数学分析教案(华东师大版)上册全集1-10章

合集下载

数学分析教案_(华东师大版)上册全集_1-10章

数学分析教案_(华东师大版)上册全集_1-10章

第一章实数集与函数导言数学分析课程简介( 2 学时)一、数学分析(mathematical analysis)简介:1.背景: 从切线、面积、计算sin、实数定义等问题引入.322.极限( limit ) ——变量数学的基本运算:3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算,利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究一些非初等函数. 数学分析基本上是连续函数的微积分理论.微积运算是高等数学的基本运算.数学分析与微积分(calculus)的区别.二、数学分析的形成过程:1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪, Archimedes就有了积分思想.2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累时期.3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期.4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时期:三、数学分析课的特点:逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的), 后面的学习就会容易一些; 只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务.有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯.四、课堂讲授方法:1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材:[1]华东师范大学数学系编,数学分析,高等教育出版社,2001;[2]刘玉琏傅沛仁编,数学分析讲义,高等教育出版社,1992;[3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003;[4]马振民,数学分析的方法与技巧选讲,兰州大学出版社,1999;[5]林源渠,方企勤数学分析解题指南,北京大学出版社,2003.2.本课程按[1]的逻辑顺序并在其中取材.本课程为适应教学改革的要求,只介绍数学分析最基本的内容,并加强实践环节,注重学生的创新能力的培养。

华东师大版七年级上册数学教案全册电子版本

华东师大版七年级上册数学教案全册电子版本

华东师大版七年级上册数学教案全册华东师大版七年级上册数学教案(全册)第一章:走进数学世界与数学交朋友(第1课时)教学目标:1、知识与技能:结合具体例子,体会数学与我们的成长密切相关,人类离不开数学;2、过程与方法:经历回顾与观察,体会数学的重要作用;3、情感态度与价值观:激发学习兴趣,增强数学应用意识。

教学过程:一、导入让学生看课本图片,教师诵读文字部分:宇宙之大,粒子之微,……,大千世界,天上人间,无处不有数学的贡献。

让我们走进数学世界,去领略一下数学的风采。

(板书课题)二、数学伴我们成长出生——学前——小学,我们每天都在接触数学并不断学习它,相信吗?大家不妨举出一些我们身边用到数学的例子,看谁说的例子多。

在回忆、交流、讨论的基础上,归纳数学内容:数与代数,空间与图形,统计与概率。

三、人类离不开数学展示蜂房图、股市走势图、上海东方明珠电视塔等图片,解说(解说语参见课本,从第2页倒数第二行至第3页文字部分)。

四、数学应用举例例1.一个数减去4,再除以2,然后加上3 ,再乘以2,最后得8,问这个数是多少?(可用算术法或代数法解,答案是6。

)例2.这是一道数学填空题,是由美国哈佛大学入学试卷中选出的。

请在下面这一组图形符号中找出它们所蕴含的内在规律,然后再那根横线上空白处填上恰当的图。

(分别是由正反数字1—7拼成的对称图。

这个趣例说明学习中需要细致观察,需要对数字、图形有一种敏感,也需要想象。

)例3.关于课本第4页的“密铺问题”。

思考:①那些基本图形可以密铺?②为什么正五边形不可以密铺?③讨论课本第4页左下角的“想一想”。

五、课堂小结(略)。

六、布置作业:《数学作业本》第1—2页。

与数学交朋友(第二课时)教学目标:1、知识与技能:体会从古至今数学始终伴随着人类的进步与发展;2、过程与方法:通过具体实例体会数学的存在及数学的美、尝试从不同角度,运用多种方式(观察、独立思考、自主探索、合作交流)有效解决问题;3、情感态度与价值观:激发学生学习数学的兴趣和积极性,发展应用意识。

华东师大版七年级上册数学教案全 册

华东师大版七年级上册数学教案全 册

第一章走进数学世界1.1 与数学交朋友教学目的:1、使学生初步到数学与现实世界的密切联系,懂得数学的价值,形成用数学的意识;2、使学生初步体验到数学是一个充满着观察、实验、归纳、类比和猜测的探索过程。

教学分析:重点:加强数学意识;难点:数学能力的培养。

教学过程:一、与数学交朋友1、数学伴我们成长人来到世界上的第一天就遇到数学,数学将哺育着你的成长。

数学知识开阔了你的视野,改变了你的思维方式,使你变得更聪明了。

从生活的一系列人生活动中,我们会逐渐意识到这一切的一切都和数、数的运算、数的比较、图形的大小、图形的形状、图形的位置有关。

另外,数学知识开阔了你的视野,改变了你的思维方式,使我们变得更聪明。

2、人类离不开数学自然界中的数学不胜枚举。

如:蜜蜂营造的峰房;电子计算机等等。

从生活中的常见的天气预报图,从经济生活中的股票指数,到某些图案的组成:数学并不神秘,不是只有天才才能学好数学,只要通过努力,人人都能学会数学。

学好数学要对数学有兴趣,要有刻苦钻研的精神,要善于发现和提出问题,要善于独立思考。

学好数学还要关于把数学应用于实际问题。

二、激发训练:三、作业巩固:第一章走进数学世界1.2 让我们来做数学教学目的:1、使学生对数学产生一定的兴趣,获得学好数学的自信心;2、使学生学会与他人合作,养成独立思考与合作交流的习惯;3、使学生在数学活动中获得对数学良好的感性认识,初步体验到什么是“做数学”。

教学分析:重点:如何培养学生对数学的兴趣;难点:学生对数学的感性认识。

教学过程:一、让我们来做数学:1、跟我学要正确地解数学题,需要掌握数学题的方法。

例:如图所示的33 的方格图案中多少个正方形?2、试试看例:在如图中,填入1、2、3、4、5、6、7、8、9这9个数,使每行、每列及对角线上各数的和都为15。

例:在上图中,已经填入了1至16这16个数中的一些数,请将剩下的数填入空格中,使每行、每列及对角线上各数的和都为34。

华东师范大学本科生数学分析教案

华东师范大学本科生数学分析教案

数学分析教案第一章 第一章 实数集与函数§1 实数(一) 教学目的:掌握实数的基本概念和最常见的不等式,以备以后各章应用. (二) 教学内容:实数的基本性质和绝对值的不等式. (1) 基本要求:实数的有序性,稠密性,阿基米德性. (2) 较高要求:实数的四则运算. (三) 教学建议:(1) 本节主要复习中学的有关实数的知识.(2) 讲清用无限小数统一表示实数的意义以及引入不足近似值与过剩近似值的作用.§2 数集.确界原理(一) 教学目的:掌握实数的区间与邻域概念,掌握集合的有界性和确界概念. (二) 教学内容:实数的区间与邻域;集合的上下界,上确界和下确界;确界原理.(1) 基本要求:掌握实数的区间与邻域概念;分清最大值与上确界的联系与区别;结合具体集合,能指出其确界;能用一种方式,证明集合 A 的上确界为 λ.即: ,,λ≤∈∀x A x 且 ,λ<∀a ∃0x 0,x A ∈a >;或 ,,λ≤∈∀x A x 且 ,,00A x ∈∃>∀ε ελ->0x .(2) 较高要求:掌握确界原理的证明,并用确界原理认识实数的完备性. (三) 教学建议:(1) 此节重点是确界概念和确界原理.不可强行要求一步到位,对多数学生可只布置证明具体集合的确界的习题.(2) 此节难点亦是确界概念和确界原理.对较好学生可布置证明抽象集合的确界的习题.§3 函数概念(一) 教学目的:掌握函数概念和不同的表示方法.(二) 教学内容:函数的定义与表示法;复合函数与反函数;初等函数. (1) 基本要求:掌握函数的定义与表示法;理解复合函数与反函数;懂得初等函数的定义,认识狄利克莱函数和黎曼函数.(2) 较高要求:函数是一种关系或映射的进一步的认识. (三) 教学建议:通过狄利克莱函数和黎曼函数,使学生对函数的认识从具体上升到抽象.§4 具有某些特性的函数(一) 教学目的:掌握函数的有界性,单调性,奇偶性和周期性. (二) 教学内容:有界函数,单调函数,奇函数,偶函数和周期函数. (三) 教学建议:(1) 本节的重点是通过对函数的有界性的分析,培养学生了解研究抽象函数性质的方法.(2) 本节的难点是要求用分析的方法定义函数的无界性.对较好学生可初步教会他们用分析语言表述否命题的方法.第二章 第二章 数列极限§1 数列极限概念(一) 教学目的:掌握数列极限概念,学会证明数列极限的基本方法. (二) 教学内容:数列极限.(1) 基本要求:理解数列极限的分析定义,学会证明数列极限的基本方法,懂得数列极限的分析定义中 ε与 N 的关系.(2) 较高要求:学会若干种用数列极限的分析定义证明极限的特殊技巧. (三)教学建议:(1) 本节的重点是数列极限的分析定义,要强调这一定义在分析中的重要性.具体教学中先教会他们证明 ∞→n lim 01=k n ; ∞→n lim n a 0=;( )1||<a ,然后教会他们用这些无穷小量来控制有关的变量(适当放大但仍小于这些无穷小量). (2) 本节的难点仍是数列极限的分析定义.对较好学生可要求他们用数列极限的分析定义证明较复杂的数列极限,还可要求他们深入理解数列极限的分析定义.§2 数列极限的性质(一) 教学目的:掌握数列极限的主要性质,学会利用数列极限的性质求数列的极限. (二) 教学内容:数列极限的唯一性,有界性,保号性,保不等式性,迫敛性,四则运算法则和数列的子列及有关子列的定理.(1) 基本要求:理解数列极限的唯一性,有界性,保号性,保不等式性,迫敛性,四则运算法则,并会用其中某些性质计算具体的数列的极限.(2) 较高要求:掌握这些性质的较难的证明方法,以及证明抽象形式的数列极限的方法. (三) 教学建议:(1) 本节的重点是数列极限的性质的证明与运用.可对多数学生重点讲解其中几个性质的证明,多布置利用这些性质求具体数列极限的习题. (2) 本节的难点是数列极限性质的分析证明.对较好的学生,要求能够掌握这些性质的证明方法,并且会用这些性质计算较复杂的数列极限,例如: ∞→n limnn =1,等.§3 数列极限存在的条件(一) 教学目的:掌握单调有界定理,理解柯西收敛准则. (二) 教学内容:单调有界定理,柯西收敛准则.(1) 基本要求:掌握单调有界定理的证明,会用单调有界定理证明数列极限的存在性,其中包括 1lim(1)n n n →∞+存在的证明.理解柯西收敛准则的直观意义.(2) 较高要求:会用单调有界定理证明数列极限的存在性,会用柯西收敛准则判别抽象数列(极限)的敛散性.(三) 教学建议:(1) 本节的重点是数列单调有界定理.对多数学生要求会用单调有界定理证明数列极限的存在性.(2) 本节的难点是柯西收敛准则.要求较好学生能够用柯西收敛准则判别数列的敛散性.第三章 函数极限 1 函数极限概念(一) 教学目的:掌握各种函数极限的分析定义,能够用分析定义证明和计算函数的极限. (二) 教学内容:各种函数极限的分析定义.基本要求:掌握当 0x x →; ∞→x ; ∞+→x ; ∞-→x ; +→0x x ;-→0x x 时函数极限的分析定义,并且会用函数极限的分析定义证明和计算较简单的函数极限.(三) 教学建议:本节的重点是各种函数极限的分析定义.对多数学生要求主要掌握当 0x x →时函数极限的分析定义,并用函数极限的分析定义求函数的极限.§2 函数极限的性质(一) 教学目的:掌握函数极限的性质.(二) 教学内容:函数极限的唯一性,有界性,保号性,保不等式性,迫敛性,四则运算法则.(1) 基本要求:掌握函数极限的唯一性,有界性,保号性,保不等式性,迫敛性,四则运算法则,并会用这些性质计算函数的极限.(2) 较高要求:理解函数极限的局部性质,并对这些局部性质作进一步的理论性的认识. (三) 教学建议:(1) (1) 本节的重点是函数极限的各种性质.由于这些性质类似于数列极限中相应的性质,可着重强调其中某些性质与数列极限的相应性质的区别和联系. (2) 本节的难点是函数极限的局部性质.对较好学生,要求懂得这些局部的 δ(的大小)不仅与 ε有关,而且与点 0x 有关,为以后讲解函数的一致连续性作准备.§3 函数极限存在的条件(一) 教学目的:掌握函数极限的归结原理和函数极限的单调有界定理,理解函数极限的柯西准则.(二) 教学内容:函数极限的归结;函数极限的单调有界定理;函数极限的柯西准则. (1) 基本要求:掌握函数极限的归结,理解函数极限的柯西准则. (2) 较高要求:能够写出各种函数极限的归结原理和柯西准则. (三) 教学建议:(1) 本节的重点是函数极限的归结原理.要着重强调归结原理中数列的任意性. (2) 本节的难点是函数极限的柯西准则.要求较好学生能够熟练地写出和运用各种函数极限的归结原理和柯西准则.§4两个重要的极限(一) 教学目的:掌握两个重要极限: 0lim →x 1sin =x x ; ∞→x lim xx ⎪⎭⎫⎝⎛+11e =.(二) 教学内容:两个重要极限: 0lim →x 1sin =x x; ∞→x limxx ⎪⎭⎫⎝⎛+11e =.(1) 基本要求:掌握 0lim→x 1sin =xx的证明方法,利用两个重要极限计算函数极限与数列极限.(2) 较高要求:掌握 ∞→x lim xx ⎪⎭⎫⎝⎛+11e =证明方法.(三) 教学建议:(1) 本节的重点是与两个重要的函数极限有关的计算与证明.可用方法:1)()(sin lim 0)(=→x x x ϕϕϕ; e x x x =⎪⎪⎭⎫⎝⎛+∞→)()()(11lim ψψψ,其中 )(x ϕ、 )(x ψ分别为任一趋于0或趋于∞的函数.(2) 本节的难点是利用迫敛性证明 ∞→x lim xx ⎪⎭⎫⎝⎛+11e =.§5 无穷小量与无穷大量(一) 教学目的:掌握无穷小量与无穷大量以及它们的阶数的概念.(二) 教学内容:无穷小量与无穷大量,高阶无穷小,同阶无穷小,等阶无穷小,无穷大. (1) 基本要求:掌握无穷小量与无穷大量以及它们的阶数的概念. (2) 较高要求:能够写出无穷小量与无穷大量的分析定义,并用分析定义证明无穷小量与无穷大量.在计算及证明中,熟练使用“ o ”与“ O ”. (三) 教学建议:(1) 本节的重点是无穷小量与无穷大量以及它们的阶数的概念. (2) (2) 本节的难点是熟练使用“ o ”与“ O ”进行运算.第四章 第四章 函数的连续性§1 连续性概念(一) 教学目的:掌握函数连续性概念.(二) 教学内容:函数在一点和在区间上连续的定义,间断点的分类.(1) 基本要求:掌握函数连续性概念,可去间断点,跳跃间断点,第二类间断点,区间上的连续函数的定义.(2) 较高要求:讨论黎曼函数的连续性. (三) 教学建议:(1) (1) 函数连续性概念是本节的重点.对学生要求懂得函数在一点和在区间上连续的定义,间断点的 分类.(2) 本节的难点是用较高的分析方法、技巧证明函数的连续性,可在此节中对较好学生布置有关习题.§2 连续函数的性质(一) 教学目的:掌握连续函数的局部性质和闭区间上连续函数的整体性质.(二) 教学内容:连续函数的局部保号性,局部有界性,四则运算;闭区间上连续函数的最大最小值定理,有界性定理,介值性定理,反函数的连续性,一致连续性.(1) 基本要求:掌握函数局部性质概念,可去间断点,跳跃间断点,第二类间断点;了解闭区间上连续函数的性质.(2) 较高要求:对一致连续性的深入理解.(三)教学建议:(1)函数连续性概念是本节的重点.要求学生掌握函数在一点和在区间上连续的定义,间断点的分类,了解连续函数的整体性质.对一致连续性作出几何上的解释.(2)(2)本节的难点是连续函数的整体性质,尤其是一致连续性和非一致连续性的特征.可在此节中对较好学生布置判别函数一致连续性的习题.§3 初等函数的连续性(一) 教学目的:了解指数函数的定义,掌握初等函数的连续性.(二) 教学内容:指数函数的定义;初等函数的连续性.(1) 基本要求:掌握初等函数的连续性.(2) 较高要求:掌握指数函数的严格定义.(三)教学建议:(1) 本节的重点是初等函数的连续性.要求学生会用初等函数的连续性计算极限.(2) 本节的难点是理解和掌握指数函数的性质.第五章导数和微分§1 导数的概念(一) 教学目的:掌握导数的概念,了解费马定理、达布定理.(二) 教学内容:函数的导数,函数的左导数,右导数,有限增量公式,导函数.(1) 基本要求:掌握函数在一点处的导数是差商的极限.了解导数的几何意义,理解费马定理.(2) 较高要求:理解达布定理.(三) 教学建议:(1) 本节的重点是导数的定义和导数的几何意义.会用定义计算函数在一点处的导数.(2) 本节的难点是达布定理.对较好学生可布置运用达布定理的习题.§2 求导法则(一) 教学目的:熟练掌握求导法则和熟记基本初等函数的求导公式.(二) 教学内容:导数的四则运算,反函数求导,复合函数的求导,基本初等函数的求导公式.基本要求:熟练掌握求导法则和熟记基本初等函数的求导公式.(三) 教学建议:求导法则的掌握和运用对以后的学习至关重要,要安排专门时间督促和检查学生学习情况.§3 参变量函数的导数(一) 教学目的:掌握参变量函数的导数的求导法则.(二) 教学内容:参变量函数的导数的求导法则.基本要求:熟练掌握参变量函数的导数的求导法则.(三) 教学建议:通过足量习题使学生掌握参变量函数的导数的求导法则.§4高阶导数(一) 教学目的:掌握高阶导数的概念,了解求高阶导数的莱布尼茨公式.(二) 教学内容:高阶导数;求高阶导数的莱布尼茨公式.(1)基本要求:掌握高阶导数的定义,能够计算给定函数的高阶导数.(2) 较高要求:掌握并理解参变量函数的二阶导数的求导公式.(三) 教学建议:(1) 本节的重点是高阶导数的概念和计算.要求学生熟练掌握.(2) 本节的难点是高阶导数的莱布尼茨公式,特别是参变量函数的二阶导数.要强调对参变量求导与对自变量求导的区别.可要求较好学生掌握求参变量函数的二阶导数.§5 微分(一) 教学目的:掌握微分的概念和微分的运算方法,了解高阶微分和微分在近似计算中的应用.(二) 教学内容:微分的概念,微分的运算法则,高阶微分,微分在近似计算中的应用.(1) 基本要求:掌握微分的概念,微分的运算法则,一阶微分形式的不变性.(2) 较高要求:掌握高阶微分的概念.(三) 教学建议:(1) 本节的重点是掌握微分的概念,要讲清微分是全增量的线性主部.(2) 本节的难点是高阶微分,可要求较好学生掌握这些概念.第六章微分中值定理及其应用§1 拉格朗日定理和函数的单调性(一) 教学目的:掌握罗尔中值定理和拉格朗日中值定理,会用导数判别函数的单调性.(二) 教学内容:罗尔中值定理;拉格朗日中值定理.(1) 基本要求:掌握罗尔中值定理和拉格朗日中值定理,会用导数判别函数的单调性.(2) 较高要求:掌握导数极限定理.(三) 教学建议:(1)(1)本节的重点是掌握罗尔中值定理和拉格朗日中值定理,要求牢记定理的条件与结论,知道证明的方法.(2)(2)本节的难点是用拉格朗日中值定理证明有关定理与解答有关习题.可要求较好学生掌握通过设辅助函数来运用微分中值定理.§2 柯西中值定理和不定式极限(一) 教学目的:了解柯西中值定理,掌握用洛必达法则求不定式极限. (二) 教学内容:柯西中值定理;洛必达法则的使用.(1) 基本要求:了解柯西中值定理,掌握用洛必达法则求各种不定式极限.(2) 较高要求:掌握洛必达法则 0型定理的证明.(三) 教学建议:(1) (1) 本节的重点是掌握用洛必达法则求各种不定式极限.可强调洛必达法则的重要性,并总结求各 种不定式极限的方法. (2) 本节的难点是掌握洛必达法则定理的证明,特别是 ∞∞型的证明.§3 泰勒公式(一) 教学目的:理解带佩亚诺余项和带拉格朗日余项的泰勒公式、麦克劳林公式.(二) 教学内容:带佩亚诺余项和带拉格朗日余项的泰勒公式、麦克劳林公式及其在近似计算中的应用.(1) 基本要求:了解带佩亚诺余项和带拉格朗日余项的泰勒公式、麦克劳林公式,熟记六个常见函数的麦克劳林公式. (2) 较高要求:用泰勒公式计算某些 0型极限.(三) 教学建议:(1) 本节的重点是理解带佩亚诺余项和带拉格朗日余项的泰勒公式、麦克劳林公式. (2) 本节的难点是掌握带佩亚诺余项和带拉格朗日余项的泰勒公式、麦克劳林公式的证明.对较好学生可要求掌握证明的方法. §4函数的极值与最大(小)值(一) 教学目的:掌握函数的极值与最大(小)值的概念. (二) 教学内容:函数的极值与最值.(1) 基本要求:掌握函数的极值的第一、二充分条件;学会求闭区间上连续函数的最值及其应用.(2) 较高要求:掌握函数的极值的第三充分条件. (三) 教学建议:教会学生以函数的不可导点和导函数(以及二阶导数)的零点(稳定点)分割函数定义域,作自变量、导函数(以及二阶导数)、函数的性态表,这个表给出函数的单调区间,凸区间,极值.这对后面的函数作图也有帮助.§5 函数的凸性与拐点(一) 教学目的:掌握函数的凸性与拐点的概念,应用函数的凸性证明不等式. (二) 教学内容:函数的凸性与拐点.(1) 基本要求:掌握函数的凸性与拐点的概念,应用函数的凸性证明不等式.(2) 较高要求:运用詹森不等式证明或构造不等式,左、右导数的存在与连续的关系. (三) 教学建议:(1) 教给学生判断凸性的充分条件即可,例如导函数单调. (2) 本节的难点是运用詹森不等式证明不等式.§6 函数图象的讨论(一) 教学目的:掌握函数图象的大致描绘.(二) 教学内容:作函数图象.(1) 基本要求:掌握直角坐标系下显式函数图象的大致描绘.(2) 较高要求:能描绘参数形式的函数图象.(三)教学建议:教会学生根据函数的性态表,以及函数的单调区间,凸区间,大致描绘函数图象.第七章实数的完备性§1关于实数集完备性的基本定理(一)教学目的:掌握区间套定理和柯西判别准则的证明,了解有限覆盖定理和聚点定理(较熟练运用致密性定理).(二)教学内容:区间套定理、柯西判别准则的证明;聚点定理;有限覆盖定理.(1) 基本要求:掌握和运用区间套定理、致密性定理.(2)较高要求:掌握聚点定理和有限覆盖定理的证明与运用.(三) 教学建议:(1)(1)本节的重点是区间套定理和致密性定理.教会学生在什么样情况下应用区间套定理和致密性定理以及如何应用区间套定理和致密性定理.(2) 本节的难点是掌握聚点定理和有限覆盖定理.教会较好学生如何应用聚点定理和有限覆盖定理.§2 闭区间上的连续函数性质的证明(一) 教学目的:证明闭区间上的连续函数性质.(二) 教学内容:闭区间上的连续函数有界性的证明;闭区间上的连续函数的最大(小)值定理的证明;闭区间上的连续函数介值定理的证明;闭区间上的连续函数一致连续性的证明.(1)(1)基本要求:掌握用有限覆盖定理或用致密性定理证明闭区间上连续函数的有界性;用确界原理证明闭区间上的连续函数的最大(小)值定理;用区间套定理证明闭区间上的连续函数介值定理.(2) 较高要求:掌握用有限覆盖定理证明闭区间上的连续函数的有界性和一致连续性.(三) 教学建议:(1) 本节的重点是证明闭区间上的连续函数的性质.(2) 本节的难点是掌握用有限覆盖定理证明闭区间上的连续函数的一致连续性以及实数完备性的六大定理的等价性证明,对较好学生可布置这方面的习题.第八章不定积分§1不定积分的概念与基本积分公式(一) 教学目的:掌握原函数的概念和基本积分公式(二) 教学内容:原函数的概念;基本积分公式;不定积分的几何意义.基本要求:熟练掌握原函数的概念和基本积分公式.(三) 教学建议:(1) 不定积分是以后各种积分计算的基础,要求熟记基本积分公式表.(2) 适当扩充基本积分公式表.§2 换元积分法与分部积分法(一) 教学目的:掌握第一、二换元积分法与分部积分法.(二) 教学内容:第一、二换元积分法;分部积分法.基本要求:熟练掌握第一、二换元积分法与分部积分法.(三) 教学建议:(1) 布置足量的有关换元积分法与分部积分法的计算题.(2) 总结分部积分法的几种形式:升幂法,降幂法和循环法.§3 有理函数和可化为有理函数的不定积分(一) 教学目的:会计算有理函数和可化为有理函数的不定积分.(二) 教学内容:有理函数的不定积分;三角函数有理式的不定积分;某些无理根式的不定积分.(1) 基本要求:有理函数的不定积分;三角函数有理式的不定积分;某些无理根式的不定积分.(2) 较高要求:利用欧拉代换求某些无理根式的不定积分.(三) 教学建议:(1) 适当布置有理函数的不定积分,三角函数有理式的不定积分,某些无理根式的不定积分的习题.(2) 本节的难点是利用欧拉代换求某些无理根式的不定积分,可要求较好学生掌握.第九章定积分§1 定积分的概念(一) 教学目的:引进定积分的概念.(二) 教学内容:定积分的定义.基本要求:掌握定积分的定义,了解定积分的几何意义和物理意义.(三) 教学建议:要求掌握定积分的定义,并了解定积分的几何意义.§2 牛顿-莱布尼茨公式(一) 教学目的:熟练掌握和应用牛顿-莱布尼茨公式.(二) 教学内容:牛顿-莱布尼茨公式.(1) 基本要求:熟练掌握和应用牛顿-莱布尼茨公式.(2) 较高要求:利用定积分的定义来处理一些特殊的极限.(三) 教学建议:(1) 要求能证明并应用牛顿-莱布尼茨公式.(2) 利用定积分的定义来处理一些特殊的极限是一个难点,对学习较好的学生可布置这种类型的题目.§3 可积条件(一) 教学目的:理解定积分的充分条件,必要条件和充要条件.(二) 教学内容:定积分的充分条件和必要条件;可积函数类(1) 基本要求:掌握定积分的第一、二充要条件.(2) 较高要求:掌握定积分的第三充要条件.(三) 教学建议:(1) 理解定积分的第一、二充要条件是本节的重点,要求学生必须掌握.(2) 证明定积分的第一、二、三充要条件是本节的难点.对较好学生可要求掌握这些定理的证明以及证明某些函数的不可积性.§4定积分的性质(一) 教学目的:掌握定积分的性质.(二) 教学内容:定积分的基本性质;积分第一中值定理.(1) 基本要求:掌握定积分的基本性质和积分第一中值定理.(2) 较高要求:较难的积分不等式的证明.(三) 教学建议:(1) 定积分的基本性质和积分第一中值定理是本节的重点,要求学生必须掌握并灵活应用.(2) 较难的积分不等式的证明是本节的难点.对较好学生可布置这方面的习题.§5 微积分学基本定理(一) 教学目的:掌握微积分学基本定理.(二) 教学内容:变上限的定积分;变下限的定积分;微积分学基本定理;积分第二中值定理,换元积分法;分部积分法;泰勒公式的积分型余项.(1) 基本要求:掌握变限的定积分的概念;掌握微积分学基本定理和换元积分法及分部积分法.(2) 较高要求:掌握积分第二中值定理和泰勒公式的积分型余项.(三)教学建议:(1) 微积分学基本定理是本节的重点,要求学生必须掌握微积分学基本定理完整的条件与结论.(2) 积分第二中值定理和泰勒公式的积分型余项是本节的难点.对较好学生要求他们了解这些内容.第十章定积分的应用§1平面图形的面积(一) 教学目的:掌握平面图形面积的计算公式.(二) 教学内容:平面图形面积的计算公式.(1) 基本要求:掌握平面图形面积的计算公式,包括参量方程及极坐标方程所定义的平面图形面积的计算公式.(2) 较高要求:提出微元法的要领.(三) 教学建议:(1)本节的重点是平面图形面积的计算公式,要求学生必须熟记并在应用中熟练掌握.(二) 教学内容:无穷积分;瑕积分.基本要求:掌握无穷积分与瑕积分的定义与计算方法.(三) 教学建议:讲清反常积分是变限积分的极限.(2) 领会微元法的要领.§2 由平行截面面积求体积(一) 教学目的:掌握由平行截面面积求体积的计算公式(二) 教学内容:由平行截面面积求体积的计算公式.基本要求:掌握由平行截面面积求体积的计算公式.(三) 教学建议:(1) 要求学生必须熟记由平行截面面积求体积的计算公式并在应用中熟练掌握.(2) 进一步领会微元法的要领.§3 平面曲线的弧长与曲率(一) 教学目的:掌握平面曲线的弧长与曲率(二) 教学内容:平面曲线的弧长与曲率的计算公式.(1) 基本要求:掌握平面曲线的弧长计算公式.(2) 较高要求:掌握平面曲线的曲率计算公式.(三) 教学建议:(1) 要求学生必须熟记平面曲线的弧长计算公式.(2) 对较好学生可要求他们掌握平面曲线的曲率计算公式.§4 旋转曲面的面积(一) 教学目的:掌握旋转曲面的面积计算公式.(二) 教学内容:旋转曲面的面积计算公式.基本要求:掌握求旋转曲面的面积的计算公式,包括求由参数方程定义的旋转曲面的面积;掌握平面曲线的曲率的计算公式.(三) 教学建议:要求学生必须熟记旋转曲面面积的计算公式,掌握由参数方程定义的旋转曲面的面积.§5 定积分在物理中的某些应用(一) 教学目的:掌握定积分在物理中的应用的基本方法.(二) 教学内容:液体静压力;引力;功与平均功率.(1) 基本要求:要求学生掌握求液体静压力、引力、功与平均功率的计算公式.(2) 较高要求:要求学生运用微元法导出求液体静压力、引力、功与平均功率的计算公式.(三) 教学建议:要求学生必须理解和会用求液体静压力、引力、功与平均功率的计算公式.十一章反常积分§1反常积分的概念(一) 教学目的:掌握反常积分的定义与计算方法.。

【精品】数学分析教案_(华东师大版)上册全集_1-10章

【精品】数学分析教案_(华东师大版)上册全集_1-10章

数学分析教案_(华东师大版)上册全集_1-10章第一章实数集与函数导言数学分析课程简介( 2 学时 )一、数学分析(mathematical analysis)简介:1.背景: 从切线、面积、计算 32sin、实数定义等问题引入.2.极限 ( limit ) ——变量数学的基本运算:3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算,利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究一些非初等函数. 数学分析基本上是连续函数的微积分理论.微积运算是高等数学的基本运算.数学分析与微积分(calculus)的区别.二、数学分析的形成过程:1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪, Archimedes就有了积分思想.2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累时期.3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期.4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时期:三、数学分析课的特点:逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的), 后面的学习就会容易一些; 只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务.有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯.四、课堂讲授方法:1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材:[1]华东师范大学数学系编,数学分析,高等教育出版社,2001;[2]刘玉琏傅沛仁编,数学分析讲义,高等教育出版社,1992;[3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003;[4]马振民,数学分析的方法与技巧选讲,兰州大学出版社,1999;[5]林源渠,方企勤数学分析解题指南,北京大学出版社,2003.2.本课程按[1]的逻辑顺序并在其中取材.本课程为适应教学改革的要求,只介绍数学分析最基本的内容,并加强实践环节,注重学生的创新能力的培养。

数学分析(华东师大)第一章实数集与函数

数学分析(华东师大)第一章实数集与函数

第一章实数集与函数§1 实数数学分析研究的基本对象是定义在实数集上的函数.为此, 我们先简要叙述实数的有关概念.一实数及其性质在中学数学课程中, 我们知道实数由有理数与无理数两部分组成.有理数可用分数形式p( p、q 为整数, q≠0 ) 表示, 也可用有限十进小数或无限十进循环q小数来表示; 而无限十进不循环小数则称为无理数.有理数和无理数统称为实数.为了以下讨论的需要, 我们把有限小数( 包括整数) 也表示为无限小数.对此我们作如下规定: 对于正有限小数( 包括正整数) x , 当x = a0 . a1 a2 a n 时, 其中0≤a i ≤9 , i = 1 , 2 , , n , a n ≠0 , a0 为非负整数, 记x = a0 . a1 a2 ( a n - 1) 999 9 ,而当x = a0 为正整数时, 则记x = ( a0 - 1 ) .999 9 ,例如2 .001 记为2.000 999 9 ; 对于负有限小数( 包括负整数) y , 则先将- y 表示为无限小数, 再在所得无限小数之前加负号, 例如- 8 记为- 7.999 9 ; 又规定数0 表示为0.000 0 .于是, 任何实数都可用一个确定的无限小数来表示.我们已经熟知比较两个有理数大小的方法.现定义两个实数的大小关系.定义1 给定两个非负实数x = a0 . a1 a2 a n , y = b0 .b1 b2 b n ,其中a0 , b0 为非负整数, a k , b k ( k = 1 , 2 , ) 为整数, 0≤a k ≤9 , 0≤b k ≤9 .若有a k =b k , k = 0 , 1 , 2 , ,则称x 与y 相等, 记为x = y; 若a0 > b0 或存在非负整数l , 使得a k =b k ( k = 0 , 1 , 2 , , l ) 而a l + 1 > b l + 1 ,则称x 大于y 或y 小于x , 分别记为x > y 或y < x .2 第一章实数集与函数对于负实数x , y, 若按上述规定分别有- x = - y 与- x > - y , 则分别称x = y 与x < y( 或y > x) .另外, 自然规定任何非负实数大于任何负实数.以下给出通过有限小数来比较两个实数大小的等价条件.为此, 先给出如下定义.定义 2 设x = a0 . a1 a2 a n 为非负实数.称有理数x n = a0 . a1 a2 a n为实数x 的n位不足近似, 而有理数x n = x n + 称为x 的n位过剩近似, n = 0 , 1 , 2 , . 1 10 n对于负实数x = - a0 .a1 a2 a n , 其n 位不足近似与过剩近似分别规定为1x n = - a0 .a1 a2 a n - n 与x n = - a0 .a1 a2 a n .10注不难看出, 实数x 的不足近似x n 当n 增大时不减, 即有x0 ≤x1 ≤x2 ≤, 而过剩近似x n 当n 增大时不增, 即有x0 ≥x1 ≥x2 ≥.我们有以下的命题设x = a0 .a1 a2 与y = b0 . b1 b2 为两个实数, 则x > y 的等价条件是: 存在非负整数n , 使得x n > y n ,其中x n 表示x 的n 位不足近似, y n 表示y 的n 位过剩近似.关于这个命题的证明, 以及关于实数的四则运算法则的定义, 可参阅本书附录Ⅱ第八节.例1 设x、y 为实数, x < y .证明: 存在有理数r 满足x < r < y .证由于x < y , 故存在非负整数n , 使得x n < y n .令r = 1( x n + y n ) ,2则r 为有理数, 且有即得x < r < y .x ≤ x n < r < y n ≤y,为方便起见, 通常将全体实数构成的集合记为R , 即R = { x x 为实数} .实数有如下一些主要性质:1 . 实数集R 对加、减、乘、除( 除数不为0 ) 四则运算是封闭的, 即任意两个§1 实数3实数的和、差、积、商( 除数不为0) 仍然是实数.2 . 实数集是有序的, 即任意两实数a、b 必满足下述三个关系之一: a < b,a = b, a >b .3 . 实数的大小关系具有传递性, 即若a > b, b > c, 则有a > c .4 . 实数具有阿基米德( Archimedes ) 性, 即对任何a、b∈R , 若b > a > 0 , 则存在正整数n , 使得na > b .5 . 实数集R 具有稠密性, 即任何两个不相等的实数之间必有另一个实数, 且既有有理数( 见例1 ) , 也有无理数.6 . 如果在一直线( 通常画成水平直线) 上确定一点O 作为原点, 指定一个方向为正向( 通常把指向右方的方向规定为正向) , 并规定一个单位长度, 则称此直线为数轴.任一实数都对应数轴上唯一的一点; 反之, 数轴上的每一点也都唯一地代表一个实数.于是, 实数集R 与数轴上的点有着一一对应关系.在本书以后的叙述中, 常把“实数a”与“数轴上的点a”这两种说法看作具有相同的含义.例2 设a、b∈R .证明: 若对任何正数ε有a < b + ε, 则a≤b .证用反证法.倘若结论不成立, 则根据实数集的有序性, 有a > b .令ε= a - b, 则ε为正数且 a = b + ε, 但这与假设 a < b + ε相矛盾.从而必有a≤b .关于实数的定义与性质的详细论述, 有兴趣的读者可参阅本书附录Ⅱ .二绝对值与不等式实数a 的绝对值定义为a = a , a ≥0 ,- a , a < 0 .从数轴上看, 数a 的绝对值| a | 就是点 a 到原点的距离.实数的绝对值有如下一些性质:1 . | a | = | - a | ≥0; 当且仅当 a = 0 时有| a | = 0 .2 . - | a | ≤ a≤ | a | .3 . | a | < h! - h < a < h; | a | ≤ h! - h≤ a≤ h ( h > 0) .4 . 对于任何a、b∈R 有如下的三角形不等式:a -b ≤ a ±b ≤ a + b .5 . | ab | = | a | | b| .6 . ab| a || b|( b≠ 0) .下面只证明性质4 , 其余性质由读者自行证明. 由性质2 有=4 第一章实数集与函数两式相加后得到- a ≤ a ≤ a , - b ≤ b ≤ b .- ( a + b ) ≤ a + b ≤ a + b .根据性质3 , 上式等价于a +b ≤ a + b . ( 1) 将(1 ) 式中 b 换成- b, ( 1) 式右边不变, 即得| a - b | ≤| a | + | b | , 这就证明了性质4 不等式的右半部分.又由| a | = | a - b + b | , 据(1 ) 式有a ≤ a -b + b .从而得a -b ≤ a - b . ( 2) 将(2 ) 式中 b 换成- b, 即得| a | - | b | ≤| a + b | .性质4 得证.习题1 . 设a 为有理数, x 为无理数.证明:( 1) a + x 是无理数; ( 2)当a≠0 时, ax 是无理数.2 . 试在数轴上表示出下列不等式的解:( 1) x ( x2 - 1) > 0; ( 2) | x - 1 | < | x - 3 | ;( 3) x - 1 - 2 x - 1≥ 3 x - 2 .3 . 设a、b∈R .证明:若对任何正数ε有| a - b| < ε, 则a = b .4 . 设x ≠0 ,证明x + 1 x5 . 证明: 对任何x ∈R 有≥2 , 并说明其中等号何时成立.( 1) | x - 1 | + | x - 2 | ≥1; ( 2) | x - 1 | + | x - 2 | + | x - 3 | ≥2 .6 . 设a、b、c∈R+ ( R+ 表示全体正实数的集合) .证明a2 + b2- a2+ c2 ≤ b - c .你能说明此不等式的几何意义吗?7 . 设x > 0 , b > 0 , a≠b .证明a + x介于 1 与a之间.b + x b8 . 设p 为正整数.证明:若p 不是完全平方数, 则p是无理数.9 . 设a、b 为给定实数.试用不等式符号(不用绝对值符号) 表示下列不等式的解:( 1) | x - a| < | x - b | ; ( 2) | x - a | < x - b; (3) | x2 - a | < b .§2 数集·确界原理本节中我们先定义R 中两类重要的数集———区间与邻域, 然后讨论有界集§2 数集·确界原理5并给出确界定义和确界原理.一区间与邻域设a、b∈R , 且 a < b .我们称数集{ x | a < x < b} 为开区间, 记作( a , b) ; 数集{ x | a≤x≤b} 称为闭区间, 记作[ a , b] ; 数集{ x | a≤x < b} 和{ x | a < x ≤b} 都称为半开半闭区间, 分别记作[ a , b) 和( a , b] .以上这几类区间统称为有限区间.从数轴上来看, 开区间( a , b) 表示a、b 两点间所有点的集合, 闭区间[ a, b] 比开区间( a , b) 多两个端点, 半开半闭区间[ a, b) 比开区间( a, b) 多一个端点 a 等.满足关系式x ≥a 的全体实数x 的集合记作[ a , + ∞) , 这里符号∞读作“无穷大”, + ∞读作“正无穷大”.类似地, 我们记( - ∞ , a] = { x x ≤ a} , ( a , + ∞ ) = { x x > a} ,( - ∞, a) = { x x < a} , ( - ∞, + ∞) = { x - ∞< x < + ∞} = R , 其中- ∞读作“负无穷大”.以上这几类数集都称为无限区间.有限区间和无限区间统称为区间.设a∈R , δ> 0 .满足绝对值不等式| x - a | < δ的全体实数x 的集合称为点a 的δ邻域, 记作U ( a;δ) , 或简单地写作U( a ) , 即有U( a; δ) = { x x - a < δ} = ( a - δ, a + δ) .点a 的空心δ邻域定义为U°(a;δ) = { x 0 < x - a < δ} ,它也可简单地记作U°( a) .注意, U°( a;δ) 与U( a;δ) 的差别在于: U°( a;δ) 不包含点 a .此外, 我们还常用到以下几种邻域:点a 的δ右邻域U + ( a;δ) = [ a , a + δ) , 简记为U + ( a) ;点a 的δ左邻域U - ( a;δ) = ( a - δ, a] , 简记为U - ( a) ;( U- ( a ) 与U+ ( a ) 去除点 a 后, 分别为点 a 的空心δ左、右邻域, 简记为U°- ( a) 与U°+ ( a) .)∞邻域U( ∞) = { x | x | > M} , 其中M 为充分大的正数( 下同) ;+ ∞邻域U( + ∞) = { x | x > M}; - ∞邻域U( - ∞) = { x | x < - M} .二有界集·确界原理定义1 设S 为R 中的一个数集.若存在数M ( L ) , 使得对一切x ∈S , 都有x ≤M( x≥L) , 则称S 为有上界( 下界) 的数集, 数M( L) 称为S 的一个上界( 下界) .6 第一章实数集与函数若数集S 既有上界又有下界, 则称S 为有界集.若S 不是有界集, 则称S 为无界集.例1 证明数集N + = { n | n 为正整数}有下界而无上界.证显然, 任何一个不大于1 的实数都是N + 的下界, 故N + 为有下界的数集.为证N + 无上界, 按照定义只须证明: 对于无论多么大的数M, 总存在某个正整数n0 ( ∈N + ) , 使得n0 > M .事实上, 对任何正数M ( 无论多么大) , 取n0 = [ M ] + 1 ①, 则n0 ∈N + , 且n0 > M .这就证明了N + 无上界.读者还可自行证明: 任何有限区间都是有界集, 无限区间都是无界集; 由有限个数组成的数集是有界集.若数集S 有上界, 则显然它有无穷多个上界, 而其中最小的一个上界常常具有重要的作用, 称它为数集S 的上确界.同样, 有下界数集的最大下界, 称为该数集的下确界.下面给出数集的上确界和下确界的精确定义.定义2 设S 是R 中的一个数集.若数η满足:( i) 对一切x∈S , 有x≤η, 即η是S 的上界;( ii) 对任何α< η, 存在x0 ∈S , 使得x0 > α, 即η又是S 的最小上界,则称数η为数集S 的上确界, 记作η = sup S② .定义3 设S 是R 中的一个数集.若数ξ满足:( i) 对一切x∈S , 有x≥ξ, 即ξ是S 的下界;( ii) 对任何β> ξ, 存在x0 ∈S , 使得x0 < β, 即ξ又是S 的最大下界,则称数ξ为数集S 的下确界, 记作ξ= inf S .上确界与下确界统称为确界.例2 设S = { x |x 为区间(0 , 1 ) 中的有理数} .试按上、下确界的定义验证: sup S = 1 , inf S = 0 .解先验证sup S = 1 :( i) 对一切x∈S , 显然有x≤1 , 即1 是S 的上界.( ii) 对任何α< 1 , 若α≤0 , 则任取x0 ∈S 都有x0 > α; 若α> 0 , 则由有理数集在实数集中的稠密性, 在( α, 1) 中必有有理数x0 , 即存在x0 ∈S , 使得x0 > α.类似地可验证inf S = 0 .读者还可自行验证: 闭区间[0 , 1 ]的上、下确界分别为1 和0 ; 对于数集①[ x] 表示不超过数x 的最大整数, 例如[ 2 .9 ] = 2 , [ - 4 .1 ] = - 5 .②sup 是拉丁文supremum ( 上确界) 一词的简写; 下面的inf 是拉丁文infimum ( 下确界) 一词的简写.E = ( - 1 ) §2 数集·确界原理7nn n = 1 , 2 , , 有 sup E = N + = 1 , 而没有上确界 . 1 2 , inf E = - 1 ; 正整数集 N + 有下确界 inf 注 1 由上 ( 下 ) 确界的定义可见 , 若数集 S 存在上 ( 下 ) 确界 , 则一定是唯一 的 .又若数集 S 存在上、下确界 , 则有 inf S ≤s up S .注 2 从上面一些例子可见 , 数集 S 的确界可能属于 S , 也可能不属于 S . 例 3 设数集 S 有上确界 .证明η = sup S ∈ S !η = max S ① .证 ª ) 设 η= sup S ∈ S , 则对一切 x ∈ S 有 x ≤η, 而 η∈ S , 故 η是数集 S 中最大的数 , 即 η= max S .Ï ) 设 η= max S , 则 η∈ S ; 下面验证 η= sup S:( i ) 对一切 x ∈ S , 有 x ≤η, 即 η是 S 的上界 ;( ii ) 对任何 α< η, 只 须取 x 0 = η∈ S , 则 x 0 > α .从 而满 足 η= sup S 的 定 义 .关于数集确界的存在性 , 我们给出如下确界原理 .定理 1 .1 ( 确界原理 ) 设 S 为非空数集 .若 S 有上界 , 则 S 必有上确界 ; 若 S 有下界 , 则 S 必有下确界 .证 我们只证明关于上确界的结论 , 后一结论可类似地证明 .为叙述的方便起见 , 不妨设 S 含有非负数 .由于 S 有上界 , 故可找到非负整 数 n , 使得1) 对于任何 x ∈ S 有 x < n + 1 ;2) 存在 a 0 ∈ S , 使 a 0 ≥ n .对半开区间 [ n , n + 1) 作 10 等分 , 分点为 n .1 , n .2 ,, n .9 , 则存在 0 , 1 , 2 , , 9 中的一个数 n 1 , 使得1) 对于任何 x ∈ S 有 x < n . n 1 + 1 ; 102) 存在 a 1 ∈ S , 使 a 1 ≥ n . n 1 .再对半开区间 [ n . n 1 , n . n 1 + 1 ) 作 10 等 分 , 则 存在 0 , 1 , 2 , , 9 中的一 个 10数 n 2 , 使得1) 对于任何 x ∈ S 有 x < n . n 1 n 2 + 1 ; 1022) 存在 a 2 ∈ S , 使 a 2 ≥ n . n 1 n 2 .① 记号 max 是 maxim um( 最大 ) 一 词的 简写 , η= max S 表 示数 η是 数集 S 中 最大 的数 .以下 将出 现 的记号 min 是 minimu m( 最小 ) 一 词的简 写 , min S 表示 数集 S 中 最小 的数 .8 第一章实数集与函数继续不断地10 等分在前一步骤中所得到的半开区间, 可知对任何k = 1 , 2 , , 存在0 , 1 , 2 , , 9 中的一个数n k , 使得1) 对于任何x∈S 有x < n . n1 n2 n k + 1; ( 1)10 k2) 存在a k ∈S , 使a k ≥n . n1 n2 n k .将上述步骤无限地进行下去, 得到实数η= n . n1 n2 n k .以下证明η= sup S .为此只需证明:( i) 对一切x∈S 有x≤η; ( ii ) 对任何α< η, 存在a′∈S 使α< a′.倘若结论( i ) 不成立, 即存在x ∈S 使x > η, 则可找到x 的k 位不足近似x k , 使从而得x k > 珔ηk = n . n1 n2 n k +1,10 kx > n . n1 n2 n k +1,10 k但这与不等式(1 ) 相矛盾.于是( i) 得证.现设α< η, 则存在k 使η的k 位不足近似ηk > 珔αk , 即n . n1 n2 n k > 珔αk .根据数η的构造, 存在a′∈S 使a′≥ηk , 从而有a′≥ηk > 珔αk ≥α,即得到α< a′.这说明( ii) 成立.在本书中确界原理是极限理论的基础, 读者应给予充分的重视.例4 设 A 、B为非空数集, 满足: 对一切x∈A 和y∈B 有x ≤y .证明: 数集A 有上确界, 数集 B 有下确界, 且sup A ≤ inf B . ( 2) 证由假设, 数集 B 中任一数y 都是数集 A 的上界, A 中任一数x 都是 B 的下界, 故由确界原理推知数集 A 有上确界, 数集 B 有下确界.现证不等式(2 ) .对任何y∈B , y 是数集A 的一个上界, 而由上确界的定义知, sup A 是数集A 的最小上界, 故有sup A≤y .而此式又表明数sup A 是数集B 的一个下界, 故由下确界定义证得sup A≤inf B .例5 设 A 、B为非空有界数集, S = A ∪ B .证明:( i) sup S = max{sup A , sup B};( ii) inf S = min{inf A , inf B} .证由于S = A ∪B 显然也是非空有界数集, 因此S 的上、下确界都存在.( i) 对任何x∈S , 有x∈A 或x∈Bªx≤sup A 或x≤sup B , 从而有x ≤§2 数集·确界原理9max{sup A , sup B} , 故得sup S≤max{ sup A , sup B} .另一方面, 对任何x∈A , 有x ∈S ªx ≤sup S ªs up A ≤sup S ; 同理又有sup B≤sup S .所以sup S≥max{sup A , sup B} .综上, 即证得sup S = max{sup A , sup B} .( ii) 可类似地证明.若把+ ∞和- ∞补充到实数集中, 并规定任一实数 a 与+ ∞、- ∞的大小关系为: a < + ∞, a > - ∞, - ∞< + ∞, 则确界概念可扩充为:若数集S 无上界, 则定义+ ∞为S 的非正常上确界, 记作sup S = + ∞;若S 无下界, 则定义- ∞为S 的非正常下确界, 记作inf S = - ∞.相应地, 前面定义2 和定义3 中所定义的确界分别称为正常上、下确界.在上述扩充意义下,我们有推广的确界原理任一非空数集必有上、下确界( 正常的或非正常的) .例如, 对于正整数集N+ 有inf N+ = 1 , sup N+ = + ∞; 对于数集S = { y y = 2 - x2 , x ∈R } ( 3) 有inf S = - ∞, sup S = 2 .习题1 . 用区间表示下列不等式的解:( 1) | 1 - x | - x ≥0; ( 2) x + 1x≤6 ;( 3) ( x - a) ( x - b) ( x - c) > 0( a , b , c 为常数, 且 a < b < c) ;( 4) sin x ≥ 2 .22 . 设S 为非空数集.试对下列概念给出定义:( 1) S 无上界; ( 2) S 无界.3 . 试证明由(3 )式所确定的数集S 有上界而无下界.4 . 求下列数集的上、下确界, 并依定义加以验证:( 1) S = { x | x2 < 2} ; (2 ) S = { x | x = n !, n∈ N+ } ;( 3) S = { x | x 为(0 , 1 )内的无理数} ;( 4) S = { x | x = 1 - 1, n∈N+ } .2 n5 . 设S 为非空有下界数集.证明:inf S = ξ∈ S!ξ = min S .6 . 设S 为非空数集, 定义S - = { x | - x ∈S} .证明:( 1) inf S - = - sup S; ( 2) sup S - = - inf S .7 . 设A 、B皆为非空有界数集, 定义数集A +B = { z | z = x + y, x ∈ A , y ∈ B} .10 第一章实数集与函数证明: (1) sup( A + B) = sup A + sup B; ( 2) inf( A + B) = inf A + inf B .8 . 设a > 0 , a≠1 , x 为有理数.证明sup{ a r | r 为有理数, r < x} , 当a > 1 ,a x =inf{ a r | r 为有理数, r < x} , 当a < 1 .§3 函数概念关于函数概念, 在中学数学中我们已有了初步的了解, 本节将对此作进一步的讨论.一函数的定义定义1 给定两个实数集 D 和M , 若有对应法则 f , 使对D 内每一个数x , 都有唯一的一个数y∈M 与它相对应, 则称 f 是定义在数集D 上的函数, 记作f : D → M ,( 1)x 組y .数集 D 称为函数 f 的定义域, x 所对应的数y , 称为f 在点x 的函数值, 常记为f ( x) .全体函数值的集合f ( D) = { y y = f ( x ) , x ∈ D} ( ÌM)称为函数f 的值域.(1 ) 中第一式“D→M”表示按法则 f 建立数集D到M 的函数关系; 第二式“x 組y”表示这两个数集中元素之间的对应关系, 也可记为“x 組f ( x) ”.习惯上, 我们称此函数关系中的x 为自变量, y 为因变量.关于函数的定义, 我们作如下几点说明:1 . 定义1 中的实数集M 常以R 来代替, 于是定义域 D 和对应法则 f 就成为确定函数的两个主要因素.所以, 我们也常用y = f ( x ) , x ∈D表示一个函数.由此, 我们说某两个函数相同, 是指它们有相同的定义域和对应法则.如果两个函数对应法则相同而定义域不同, 那么这两个函数仍是不相同的.例如 f ( x ) = 1 , x ∈R 和g( x) = 1 , x∈R \ {0 } 是不相同的两个函数.另一方面, 两个相同的函数, 其对应法则的表达形式可能不同, 例如φ( x) = x , x ∈R 和ψ( x) = x2 , x ∈R .2 . 我们在中学数学中已经知道,表示函数的主要方法是公式法, 即用数学运算式子来表示函数.这时, 函数的定义域常取使该运算式子有意义的自变量值的全体,通常称为存在域.在这种情况下,函数的定义域( 即存在域) D 可省略不写,而只用对应法则 f 来表示一个函数,此时可简单地说“函数y = f ( x)”或“函数f”.§3 函 数 概 念113 . 函数 f 给出了 x 轴上的点集 D 到 y 轴上 点集 M 之间 的单值 对应 , 也 称 为映射 .对于 a ∈ D, f ( a) 称为映射 f 下 a 的象 , a 则称为 f ( a) 的原象 .4 . 在函数定义中 , 对每一个 x ∈ D , 只能有唯一的 一个 y 值 与它对 应 , 这 样 定义的函数称为单值函数 .若同 一个 x 值 可以 对应 多于 一 个的 y 值 , 则 称这 种 函数为多值函数 .在本书范围内 , 我们只讨论单值函数 .二 函数的表示法在中学课程里 , 我们已经知道函数 的表 示法主 要有 三种 , 即 解析法 ( 或称 公 式法 ) 、列表法和图象法 . 有些函数在其定义域的不同部 分用 不同的 公式 表达 , 这 类函数 通常 称为 分 段函数 .例如 , 函数sgn x =1 , x > 0 , 0 ,x = 0 ,- 1 , x < 0是分段函数 , 称为符号函数 , 其图象如图 1 - 1 所示 . 又如函数 f ( x ) = | x | 也可 用 如下 的 分 段函 数 形式 来表示 :图 1 - 1f ( x) =x ,x ≥ 0 ,- x , x < 0 .它还可表示为 f ( x) = x sgn x .函数 y = f ( x ) , x ∈ D 又可用如下有序数对的集合 :G = { ( x , y) y = f ( x ) , x ∈ D} 来表示 .在坐标平面上 , 集合 G 的每一个元素 ( x , y ) 表 示平面上 的一个点 , 因 而 集合 G 在坐标平面 上 描绘 出 这 个函 数 的图 象 .这 就 是用 图 象法 表 示 函数 的 依 据 .有些函数难以用解析法、列表法 或图 象法来 表示 , 只 能用 语言来 描述 .如 定 义在 R 上的狄利克雷 ( Dirichlet ) 函数1 , 当 x 为有理数 ,D( x) =0 , 当 x 为无理数 和定义在 [0 , 1 ] 上的黎曼 ( Riemann ) 函数1 , 当 x = p ( p , q ∈ N + , p为既约真分数 ) ,R ( x) =q qq0 ,当 x = 0 , 1 和 (0 , 1 ) 内的无理数 .三 函数的四则运算给定两个函数 f , x ∈ D 1 和 g , x ∈ D 2 , 记 D = D 1 ∩ D 2 , 并设 D ≠¹?.我们定* 2 12第一章 实数集与函数义 f 与 g 在 D 上的和、差、积运算如下 :F( x ) = f ( x) + g ( x ) , x ∈ D,G( x) = f ( x ) - g( x) , x ∈ D,H( x ) = f ( x) g( x) , x ∈ D .若在 D 中剔除使 g( x) = 0 的 x 值 , 即令D = D 1 ∩ { x g( x) ≠ 0 , x ∈ D 2 } ≠ ¹?,可在 D *上定义 f 与 g 的商的运算如下 :L( x ) = f ( x) , x ∈ D *.g( x )注 若 D = D 1 ∩ D 2 = ¹?, 则 f 与 g 不能进行四则运算 .例如 , 设f ( x) = 1 - x 2, x ∈ D 1 = { x x ≤ 1} , g( x) =x 2- 4 , x ∈ D = { xx ≥ 2 } ,由于 D 1 ∩ D 2 = ¹?, 所以表达式f ( x ) + g( x) =1 - x 2+x 2- 4是没有意义的 .以后为叙述方便 , 函数 f 与 g 的和、差、积、商常分别写作f +g , f - g, fg , f.g四 复合函数设有两函数y = f ( u) , u ∈ D, u = g( x ) , x ∈ E .( 2)记 E * = { x | g( x ) ∈ D } ∩ E .若 E *≠¹?, 则对每一个 x ∈ E *, 可通过函数 g 对 应 D 内唯一的一个值 u , 而 u 又通过函数 f 对应唯一的一个值 y .这就确定了一 个定义在 E *上的函数 , 它以 x 为自变量 , y 为因变量 , 记作y = f ( g( x ) ) , x ∈ E *或 y = ( f g) ( x) , x ∈ E *, 称为函数 f 和 g 的 复合函 数 .并称 f 为 外函数 , g 为内函 数 , ( 2) 式中 的 u 为 中 间变量 .函数 f 和 g 的复合运算也可简单地写作 f g . 例 1 函数 y = f ( u ) = u , u ∈ D = [0 , + ∞ ) 与 函数 u = g( x ) = 1 - x 2, x ∈ E = R 的复合函数为y = f ( g( x ) ) =1 - x2或 ( f g) ( x ) =1 - x 2,其定义域 E *= [ - 1 , 1] Ì E .复合函数也可由多个函数相继复 合而 成 .例如 , 由三 个函 数 y = sin u , u =§3 函数概念13v 与v = 1 - x2 ( 它们的定义域取为各自的存在域)相继复合而得的复合函数为y = sin 1 - x2 , x ∈[ - 1 , 1] .注当且仅当 E * ≠¹?( 即D∩g ( E) ≠¹?) 时, 函数 f 与g 才能进行复合. 例如, 以y = f ( u) = arc sin u , u∈D = [ - 1 , 1 ] 为外函数, u = g( x ) = 2 + x2 , x ∈E = R 为内函数, 就不能进行复合.这是因为外函数的定义域 D = [ - 1 , 1 ] 与内函数的值域g( E ) = [ 2 , + ∞) 不相交.五反函数函数y = f ( x ) 的自变量x 与因变量y 的关系往往是相对的.有时我们不仅要研究y 随x 而变化的状况, 也要研究x 随y 而变化的状况.对此, 我们引入反函数概念.设函数y = f ( x ) , x ∈ D ( 3) 满足: 对于值域 f ( D) 中的每一个值y, D 中有且只有一个值x 使得f ( x) = y,则按此对应法则得到一个定义在 f ( D) 上的函数, 称这个函数为 f 的反函数, 记作f - 1 : f ( D) → D,y 組x或x = f - 1 ( y) , y ∈ f ( D) . ( 4) 注1 函数 f 有反函数, 意味着 f 是D 与 f ( D) 之间的一个一一映射.我们称 f - 1 为映射 f 的逆映射, 它把集合 f ( D) 映射到集合D, 即把 f ( D) 中的每一个值 f ( a) 对应到 D 中唯一的一个值 a .这时称a 为逆映射 f - 1 下f ( a) 的象,而f ( a ) 则是 a 在逆映射f - 1 下的原象.从上述讨论还可看到, 函数 f 也是函数 f - 1 的反函数.或者说, f 与f - 1 互为反函数.并有f - 1 ( f ( x ) ) ≡ x , x ∈ D ,f ( f - 1 ( y) ) ≡ y , y ∈ f ( D) .注2 在反函数 f - 1 的表示式( 4) 中, 是以y 为自变量, x 为因变量.若按习惯仍用x 作为自变量的记号, y 作为因变量的记号, 则函数( 3 ) 的反函数( 4 ) 可改写为y = f - 1 ( x ) , x ∈ f ( D) . ( 5) 例如, 按习惯记法, 函数y = ax + b ( a≠0 ) , y = a x ( a > 0 , a ≠1 ) 与y = sin x ,14第一章 实数集与函数x ∈ - π , π的反函数分别是2 2x - b a , y = log a x 与 y = arcsin x . 应该注意 , 尽管反函数 f - 1的表示式 (4 ) 与 ( 5) 的形式不同 , 但它 们仍表示 同 一个函数 , 因 为它 们的定 义域 都是 f ( D) , 对应 法则 都是 f - 1, 只是 所用 变量 的 记号不同而已 .六 初等函数在中学数学中 , 读者已经熟悉基本初等函数有以下六类 : 常量函数 y = c ( c 是常数 ) ; 幂函数 y = x α(α为实数 ) ; 指数函数 y = a x( a > 0 , a ≠ 1) ; 对数函数 y = log a x ( a > 0 , a ≠1 ) ;三角函数 y = sin x( 正弦函数 ) , y = cos x ( 余弦函数 ) ,y = tan x( 正切函数 ) , y = cot x( 余切函数 ) ; 反三角函数y = arcsin x( 反正弦函数 ) , y = arccos x ( 反余弦函数 ) ,y = arctan x ( 反正切函数 ) , y = arccot x( 反余切函数 ) .这里我们要指 出 , 幂函 数 y = x α和指数 函数 y = a x都涉 及乘幂 , 而 在中 学 数学课程中只给出了有理指数乘幂的定 义 .下面 我们借 助确 界来 定义无 理指 数 幂 , 使它与有理指数幂一起构成实指数乘幂 , 并保持有理指数幂的基本性质 .定义 2 给定实数 a > 0 , a ≠1 .设 x 为无理数 , 我们规定a x= sup { arr 为有理数 } , 当 a > 1 时 ,r < xinf { arr 为有理数 } , 当 0 < a < 1 时 .r < x( 6)( 7)注 1 对任一无理数 x , 必有有理数 r 0 , 使 x < r 0 , 则当有理数 r < x 时有 r < r 0 , 从而由有理数乘幂的性质 , 当 a > 1 时有 a r< ar.这表明非空数集{ a r r < x , r 为有理数 }有一个上界 a r 0 .由确界原理 , 该数集有上确界 , 所以 ( 6) 式右边是一个确定的数 . 同理 , 当 0 < a < 1 时 (7 ) 式右边也是一个定数 .注 2 由§2 习题 8 可知 , 当 x 为有理数时 , 同样可 按 ( 6 ) 式和 (7 ) 式来表 示 a x, 而且与我们以前所熟知的有理数乘幂的概念是 一致的 .这样 , 无论 x 是有 理 数还是无理数 , a x都可用 (6 ) 式和 ( 7) 式来统一表示 .定义 3 由基本初等函 数 经过 有限 次四 则运 算 与复 合运 算所 得到 的 函数 ,y =§3 函数概念15统称为初等函数.不是初等函数的函数, 称为非初等函数.如在本节第二段中给出的狄利克雷函数和黎曼函数, 都是非初等函数.习题1 . 试作下列函数的图象:( 1) y = x2 + 1 ; (2) y = ( x + 1) 2 ;( 3) y = 1 - ( x + 1 )2 ; (4) y = sgn( sin x) ;3 x , | x | > 1 ,( 5) y = x3 , | x | < 1 ,3 , | x | = 1 .2 . 试比较函数y = a x 与y = log a x 分别当 a = 2 和 a = 1 时2的图象.3 . 根据图1 - 2 写出定义在[ 0 , 1 ] 上的分段函数f1 ( x ) 和f2 ( x )的解析表示式.4 . 确定下列初等函数的存在域:( 1) y = sin( sin x) ; ( 2) y = lg( lg x) ;( 3) y = arcsin lg x105 . 设函数f ( x) = ; ( 4) y = lg arcsinx.102 + x , x ≤0 ,2 x , x > 0 .图 1 - 2求: (1 ) f ( - 3) , f (0 ) , f ( 1) ; (2 ) f (Δx) - f ( 0) , f ( - Δx) - f ( 0) (Δx > 0) .6 . 设函数 f ( x ) = 1, 求1 + xf (2 + x) , f ( 2 x) , f ( x2 ) , f ( f ( x) ) , f 1.f ( x )7 . 试问下列函数是由哪些基本初等函数复合而成:( 1) y = (1 + x) 20 ; (2 ) y = ( arcsin x2 ) 2 ;2 ( 3) y = lg(1 + 1 + x2 ) ; (4 ) y = 2sin x .8 . 在什么条件下,函数的反函数就是它本身? y =ax + bcx + d9 . 试作函数y = arcsin (sin x )的图象.10 . 试问下列等式是否成立:16 第一章实数集与函数( 1) tan( arctan x) = x , x∈R ;( 2) arctan( tan x) = x , x≠kπ+ 11 . 试问y = | x | 是初等函数吗? π2, k = 0 , ±1 ,±2 , .12 . 证明关于函数y = [ x ]的如下不等式:( 1) 当x > 0 时, 1 - x < x 1x≤1;( 2) 当x < 0 时, 1≤x 1x< 1 - x .§4 具有某些特性的函数在本节中, 我们将介绍以后常用到的几类具有某些特性的函数.一有界函数定义 1 设f 为定义在 D 上的函数.若存在数M( L) , 使得对每一个x∈D 有f ( x ) ≤ M ( f ( x) ≥ L) ,则称 f 为 D 上的有上( 下) 界函数, M( L) 称为 f 在D 上的一个上( 下) 界.根据定义, f 在D 上有上( 下) 界, 意味着值域 f ( D) 是一个有上( 下) 界的数集.又若M( L) 为 f 在D 上的上( 下) 界, 则任何大于( 小于) M ( L) 的数也是 f 在D 上的上( 下) 界.定义2 设f 为定义在 D 上的函数.若存在正数M , 使得对每一个x ∈D 有则称f 为D 上的有界函数.f ( x ) ≤M , ( 1)根据定义, f 在D 上有界, 意味着值域 f ( D) 是一个有界集.又按定义不难验证: f 在D 上有界的充要条件是f 在D 上既有上界又有下界.( 1) 式的几何意义是: 若 f 为D 上的有界函数, 则 f 的图象完全落在直线y = M 与y = - M 之间.例如, 正弦函数sin x 和余弦函数cos x 为R 上的有界函数, 因为对每一个x∈R 都有| sin x | ≤1 和| cos x | ≤1 .关于函数 f 在数集D上无上界、无下界或无界的定义, 可按上述相应定义的否定说法来叙述.例如, 设 f 为定义在D 上的函数, 若对任何M( 无论M 多大) , 都存在x0 ∈D , 使得 f ( x0 ) > M , 则称 f 为D 上的无上界函数.作为练习, 读者可自行写出无下界函数与无界函数的定义.§4 具有某些特性的函数 17例 1 证明 f ( x) = 1为 (0 , 1 ] 上的无上界函数 .x证 对任何正数 M , 取 ( 0 , 1] 上一点 x 0 = 1, 则有M + 1f ( x 0 ) = 1x 0= M + 1 > M .故按上述定义 , f 为 ( 0 , 1] 上的无上界函数 .前面已经指出 , f 在 其 定 义域 D 上 有上 界 , 是 指 值域 f ( D) 为 有 上 界 的 数 集 .于是 由 确界 原 理 , 数 集 f ( D) 有上 确 界 .通 常 , 我 们 把 f ( D) 的 上 确 界 记 为 sup f ( x ) , 并称之为 f 在 D 上的上确界 .类似地 , 若 f 在其定义域 D 上有下界 , 则x ∈ Df 在 D 上的下确界记为 inf f ( x) .x ∈ D例 2 设 f , g 为 D 上的有界函数 .证明 : (i ) ) inf f ( x) + inf g( x) ≤ inf { f ( x) + g( x) } ;x ∈ Dx ∈ Dx ∈ D(i )) sup { f ( x) + g( x) } ≤sup f ( x ) + sup g( x ) .x ∈ D证 ( i ) 对任何 x ∈ D 有x ∈ Dx ∈ Dinf f ( x ) ≤ f ( x) , inf g( x ) ≤ g( x) ª inf f ( x) + inf g( x ) ≤ f ( x) + g( x) .x ∈ Dx ∈ Dx ∈ Dx ∈ D上式表明 , 数 inf f ( x ) + inf g( x ) 是函数 f + g 在 D 上的一个下界 , 从而x ∈ Dx ∈ Dinf f ( x) + inf g( x) ≤ inf { f ( x ) + g( x) } .x ∈ D( ii ) 可类似地证明 ( 略 ) .x ∈ Dx ∈ D注 例 2 中的两个不等式 , 其严格的不等号有可能成立 .例如 , 设f ( x ) = x , g( x ) = - x , x ∈ [ - 1 , 1 ] ,则有 inf | x | ≤ 1f ( x ) = inf | x | ≤ 1g( x) = - 1 , sup | x | ≤ 1f ( x) = sup | x | ≤ 1g( x ) = 1 , 而inf | x| ≤ 1{ f ( x) + g ( x ) } = sup { f ( x ) + g( x) } = 0 .| x | ≤ 1二 单调函数定义 3 设 f 为定义在 D 上的函数 .若对任何 x 1 , x 2 ∈ D , 当 x 1 < x 2 时 , 总 有( i ) f ( x 1 ) ≤ f ( x 2 ) , 则称 f 为 D 上的增函数 , 特别当成立严格不等式 f ( x 1 ) < f ( x 2 ) 时 , 称 f 为 D 上的严格增函数 ;(ii ) f ( x 1 ) ≥ f ( x 2 ) , 则 称 f 为 D 上 的 减 函 数 , 特 别 当 成 立 严 格 不 等 式 f ( x 1 ) > f ( x 2 ) 时 , 称 f 为 D 上的严格减函数 ;增函数和减函数统称为单调函 数 , 严格 增函 数和严 格减 函数统 称为 严格 单 调函数 .例 3 函数 y = x 3在 R 上是 严格 增的 .因为 对任 何 x 1 , x 2 ∈ R , 当 x 1 < x 21 2- 1 - 1 - 11 2 1 2 1 1 218第一章 实数集与函数时总有x33x 123 2即 x 3< x 3.2- x 1 = ( x 2 - x 1 ) x 2 + 2+ 4x 1 > 0 ,例 4 函数 y = [ x ] 在 R 上是增的 .因为对任何 x 1 , x 2 ∈R , 当 x 1 < x 2 时 显然有 [ x 1 ] ≤ [ x 2 ] .但 此 函 数 在 R 上 不 是 严 格 增 的 , 若 取 x 1 = 0 , x 2 = 12 , 则 有[ x 1 ] = [ x 2 ] = 0 , 即定义中所要求的严格不等式不成立 .此函数的图象如图 1 - 3 所示 .严格单调 函 数 的 图 象与 任 一 平 行 于 x 轴 的 直 线至多有一个交 点 , 这一 特性 保 证了 它 必定 具 有反 函数 .定理 1 .2 设 y = f ( x ) , x ∈ D 为严 格增 ( 减 ) 函数 , 则 f 必有反函数 f - 1, 且 f - 1在其定义域 f ( D) 上也是严格增 ( 减 ) 函数 .证 设 f 在 D 上 严格 增 .对任 一 y ∈ f ( D) , 有 x ∈ D 使 f ( x) = y .下面证明这样的 x 只能有一个 .图 1 - 3事实上 , 对于 D 内任一 x 1 ≠ x , 由 f 在 D 上的严格增性 , 当 x 1 < x 时 f ( x 1 ) < y, 当 x 1 > x 时有 f ( x 1 ) > y, 总之 f ( x 1 ) ≠ y .这就说 明 , 对 每一个 y ∈ f ( D) , 都 只 存在唯 一的 一个 x ∈ D, 使 得 f ( x ) = y , 从而 函 数 f 存在 反函 数 x = f - 1( y) , y ∈ f ( D) .现证 f - 1也是 严格 增的 .任取 y , y ∈ f ( D) , y < y .设 x = f- 1( y ) , x = f - 1 ( y 2 ) , 则 y 1 = f ( x 1 ) , y 2 = f ( x 2 ) .由 y 1 < y 2 及 f 的严 格增 性 , 显然 有 x 1< x 2 , 即 f ( y 1 ) < f ( y 2 ) .所以反函数 f 是严格增的 .例 5 函数 y = x 2在 ( - ∞ , 0 ) 上是 严格减 的 , 有反 函数 ( 按习惯 记法 ) y = - x , x ∈ ( 0 , + ∞ ) ; y = x 2在 [0 , + ∞ ) 上是 严格 增的 , 有 反 函数 y = x , x ∈ [0 , + ∞ ) 。

数学分析课件华东师大版

数学分析课件华东师大版
202X-01-04
数学分析课件华东师大版
汇报人:
目录
• 引言 • 数学分析基础 • 导数与微分 • 积分学 • 无穷级数 • 多元函数微积分
01
引言
课程简介
01
数学分析是数学专业的一门基础 课程,主要研究实数、函数、极 限、连续性、可微性和积分等概 念及其性质。
02
通过学习数学分析,学生可以掌 握数学的基本原理和方法,培养 逻辑思维能力、抽象思维能力和 解决问题的能力。
总结词
理解无穷级数的定义和性质是掌握无穷级数的基础。
详细描述
无穷级数是数学分析中的一个重要概念,它是由无穷多个数按照一定的规则排列组成的数列。无穷级数具有一些 重要的性质,如线性性质、可加性、可乘性和收敛性等。这些性质在无穷级数的运算和证明中有着广泛的应用。
无穷级数的收敛性判别法
总结词
掌握无穷级数的收敛性判别法是判断无穷级数收敛性的关键。
定积分的计算
牛顿-莱布尼兹公式
分部积分法
牛顿-莱布尼兹公式是计算定积分的常 用方法,它通过求不定积分的原函数 (即不定积分),然后利用原函数计 算定积分。
分部积分法是另一种计算定积分的方 法,通过将两个函数的乘积进行求导 ,将定积分转化为容易计算的积分。
换元法
换元法是一种常用的计算定积分的方 法,通过改变定积分的积分变量或积 分区间,将复杂的积分转化为容易计 算的积分。
极限的性质
极限具有唯一性、局部有界 性、局部保序性、迫近性等 性质。
连续函数的性质
连续函数具有局部有界性、 局部保序性、迫近性等性质 。
偏导数与全微分
偏导数的定义
如果一个函数在某个点的某个 自变量的偏导数存在,则称该 函数在该点关于该自变量可偏

数学分析教案(华东师大版)第一章实数集与函数

数学分析教案(华东师大版)第一章实数集与函数

第一章实数集与函数导言数学分析课程简介( 2 学时 )一、数学分析(mathematical analysis)简介:1.背景: 从切线、面积、计算32sin、实数定义等问题引入.2.极限 ( limit ) ——变量数学的基本运算:3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算,利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究一些非初等函数. 数学分析基本上是连续函数的微积分理论.微积运算是高等数学的基本运算.数学分析与微积分(calculus)的区别.二、数学分析的形成过程:1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪, Archimedes就有了积分思想.2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累时期.3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期.4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时期:三、数学分析课的特点:逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的), 后面的学习就会容易一些; 只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务.有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记,但要注意以听为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯.四、课堂讲授方法:1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材:[1]华东师范大学数学系编,数学分析,高等教育出版社,2001;[2]刘玉琏傅沛仁编,数学分析讲义,高等教育出版社,1992;[3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003;[4]马振民,数学分析的方法与技巧选讲,兰州大学出版社,1999;[5]林源渠,方企勤数学分析解题指南,北京大学出版社,2003.2.本课程按[1]的逻辑顺序并在其中取材.本课程为适应教学改革的要求,只介绍数学分析最基本的内容,并加强实践环节,注重学生的创新能力的培养。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章实数集与函数导言数学分析课程简介( 2 学时 )一、数学分析(mathematical analysis)简介:1.背景: 从切线、面积、计算sin、实数定义等问题引入.322.极限 ( limit ) ——变量数学的基本运算:3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算,利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究一些非初等函数. 数学分析基本上是连续函数的微积分理论.微积运算是高等数学的基本运算.数学分析与微积分(calculus)的区别.二、数学分析的形成过程:1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪, Archimedes就有了积分思想.2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累时期.3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期.4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时期:三、数学分析课的特点:逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的), 后面的学习就会容易一些; 只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务.有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯.四、课堂讲授方法:1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材:[1]华东师范大学数学系编,数学分析,高等教育出版社,2001;[2]刘玉琏傅沛仁编,数学分析讲义,高等教育出版社,1992;[3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003;[4]马振民,数学分析的方法与技巧选讲,兰州大学出版社,1999;[5]林源渠,方企勤数学分析解题指南,北京大学出版社,2003.2.本课程按[1]的逻辑顺序并在其中取材.本课程为适应教学改革的要求,只介绍数学分析最基本的内容,并加强实践环节,注重学生的创新能力的培养。

带星号的内容略讲或删去,相应的内容作为选修课将在数学分析选讲课开设.3.内容多,课时紧: 大学课堂教学与中学不同的是, 这里每次课介绍的内容很多, 因此, 内容重复的次数少, 讲课只注重思想性与基本思路, 具体内容或推导, 特别是同类型或较简的推理论证及推导计算, 可能讲得很简, 留给课后的学习任务一般很重.4.讲解的重点: 概念的意义与理解,几何直观,理论的体系,定理的意义、条件、结论.定理证明的分析与思路,具有代表性的证明方法,解题的方法与技巧. 某些精细概念之间的本质差别.五.要求、辅导及考试:1.学习方法:尽快适应大学的学习方法, 尽快进入角色. 课堂上以听为主, 但要做课堂笔记.课后一定要认真复习消化, 补充笔记.一般课堂教学与课外复习的时间比例应为: 3。

对将来从事数学教学工作的师范大学本科生来说, 课堂听讲的内容应该更为丰富: 要认真评价教师的课堂教学, 把教师在课堂上的成功与失败变为自己的经验. 这对未来的教学工作是很有用的.2.作业:作业以练习题中划线以上的部分习题为主要内容. 大体上每周收一次作业, 一次收清. 每次重点检查作业总数的三分之一. 作业的收交和完成情况有一个较详细的登记, 缺交作业将直接影响学期总评成绩.作业要按数学排版格式书写工整.3. 辅导: 大体每周一次, 第一学期要求辅导时不缺席.4. 考试: 按教学大纲的要求, 只以最基本的内容进行考试, 大体上考课堂教学和所布置作业的内容, 包括[1]中的典型例题. 考试题为标准化试题,理论证明题逐渐增多.第一章实数集与函数教学目的:1.使学生掌握实数的概念,建立起实数集确界的清晰概念;2.使学生深刻理解函数的概念,熟悉与函数性态有关的一些常见术语。

要求学生:理解并熟练运用实数的有序性、稠密性与封闭性;掌握邻域的概念;牢记并熟练运用实数绝对值的有关性质以及几个常见的不等式;理解实数确界的定义及确界原理,并在有关命题证明中正确地加以应用;深刻理解函数的定义以及复合函数、反函数、有界函数、单调函数和初等函数的定义,熟悉函数的各种表示方法;牢记基本初等函数的定义、性质及其图象,会求函数的定义域,会分析函数的复合关系。

教学重点:函数、确界的概念及其有关性质。

教学时数:10学时§ 1 实数(2学时)教学目的:使学生掌握实数的基本性质.教学重点:1. 理解并熟练运用实数的有序性、稠密性和封闭性;2. 牢记并熟练运用实数绝对值的有关性质以及几个常见的不等式.(它们是分析论证的重要工具)教学难点:实数集的概念及其应用.教学方法:讲授.(部分内容自学)一.复习引新:1.实数集:回顾中学中关于实数集的定义.2.四则运算封闭性:3.三歧性( 即有序性 ):4.Rrchimedes性:5.稠密性:有理数和无理数的稠密性, 给出稠密性的定义.6.实数集的几何表示───数轴:7.两实数相等的充要条件:8.区间和邻域:二. 讲授新课:(一). 几个重要不等式:1. 绝对值不等式: 定义 [1]P3 的六个不等式.2. 其他不等式:⑴⑵均值不等式: 对记(算术平均值)(几何平均值)(调和平均值) 有平均值不等式:等号当且仅当时成立.⑶ Bernoulli 不等式: (在中学已用数学归纳法证明过)有不等式当且, 且时, 有严格不等式证:由且⑷利用二项展开式得到的不等式: 对由二项展开式有上式右端任何一项.作业:P4.1.(1)2.(2)、(3)3§ 2 数集•确界原理(4时)教学目的:使学生掌握确界原理,建立起实数确界的清晰概念。

教学要求:1. 掌握邻域的概念;2. 理解实数确界的定义及确界原理,并在有关命题的证明中正确地加以运用。

教学重点:确界的概念及其有关性质(确界原理)。

教学难点:确界的定义及其应用。

教学方法:讲授为主。

一、区间与邻域二、有界数集与确界原理:1.有界数集: 定义(上、下有界, 有界),闭区间、为有限数)、邻域等都是有界数集,集合也是有界数集.无界数集: 定义, 等都是无界数集,集合也是无界数集.2.确界:给出直观和刻画两种定义.例1⑴则⑵则例2 非空有界数集的上(或下)确界是唯一的.例3 设和是非空数集,且有则有.例4 设和是非空数集. 若对和都有则有证是的上界, 是的下界,例5和为非空数集,试证明:证有或由和分别是和的下界,有或即是数集的下界,又的下界就是的下界,是的下界, 是的下界, 同理有于是有.综上,有.3.数集与确界的关系: 确界不一定属于原集合. 以例1⑵为例做解释.4.确界与最值的关系: 设为数集.⑴的最值必属于, 但确界未必,确界是一种临界点.⑵非空有界数集必有确界(见下面的确界原理), 但未必有最值.⑶若存在, 必有对下确界有类似的结论.三、确界原理:Th1.1 (确界原理)设S为非空数集。

若S有上界,则S必有上确界;若S有下界,则S必有下确界。

作业:P9:5;6;8§ 3 函数概念( 2学时 )教学目的:使学生深刻理解函数概念。

教学要求:1. 深刻理解函数的定义以及复合函数、反函数和初等函数的定义,熟悉函数的各种表示方法;2. 牢记基本初等函数的定义、性质及其图象。

会求初等函数的存在域,会分析初等函数的复合关系。

教学重点:函数的概念。

教学难点:初等函数复合关系的分析。

一、函数:1. 函数: [1]P10—11的四点说明.2. 定义域: 定义域和存在域.3. 函数的表示法:4. 反函数:一一对应,反函数存在定理.5. 函数的代数运算:二、分段函数:以函数和为例介绍概念.例1去掉绝对值符号.例2求例3设求 (答案为8)三、函数的复合: 例4求并求定义域.例5⑴⑵则A. B. C. D.[4]P407 E62.四、初等函数:1.基本初等函数:2.初等函数:3.初等函数的几个特例: 设函数和都是初等函数, 则⑴是初等函数, 因为⑵和都是初等函数,因为 ,.⑶幂指函数是初等函数,因为作业:P153;4.(2)(3);5. (2);7: (3);11§4 具有某些特性的函数( 2学时 )教学目的:熟悉与初等函数性态有关的一些常见术语.教学目的:深刻理解有界函数、单调函数的定义;理解奇偶函数、周期函数的定义;会求一些简单周期函数的周期。

教学重点:函数的有界性、单调性。

教学难点:周期函数周期的计算、验证。

一、有界函数:有界函数概念.例6验证函数在内有界.解法一由当时,有, 对总有即在内有界.解法二令关于的二次方程有实数根. 解法三令对应于是二、单调函数三、奇函数和偶函数四、周期函数第二章数列极限教学目的:1.使学生建立起数列极限的准确概念,熟练收敛数列的性质;2.使学生正确理解数列收敛性的判别法以及求收敛数列极限的常用方法,会用数列极限的定义证明数列极限等有关命题。

要求学生:逐步建立起数列极限的概念.深刻理解数列发散、单调、有界和无穷小数列等有关概念.会应用数列极限的定义证明有关命题,并能运用语言正确表述数列不以某定数为极限等相应陈述;理解并能证明收敛数列、极限唯一性、单调性、保号性及不等式性质;掌握并会证明收敛数列的四则运算定理、迫敛性定理及单调有界定理,会用这些定理求某些收敛数列的极限;初步理解柯西准则在极限理论中的重要意义,并逐步学会应用柯西准则判定某些数列的敛散性;教学重点、难点:本章重点是数列极限的概念;难点则是数列极限的定义及其应用.教学时数:14学时§ 1 数列极限的定义教学目的:使学生建立起数列极限的准确概念;会用数列极限的定义证明数列极限等有关命题。

ε-定义及其应用。

教学重点、难点:数列极限的概念,数列极限的N教学时数:4学时一、引入新课:以齐诺悖论和有关数列引入——二、讲授新课:(一)数列:1.数列定义——整标函数.数列给出方法: 通项,递推公式.数列的几何意义.2.特殊数列: 常数列,有界数列,单调数列和往后单调数列.(二)数列极限: 以为例.定义( 的“”定义 )定义( 数列收敛的“”定义 )注:1.关于:的正值性, 任意性与确定性,以小为贵; 2.关于:的存在性与非唯一性,对只要求存在,不在乎大小.3.的几何意义.(三)用定义验证数列极限:讲清思路与方法.例1例2例3例4证注意到对任何正整数时有就有于是,对取例5证法一令有用Bernoulli不等式,有或证法二(用均值不等式)例6证时,例7设证明(四)收敛的否定:定义( 的“”定义 ).定义( 数列发散的“”定义 ).例8 验证(五)数列极限的记註:1.满足条件“”的数列2.改变或去掉数列的有限项, 不影响数列的收敛性和极限.重排不改变数列敛散性:3.数列极限的等价定义:对任有理数对任正整数(六)无穷小数列: 定义.Th2.1 ( 数列极限与无穷小数列的关系 ).§ 2 收敛数列的性质(4学时)教学目的:熟悉收敛数列的性质;掌握求数列极限的常用方法。

相关文档
最新文档