢⎥--⎢⎥-⨯⎢⎥--⎣⎦u u u u u u u u u u u u u r 行行行行222320220042a a a a a⎡⎤⎢⎥⎢⎥+--⎢⎥⎢⎥⎢⎥--⎣⎦u u u u u u u u u u r 行行2223202200(28)a a a a a ⎡⎤⎢⎥⨯--⎢⎥⎢⎥-+-⎣⎦u u u u u u u r 行2202200(2)(4)a a a a a ⎡⎤⎢⎥→--⎢⎥⎢⎥--+⎣⎦因()1r A =,故20a -=,且(2)(4)0a a -+=,故应取2a =.(5)【答案】4.【详解】二次方程无实根,即240y y X ++=的判别式1640X ∆==-<,也就有4X >. 此事发生概率为12,即{}142P X >=, 对于2(,)(0),X N μσσ>:{}12P X μ>=,因为正态分布的密度函数为22()()2x f x μσ⎧⎫-=-⎨⎬⎩⎭x -∞<<+∞ 关于x μ=对称;另一方面,由概率的计算公式,()f x 与x 轴所围成的面积是1,所以x μ=将面积平分为两份 {}12P X μ>=,所以4μ=.二、选择题(1)【详解】下述重要因果关系应记住,其中A B ⇒表示由A 可推出B . 无箭头者无因果关系,箭头的逆向不成立.(,)x f x y '与(,)y f x y '连续(,)f x y ⇒可微(,)(,)(,)xy f x y f x y f x y ⎧''⎪⇒⎨⎪⎩与存在连续 其中均指在同一点处. 记住上述关系,不难回答本选择题,故应选(A).(2)【详解】首先要分清绝对收敛和条件收敛的定义,通过定义判定级数的敛散性.考察原级数11111(1)()n n n n u u ∞+=+-+∑的前n 项部分和1122334111111111()()()(1)()n n n n S u u u u u u u u ++=+-+++-+-+L 11111(1)n n u u ++=+- 由lim10n n n u →∞=>知,当n 充分大时,0n u >且lim n n u →∞=+∞. 所以11lim n n S u →∞=(收敛),另一方面,1111()n n n u u ∞=++∑为正项级数,用比较判别法的极限形式,由题设条件lim1n nnu →∞=的启发,考虑1111111()(1)lim lim lim 1121(21)1(1)n n n n n n n n n n n n n u u u u u u u u n n n u u n n n n n ++++→∞→∞→∞+++++==+++++ 11(1)(1)[](1)lim21n n n n n u u n n n n n n n u u n +→∞+++++=+11(1)(1)lim 1211n nn nn u u n n n nu u n n n n+→∞++++==+⋅⋅+ 而级数1111111()11n n n n n n n ∞∞∞===+=+++∑∑∑是发散的,所以1111()n n n u u ∞=++∑也发散,所以选(C).(3)【详解】方法1:排斥法.令21()sin f x x x =,则()f x 在(0,)+∞有界,2221()sin 2cos f x x x x'=-+, lim ()0x f x →+∞=,但lim ()x f x →+∞'不存在,故(A)不成立;0lim ()0x f x +→=,但 0lim ()10x f x +→'=≠,(C)和(D)不成立,故选(B). 方法2:证明(B)正确. 设lim ()x f x →+∞'存在,记lim ()x f x A →+∞'=,证明0A =.用反证法,若0A >,则对于02Aε=>,存在0X >,使当x X >时,()2A f x A ε'-<=,即3()2222A A A AA f x A '=-<<+=由此可知,()f x '有界且大于2A.在区间[,]x X 上应用拉格朗日中值定理,有()()()()()()2Af x f X f x X f X x X ξ'=+->+-从而lim ()x f x →+∞=+∞,与题设()f x 有界矛盾.类似可证当0A <时亦有矛盾. 故0A =.(4) 【答案】(B)【详解】三张不同平面的方程分别为123,1,2,3,i i i i a x a y a z b i ++==判断三个平面有无公共点即判断方程组111213121222323132333a x a y a z b a x a y a z b a x a y a z b++=⎧⎪++=⎨⎪++=⎩有无公共解,且方程组有多少公共解平面就有多少公共点,由于方程组的系数矩阵与增广矩阵的秩都是23<(未知量的个数),所以方程组有解且有无穷多解,故三个平面有无穷多个公共点,故应排除(A)三平面唯一交点(即方程组只有唯一解)(C)、(D)三平面没有公共交点(即方程组无解).故应选(B),三个平面相交于一条直线,直线上所有的点均是平面的公共点,即有无穷多个公共点.(5)【答案】D【分析】函数()f x 成为概率密度的充要条件为:(1)()0;f x ≥ (2)() 1.f x dx +∞-∞=⎰函数()F x 成为分布函数的充要条件为:(1)()F x 单调不减; (2)lim ()0,lim ()1;x x F x F x →-∞→+∞==(3)()F x 右连续.我们可以用以上的充要条件去判断各个选项,也可以用随机变量的定义直接推导. 【详解】方法1:(A)选项不可能,因为1212[()()]()()1121f x f x dx f x dx f x dx +∞+∞+∞-∞-∞-∞+=+=+=≠⎰⎰⎰也不能选(B),因为可取反例,令121,101,01()()0,0,x x f x f x -<<<<⎧⎧==⎨⎨⎩⎩其他其他显然12()()f x f x ,均是均匀分布的概率密度. 而12()()0f x f x =,不满足12()()1f x f x dx +∞-∞=⎰条件.(C)当然也不正确,因为12lim[()()]1121x F x F x →+∞+=+=≠根据排除法,答案应选(D).方法2:令12max(,)X X X =,显然X 也是一个随机变量. X 的分布函数为{}{}{}1212()max(,),F x P X x P X X x P X x X x =≤=≤=≤≤{}{}1212()()P X x P X x F x F x =≤≤=.三【详解】方法1:由题设条件知有lim[()(2)(0)](1)(0)0h af h bf h f a b f →+-=+-=由于(0)0f ≠,所以10a b +-=. 又由洛必达法则,00()(2)(0)limlim(()2(2))(2)(0)h h af h bf h f af h bf h a b f h→→+-'''=+=+由于()(2)(0)af h bf h f +-在0h →时是比h 高阶的无穷小,由高阶无穷小的定义知上式等于0,又由'(0)0,f ≠ 得20a b +=.解1020a b a b +-=⎧⎨+=⎩联立方程组得,2,1a b ==-.方法2:分别将(),(2)f h f h 按佩亚诺余项泰勒公式展开到()o h ,有1()(0)(0)()f h f f h o h '=++,2(2)(0)2(0)()f h f f h o h '=++从而 3()(2)(0)(1)(0)(2)(0)()af h bf h f a b f a b f h o h '+-=+-+++ 由题设条件知,10,20,a b a b +-=+= 所以2,1a b ==-. 方法3:由题设条件,有lim[()(2)(0)](1)(0)0h af h bf h f a b f →+-=+-=由于(0)0f ≠,所以10a b +-=. 再将1a b =-代入01lim [()(2)(0)]h af h bf h f h→+-,并凑成导数定义形式,有000()(2)(0)(1)()(2)(0)0limlim()(0)()(0)(2)(0)lim[2]2(0)(0)2(0)1)(0)h h h af h bf h f b f h bf h f h hf h f f h f f h f b b h h h f bf bf b f →→→+--+-==---=-+''''=-+=+( 从而 2,1a b ==-.四【详解】由2arctan 0xt y e dt -=⎰知(0)0y =,由变上限积分的求导公式得2(arctan )(arctan )x y e x -''=⋅2(arctan )21,1x e x-=+g 所以 2(arctan0)210110y e -'==+g ()因此,过点(0,0)的切线方程为.y x = ()y f x =在点(0,0)处与上述曲线有相同的切线方程,于是(0)0,(0)1f f '==.2()(0)2lim ()lim 1n n f f nnf nn→∞→∞-=2()(0)2lim 2n f f n n →∞-=2(0)2f '==五【详解】应先将{}22max ,x y e写成分块表达式. 记{}{}12(,)01,0,(,)01,1D x y x y x D x y x x y =≤≤≤≤=≤≤≤≤于是 {}2222max ,12(,);(,).x x y y ex y D e ex y D ⎧∈⎪=⎨∈⎪⎩从而{}{}{}222222221212max ,max ,max ,x y x y x y x y DD D D D ed ed ed e d e d σσσσσ=+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰22111xx y dx e dy dy e dx =+⎰⎰⎰⎰2211x y e xdx e ydy =+⎰⎰212x e xdx =⎰212x e dx =⎰21x de =⎰210|x e =(1)e =-六【详解】(1) 记21(,)[1()]P x y y f xy y =+,22(,)[()1]xQ x y y f xy y=- 22([()1])x y f xy Qy xx∂-∂=∂∂2222()([()1])([()1])x x y f xy y y f xy x y x ∂∂-=⨯-+⨯∂∂22221(()([()1])x y f xy y f xy y y x ∂=⨯-+⨯∂21()()()xy f xy x f xy y x∂'=-+⨯∂ 21()()f xy xyf xy y '=+-21([1()])y f xy P yyy ∂+∂=∂∂221()1([1()])([1()])y f xy y y f xy y y y∂∂+=++∂∂222211()1(())([1()])()y f xy y f xy f xy y y y y y y∂∂=-+++⨯⨯∂∂21()()()f xy f xy xyf xy y'=--++ 所以,(0)Q Py x y∂∂=>∂∂当. 故在上半平面(0y >),该曲线积分与路径无关. (2)方法1:由该曲线积分与路径无关而只与端点有关所以用折线把两个端点连接起来. 先从点(,)a b 到点(,),c b 再到点(,)c d . 有2221[1()][()1]cd ab c I b f bx dx y f cy dy by =++-⎰⎰()]()c d a b c a c cbf bx dx cf cy dy b d b-=+++-⎰⎰经积分变量变换后,()cd ab c a I f t dt d b =-+⎰. 当ab cd =时,推得c aI d b=-.方法2:原函数法.2221[1()][()1]L xI y f xy dx y f xy dy y y=++-⎰2()()()()()LL L L ydx xdy xf xy ydx xdy d f xy d xy y y-=++=+⎰⎰⎰⎰ 由原函数法计算第二型曲线积分的公式(与定积分的牛顿—莱布尼茨公式类似),有(,)();(,)L c d x x c ad a b y y d b ==-⎰(,)()()()()()0,(,)Lc d f xy d xy F xy F cd F ab a b ==-=⎰其中()F u 为()f u 的一个原函数,即设()()F u f u '=.由此有c aI d b=-. 方法3:由于与路径无关,又由ab cd =的启发,取路径xy k =,其中k ab =. 点(,)a b 与点(,)c d 都在此路径上. 于是将kx y=代入之后,22221[(1())()(()1)]d a k kI y f k y f k dy y y y=+-+-⎰32()dbk dy y =-⎰2dk by =22k k d b =-22cd ab d b =-.c a d b =-七【解】(1) 369331()113(3)!(3)!n nn x x x x x y x n n ∞==+++++=+∑L L +!6!9!, 由收敛半径的求法知收敛半径为∞,故由幂级数在收敛区间上逐项可导公式得3311()(1)(3)!(3)!nn n n x x y x n n ∞∞=='⎛⎫''=+= ⎪⎝⎭∑∑3113(3)!n n nx n -∞==∑311(31)!n n x n -∞==-∑,同理得 321(32)!n n x y n -∞=''=-∑从而()()()y x y x y x '''++32313111()()(1)(32)!(31)!(3)!n n nn n n x x x n n n --∞∞∞====+++--∑∑∑ 11!nn x n ∞==+∑(由x e 的麦克劳林展开式)x e =这说明,30()(3)!n n x y x n ∞==∑是微分方程xy y y e '''++=的解,并且满足初始条件310(0)1(3)!n n y n ∞==+∑1=,3110(0)(31)!n n y n -∞='=-∑0=. (2)微分方程xy y y e '''++=对应的齐次线性方程为0y y y '''++=,其特征方程为210λλ++=,其特征根为12-±,所以其通解为212[]xy e C x C -=+. 另外,该非齐次方程的特解形式为xy ce =,代入原非齐次方程得x x x xce ce ce e ++=,所以13c =.故微分方程xy y y e '''++=的通解为2121[cossin ]223x x y e C x C x e -=++. 故22121211[cossin ][sin cos ]2222223x xx y e C x C x e C x x e --'=-⨯++-⨯++222112111(2(22222223x x x e C C x e C C x e --=-⨯-⨯-⨯-⨯+由初始条件(0)1,(0)0y y '==得0212100022*********[cos 0sin 0]22331110(20(2022222231123e C C e C e C C e C C e C C ---⎧=++=+⎪⎪⎪=-⨯--⨯-⨯+⎨⎪⎪⎪=-+⎩解得11211311023C C ⎧+=⎪⎪⎨⎪-+=⎪⎩, 于是得到惟一的一组解:122,0.3C C ==从而得到满足微分方程x y y y e '''++=及初始条件(0)1,(0)0y y '==的解,只有一个,为22133x x y e x e -=+另一方面,由(1)已知30()(3)!n n x y x n ∞==∑也是微分方程xy y y e '''++=及初始条件(0)1,(0)0y y '==的解,由微分方程解的唯一性,知321211().(3)!33xn x n x e x e x n ∞-=+=+-∞<<+∞∑八【详解】(1)根据方向导数和梯度的定义,知方向导数的最大值是梯度的模长,()00,(,)x y gradh x y {}0000(,)(,)0000|,|2,2.y x y x h hy x x y x y ⎧⎫∂∂==--⎨⎬∂∂⎩⎭()()0000,,max(,)x y x y u gradh x y l∂==∂00(,).x y =(2) 命2(,)(,)f x y g x y ==22558x y xy +-,求f 在约束条件22750x y xy --+=下的最大值点. 为此,构造拉格朗日函数2222(,,)558(75)F x y x y xy x y xy λλ=+-+--+则 108(2)0x F x y y x λ'=-+-令,108(2)0y F y x x y λ'=-+-令,22750F x y xy λ'=--+令.由第1、第2 两式相加可得 ()(2)0x y λ+-=. 从而得y x =-或2λ=,再分别讨论之.若2λ=,则解得1(,)x y = 或 2(,)(x y =-- 若y x =-,则解得3(,)(5,5)x y =- 或 4(,)(5,5)x y =- 于是得到如上4个可能极值点. 将(,)i x y 记为(1,2,3,4)i M i =. 由于1234()()150,()()450f M f M f M f M ====故点34(5555M M =-=-,),(,)可作为攀登起点.九【详解】方法1:记[]1234,,,A αααα=,由234,,ααα线性无关,及123420,αααα=-+即1α可以由234,,ααα线性表出,故1234,,,αααα线性相关,及1234βαααα=+++即β可由1234,,,αααα线性表出,知[][][][]12341234123,,,,,,,(),,3r A r r r A r βααααβααααααα=====M系数矩阵的秩与增广矩阵的秩相等,故Ax β=有解.对应齐次方程组0Ax =,其系数矩阵的秩为3,故其基础解系中含有4-3(未知量的个数-系数矩阵的秩)个线性无关的解向量,故其通解可以写成k ξ,η*是Ax β=的一个特解,根据非齐次线性方程组的解的结构定理,知Ax β=的通解为k ξη*+,其中k ξ是对应齐次方程组0Ax =的通解,η*是Ax β=的一个特解,因123420,αααα=-+故[]123412341220,,,010αααααααα⎡⎤⎢⎥-⎢⎥-+-==⎢⎥⎢⎥⎣⎦,故[]1,2,1,0Tξ=-是0Ax =的一个非零解向量,因为0Ax =的基础解系中只含有一个解向量,故[]1,2,1,0Tξ=-是0Ax =的基础解系.又[]1234123411,,,11βαααααααα⎡⎤⎢⎥⎢⎥=+++=⎢⎥⎢⎥⎣⎦,即1111A β⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦故[]1,1,1,1Tη*=是Ax β=的一个特解,根据非齐次线性方程组的解的结构定理,方程组的通解为[][]1,2,1,01,1,1,1T Tk -+.(其中k 是任意常数) 方法2:令[]1234,,,Tx x x x x =,则线性非齐次方程为[]1234,,,Ax x αααα=[]12123434,,,x x x x αααα⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦11223344x x x x ααααβ=+++=已知1234βαααα=+++,故11223344x x x x αααα+++=1234αααα+++将1232ααα=-代入上式,得23122334423234(2)(2)x x x x αααααααααα-+++=-+++⇒21312233442323424223x x x x x αααααααααααα-+++=-+++=+ ⇒12231334424(2)30x x x x x αααααα+-++--= ⇒12213344(23)()(1)0x x x x x ααα+-+-++-=由已知234,,ααα线性无关,根据线性无关的定义,不存在不全为零的常数使得2233440k k k ααα++=,上式成立当且仅当1213423010x x x x x +=⎧⎪-+=⎨⎪-=⎩ 其系数矩阵为210010100001⎛⎫⎪- ⎪ ⎪⎝⎭,因为3阶子式10001010001=≠,其秩为3,故其齐次线性方程组的基础解系中存在1个(4-3)线性无关的解向量,取自由未知量3x k =,则方程组有解431321,,,23x x k x x k x k =====-+故方程组Ax β=有通解123410232310101x k x k k x k x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-+-⎢⎥⎢⎥⎢⎥⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦.(其中k 是任意常数)十【详解】(1) 因A B :,由定义知,存在可逆阵P ,使得1P AP B -=,故1111()E B E P AP P P P AP P E A P λλλλ-----=-=-=-1P E A P E A λλ-=-=-故,A B 有相同的特征多项式.(2) 取0001,0000A B ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,2201,00E A E B λλλλλλλλ--==-==,则有2,,E A E B A B λλλ-==-有相同的特征多项式,但A 不相似于B ,因为对任何的2阶可逆阵P ,均有11P AP P OP O B --==≠,故(1)的逆命题不成立.(3) 即要证如果,A B 的特征多项式相等,则,A B 相似.当,A B 都是实对称矩阵时,,A B 均能相似于对角阵,且该对角阵的对角线元素由,A B 的特征值组成. 若,A B 有相同的特征多项式,则,A B 有相同的特征值(包含重数),故,A B 将相似于同一个对角阵. 设特征值为12,,,n λλλL ,则有1122,n n A B λλλλλλ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦::O O 由相似的传递性,知A B :. (1)的逆命题成立.十一【答案】5.【详解】如果将观察值大于3π这事件理解为试验成功的话,则Y 表示对X 独立地重复试验4次中成功的次数.即是(4,)Y B p :,其中{}p P X π=>由一维概率计算公式,{}()bX aP a X b f x dx ≤≤=⎰,有3311()cos 3222x p P X f x dx dx ππππ+∞⎧⎫=>===⎨⎬⎩⎭⎰⎰,所以,1(4,)2Y B ~.由公式22()[()]()D Y E Y E Y =-以及若(,)Y B n p ~,其数学期望和方差分别为();()E Y np D Y npq ==,其中1.q p =-得 2222111()()[()]()4(4) 5.222E Y D Y E Y npq np =+=+=⨯⨯+⨯=十二【分析】矩估计的实质在于用样本矩来估计相应的总体矩,此题中被估参数只有一个,故只需要用样本一阶原点矩(样本均值)来估计总体的一阶原点矩(期望)最大似然估计,实质上就是找出使似然函数最大的那个参数,问题的关键在于构造似然函数.【详解】矩估计:由离散型随机变量期望的定义1()()niii E X x P X x ===∑,有:22()012(1)23(12)34E X θθθθθθ=⨯+⨯-+⨯+⨯-=-样本均值11n i i X X n ==∑1(31303123)28=⨯+++++++=用样本均值估计期望有 EX X =,即342θ-=. 解得的矩估计值为1.4θ∧=由离散型随机变量似然函数的定义:设 12,,...,n x x x 是相应于样本12,,...,n X X X 的一组观测值,则似然函数为:精选文库-- 21 121()(,,,;)(;)nn i i L P x x x P x θθθ===∏L由于样本值中0出现一次,故用0的对应概率2θ一次. 样本值中数值1出现二次,故用两个21-θθ()相乘,数值2出现一次,故用2的对应概率2θ一次,数值3出现四次,故用1-2θ4().总之,对于给定的样本值的似然函数为: []2224624()21-(12)4(1)(12)L θθθθθθθθθ=⋅⋅⋅-=--()()0L θ>,等式两边同取自然对数得ln ()ln 46ln 2ln(1)4ln(12),L θθθθ=++-+-ln ()L θ和()L θ在θ的同一点取得最大值,所以2ln ()62862824112(1)(12)d L d θθθθθθθθθθ-+=--=---- 令ln ()0d L d θθ=,解得1,2712θ±=因71122+>与题目中10<<2θ矛盾,不合题意,所以θ的最大似然估计值为θ∧=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档