华东师范大学2004数学分析试题

合集下载

华东师范大学《数学分析》历年考研真题(1997年-2010年)

华东师范大学《数学分析》历年考研真题(1997年-2010年)

华东师范大学数学分析历年考研真题(1997年-2010年)华东师范大学1997年攻读硕士学位研究生入学试题一(12分)设f(x)是区间I 上的连续函数。

证明:若f(x)为一一映射,则f(x)在区间I 上严格单调。

二(12分)设1,()0x D x x ⎧=⎨⎩为有理数,为无理数证明:若f(x), D(x)f(x) 在点x=0处都可导,且f(0)=0,则'(0)0f =三(16分)考察函数f(x)=xlnx 的凸性,并由此证明不等式: 2()(0,0)a b a ba b ab a b +≥>>四(16分)设级数1n a∞=∑收敛,试就1n n d ∞=∑为正项级数和一般项级数两种情况分别证明1nn a∞=∑五(20分)设方程(,)0F x y =满足隐函数定理条件,并由此确定了隐函数y=f(x)。

又设(,)Fx y 具有连续的二阶偏导数。

(1) 求''()f x(2)若0000(,)0,()F x y y f x ==为f(x)的一个极值,试证明:当00(,)y F x y 与00(,)xx F x y 同号时,0()f x 为极大值; 当00(,)y F x y 与00(,)xx F x y 异号时,0()f x 为极小值。

(3)对方程2227xxy y ++=,在隐函数形式下(不解出y )求y=f(x)的极值,并用(2)的结论判别极大或极小。

六(12分)改变累次积分4204842(4)x x xI dx y dy --=-⎰⎰的积分次序,并求其值。

七(12分)计算曲面积分222(cos cos cos )sI x y z ds αβγ=++⎰⎰其中s 为锥面z =上介于0z h ≤≤的一块,{}c o s,c o s ,c o s αβγ为s 的下侧法向的方向余弦。

华东师范大学1998年攻读硕士学位研究生入学试题一. 简答题(20分) (1) 用定义验证:22323lim 212n n n n →∞+=++;(2) '2cos ,0(),()ln(1),0x x f x f x x x <⎧=⎨+≥⎩求; (3)计算3.二(12分)设f(x)有连续的二阶导函数,且''0()2,[()()]sin 5,f f x f x xdx ππ=+=⎰求f(0).三(20分)(1)已知1n n a ∞=∑为发散的一般项级数,试证明11(1)n n a n∞=+∑也是发散级数。

华东师范大学数学系《数学分析》(第4版)(上册)(名校考研真题 不定积分)【圣才出品】

华东师范大学数学系《数学分析》(第4版)(上册)(名校考研真题  不定积分)【圣才出品】

解:f(x)的原函数为
.当 x≤1 时,有
当 x>1 时,有
所以 f(x)的原函数为

5/6
圣才电子书

十万种考研考证电子书、题库视频学习平 台
6/6
un
n1
收敛,从而 un
0 ,即
f
(xn )
0 ,也即
f (xn ) 0 ,故对上述的 ,存在 N N¢ ,使得
当 n N 时,
f (xn )
2
.
取 X a N ,则当 x X 时,因
x a, Ua (k 1) ,a k k 0
故存在惟一的 k N¢ ,使得 x a (k 1) , a k ,易见 k N ,且
圣才电子书

十万种考研考证电子书、题库视频学习平 台
第 8 章 不定积分
1.设 f (x) d x 收敛,且 f (x) 在 a,上一致连续,证明 lim f (x) = 0. [上海
a
x
交通大学 2004 研]
证明:因 f (x) 在 a,上一致连续,故对于 0 , 0 ,使得当

十万种考研考证电子书、题库视频学习平 台
4.求不定积分 解:
[华东师范大学研]
5.求不定积分 解:令 t=lnx,则
[四川大学研]
6.求
(a 为常数).[西安交通大学研]
解:(1)当 a=-1 时,
(2)当 a≠-1 时,
3/6
圣才电子书

x2
x台2 )
dx
ln(1 x2 )d 1 x
ln(1 x2 )
1
2x dx
x
x 1 x2
ln(1 x2 ) 2 1 dx
x

2004—数一真题、标准答案及解析

2004—数一真题、标准答案及解析

2004年全国硕士研究生入学统一考试数学一真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为__________ . (2)已知xxxee f -=')(,且f(1)=0, 则f(x)=__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dx y d x的通解为. __________ . (5)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100021012A ,矩阵B 满足E BA ABA +=**2,其中*A 为A 的伴随矩阵,E 是单位矩阵,则=B __________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) γβα,,. (B) βγα,,. (C) γαβ,,. (D) αγβ,,. [ ] (8)设函数f(x)连续,且,0)0(>'f 则存在0>δ,使得(A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ-内单调减少. (C) 对任意的),0(δ∈x 有f(x)>f(0) .(D) 对任意的)0,(δ-∈x 有f(x)>f(0) . [ ](9)设∑∞=1n na为正项级数,下列结论中正确的是(A) 若n n na ∞→lim =0,则级数∑∞=1n na收敛.(B ) 若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散.(C) 若级数∑∞=1n na收敛,则0lim 2=∞→n n a n .(D) 若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim . [ ](10)设f(x)为连续函数,⎰⎰=t tydx x f dy t F 1)()(,则)2(F '等于(A) 2f(2). (B) f(2). (C) –f(2). (D) 0. [ ](11)设A 是3阶方阵,将A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C, 则满足AQ=C 的可逆矩阵Q 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010. (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010. (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010. (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110. [ ](12)设A,B 为满足AB=O 的任意两个非零矩阵,则必有 (A) A 的列向量组线性相关,B 的行向量组线性相关. (B) A 的列向量组线性相关,B 的列向量组线性相关. (C) A 的行向量组线性相关,B 的行向量组线性相关.(D) A 的行向量组线性相关,B 的列向量组线性相关. [ ](13)设随机变量X 服从正态分布N(0,1),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A) 2αu . (B) 21α-u. (C) 21α-u . (D) α-1u . [ ](14)设随机变量)1(,,,21>n X X X n Λ独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=-. [ ] (15)(本题满分12分)设2e b a e <<<, 证明)(4ln ln 222a b ea b ->-. (16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时. (17)(本题满分12分) 计算曲面积分 ,)1(322233dxdy zdzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程01=-+nx x n,其中n 为正整数. 证明此方程存在惟一正实根n x ,并证明当1>α时,级数∑∞=1n n x α收敛.(19)(本题满分12分)设z=z(x,y)是由0182106222=+--+-z yz y xy x 确定的函数,求),(y x z z =的极值点和极值. (20)(本题满分9分) 设有齐次线性方程组)2(,0)(,02)2(2,0)1(212121≥⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n x a n nx nx x x a x x x x a n n n ΛΛΛΛΛΛΛΛΛ试问a 取何值时,该方程组有非零解,并求出其通解. (21)(本题满分9分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=51341321a A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化. (22)(本题满分9分) 设A,B 为随机事件,且21)(,31)(,41)(===B A P A B P A P ,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧=求:(I )二维随机变量(X,Y)的概率分布; (II )X 和Y 的相关系数.XY ρ(23)(本题满分9分)设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x xx F ββ其中未知参数n X X X ,,,,121Λ>β为来自总体X 的简单随机样本,求:(I ) β的矩估计量; (II ) β的最大似然估计量.2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标. 【详解】 由11)(ln =='='xx y ,得x=1, 可见切点为)0,1(,于是所求的切线方程为 )1(10-⋅=-x y , 即 1-=x y .【评注】 本题也可先设切点为)ln ,(00x x ,曲线y=lnx 过此切点的导数为11=='=x y x x ,得10=x ,由此可知所求切线方程为)1(10-⋅=-x y , 即 1-=x y .本题比较简单,类似例题在一般教科书上均可找到. (2)已知xxxee f -=')(,且f(1)=0, 则f(x)=2)(ln 21x . 【分析】 先求出)(x f '的表达式,再积分即可. 【详解】 令t e x=,则t x ln =,于是有t t t f ln )(=', 即 .ln )(x xx f =' 积分得 C x dx x x x f +==⎰2)(ln 21ln )(. 利用初始条件f(1)=0, 得C=0,故所求函数为f(x)=2)(ln 21x . 【评注】 本题属基础题型,已知导函数求原函数一般用不定积分. (3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为π23 . 【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分. 【详解】 正向圆周222=+y x 在第一象限中的部分,可表示为.20:,sin 2,cos 2πθθθ→⎩⎨⎧==y x于是θθθθθπd ydx xdy L]sin 2sin 22cos 2cos 2[220⋅+⋅=-⎰⎰=.23sin 2202πθθππ=+⎰d 【评注】 本题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加的线段上用参数法化为定积分计算即可.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为 221x c x c y +=. 【分析】 欧拉方程的求解有固定方法,作变量代换te x =化为常系数线性齐次微分方程即可. 【详解】 令te x =,则dtdyx dt dy e dx dt dt dy dx dy t 1==⋅=-,][11122222222dtdydt y d x dx dt dt y d x dt dy x dx y d -=⋅+-=, 代入原方程,整理得02322=++y dt dydty d , 解此方程,得通解为 .221221x c x c e c ec y t t+=+=-- 【评注】 本题属基础题型,也可直接套用公式,令te x =,则欧拉方程)(222x f cy dx dybx dxy d ax =++, 可化为 ).(][22t e f cy dt dyb dt dy dty d a =++- (5)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100021012A ,矩阵B 满足E BA ABA +=**2,其中*A 为A 的伴随矩阵,E 是单位矩阵,则=B91 . 【分析】 可先用公式E A A A =*进行化简 【详解】 已知等式两边同时右乘A ,得A A BA A ABA +=**2, 而3=A ,于是有A B AB +=63, 即 A B E A =-)63(,再两边取行列式,有363==-A B E A ,而 2763=-E A ,故所求行列式为.91=B【评注】 先化简再计算是此类问题求解的特点,而题设含有伴随矩阵*A ,一般均应先利用公式E A AA A A ==**进行化简.(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >=e1 . 【分析】 已知连续型随机变量X 的分布,求其满足一定条件的概率,转化为定积分计算即可. 【详解】 由题设,知21λ=DX ,于是}{DX X P >=dx e X P x⎰+∞-=>λλλλ1}1{=.11eex=-∞+-λλ 【评注】 本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) γβα,,. (B) βγα,,. (C) γαβ,,. (D) αγβ,,. [ B ] 【分析】 先两两进行比较,再排出次序即可.【详解】 0cos 2tan lim cos tan limlim 22002=⋅==+++→→→⎰⎰x xx dtt dt t x xx x x αβ,可排除(C),(D)选项, 又 xx xx dtt dtt x x xx x tan 221sin lim tan sin limlim 2300302⋅==+++→→→⎰⎰βγ=∞=+→20lim 41xxx ,可见γ是比β低阶的无穷小量,故应选(B). 【评注】 本题是无穷小量的比较问题,也可先将γβα,,分别与nx 进行比较,再确定相互的高低次序. (8)设函数f(x)连续,且,0)0(>'f 则存在0>δ,使得(A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ-内单调减少.(C) 对任意的),0(δ∈x 有f(x)>f(0) . (D) 对任意的)0,(δ-∈x 有f(x)>f(0) .[ C ]【分析】 函数f(x)只在一点的导数大于零,一般不能推导出单调性,因此可排除(A),(B)选项,再利用导数的定义及极限的保号性进行分析即可.【详解】 由导数的定义,知0)0()(lim)0(0>-='→xf x f f x ,根据保号性,知存在0>δ,当),0()0,(δδY -∈x 时,有0)0()(>-xf x f即当)0,(δ-∈x 时,f(x)<f(0); 而当),0(δ∈x 时,有f(x)>f(0). 故应选(C). 【评注】 题设函数一点可导,一般均应联想到用导数的定义进行讨论. (9)设∑∞=1n na为正项级数,下列结论中正确的是(A) 若n n na ∞→lim =0,则级数∑∞=1n na收敛.(B ) 若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散.(C) 若级数∑∞=1n na收敛,则0lim 2=∞→n n a n .(E) 若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim . [ B ]【分析】 对于敛散性的判定问题,若不便直接推证,往往可用反例通过排除法找到正确选项.【详解】 取n n a n ln 1=,则n n na ∞→lim =0,但∑∑∞=∞==11ln 1n n n nn a 发散,排除(A),(D);又取nn a n 1=,则级数∑∞=1n na收敛,但∞=∞→n n a n 2lim ,排除(C), 故应选(B).【评注】 本题也可用比较判别法的极限形式,01limlim ≠==∞→∞→λna na n n n n ,而级数∑∞=11n n 发散,因此级数∑∞=1n n a 也发散,故应选(B). (10)设f(x)为连续函数,⎰⎰=t tydx x f dy t F 1)()(,则)2(F '等于(A) 2f(2). (B) f(2). (C) –f(2). (D) 0. [ B ]【分析】 先求导,再代入t=2求)2(F '即可.关键是求导前应先交换积分次序,使得被积函数中不含有变量t.【详解】 交换积分次序,得⎰⎰=tt ydx x f dy t F 1)()(=⎰⎰⎰-=t x tdx x x f dx dy x f 111)1)((])([于是,)1)(()(-='t t f t F ,从而有 )2()2(f F =',故应选(B).【评注】 在应用变限的积分对变量x 求导时,应注意被积函数中不能含有变量x: ⎰'-'=')()()()]([)()]([])([x b x a x a x a f x b x b f dt t f否则,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量x 换到积分号外或积分线上.(11)设A 是3阶方阵,将A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C, 则满足AQ=C 的可逆矩阵Q 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010. (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010. (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010. (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110. [ D ]【分析】 本题考查初等矩阵的的概念与性质,对A 作两次初等列变换,相当于右乘两个相应的初等矩阵,而Q 即为此两个初等矩阵的乘积.【详解】由题设,有B A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010,C B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100110001, 于是, .100001110100110001100001010C A A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡可见,应选(D).【评注】 涉及到初等变换的问题,应掌握初等矩阵的定义、初等矩阵的性质以及与初等变换的关系. (12)设A,B 为满足AB=O 的任意两个非零矩阵,则必有 (D) A 的列向量组线性相关,B 的行向量组线性相关. (E) A 的列向量组线性相关,B 的列向量组线性相关. (F) A 的行向量组线性相关,B 的行向量组线性相关.(D) A 的行向量组线性相关,B 的列向量组线性相关. [ A ]【分析】A,B 的行列向量组是否线性相关,可从A,B 是否行(或列)满秩或Ax=0(Bx=0)是否有非零解进行分析讨论.【详解1】 设A 为n m ⨯矩阵,B 为s n ⨯矩阵,则由AB=O 知,n B r A r <+)()(.又A,B 为非零矩阵,必有r(A)>0,r(B)>0. 可见r(A)<n, r(B)<n, 即A 的列向量组线性相关,B 的行向量组线性相关,故应选(A).【详解2】 由AB=O 知,B 的每一列均为Ax=0的解,而B 为非零矩阵,即Ax=0存在非零解,可见A 的列向量组线性相关.同理,由AB=O 知,O A B TT =,于是有T B 的列向量组,从而B 的行向量组线性相关,故应选(A). 【评注】 AB=O 是常考关系式,一般来说,与此相关的两个结论是应记住的: 1) AB=O ⇒n B r A r <+)()(; 2) AB=O ⇒B 的每列均为Ax=0的解.(13)设随机变量X 服从正态分布N(0,1),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A) 2αu . (B) 21α-u. (C) 21α-u . (D) α-1u . [ C ]【分析】 此类问题的求解,可通过αu 的定义进行分析,也可通过画出草图,直观地得到结论. 【详解】 由标准正态分布概率密度函数的对称性知,αα=-<}{u X P ,于是}{2}{}{}{}{11x X P x X P x X P x X P x X P ≥=-≤+≥=≥=<-=-α即有 21}{α-=≥x X P ,可见根据定义有21α-=u x ,故应选(C). 【评注】 本题αu 相当于分位数,直观地有α 21α-(14)设随机变量)1(,,,21>n X X X n Λ独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=-. [ A ] 【分析】 本题用方差和协方差的运算性质直接计算即可,注意利用独立性有:.,3,2,0),(1n i X X Cov i Λ==【详解】 Cov(∑∑==+==ni i n i i X X Cov n X X Cov n X n X Cov Y X 2111111),(1),(1)1,(),=.1121σnDX n = 【评注】 本题(C),(D) 两个选项的方差也可直接计算得到:如222222111)1()111()(σσn n n n X n X n X n n D Y X D n -++=++++=+Λ=222233σσn n nn n +=+, 222222111)1()111()(σσn n n n X n X n X n n D Y X D n -+-=----=-Λ=.222222σσn n nn n -=- (15)(本题满分12分)设2e b a e <<<, 证明)(4ln ln 222a b ea b ->-. 【分析】 根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用单调性证明. 【证法1】 对函数x 2ln 在[a,b]上应用拉格朗日中值定理,得 .),(ln 2ln ln 22b a a b a b <<-=-ξξξ设t t t ln )(=ϕ,则2ln 1)(tt t -='ϕ, 当t>e 时, ,0)(<'t ϕ 所以)(t ϕ单调减少,从而)()(2e ϕξϕ>,即2222ln ln ee e =>ξξ, 故 )(4ln ln 222a b ea b ->-. 【证法2】 设x e x x 224ln )(-=ϕ,则24ln 2)(e x x x -='ϕ, 2ln 12)(xxx -=''ϕ, 所以当x>e 时,,0)(<''x ϕ 故)(x ϕ'单调减少,从而当2e x e <<时,044)()(222=-='>'e e e x ϕϕ, 即当2e x e <<时,)(x ϕ单调增加.因此当2e x e <<时,)()(a b ϕϕ>,即 a ea b e b 22224ln 4ln ->-, 故 )(4ln ln 222a b ea b ->-.【评注】 本题也可设辅助函数为2222),(4ln ln )(e x a e a x ea x x <<<---=ϕ或 2222),(4ln ln )(e b x e x b ex b x <<<---=ϕ,再用单调性进行证明即可. (16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时.【分析】 本题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可.【详解1】 由题设,飞机的质量m=9000kg ,着陆时的水平速度h km v /7000=. 从飞机接触跑道开始记时,设t 时刻飞机的滑行距离为x(t),速度为v(t).根据牛顿第二定律,得kv dt dvm -=. 又 dxdv v dt dx dx dv dt dv =⋅=,由以上两式得 dv kmdx -=, 积分得 .)(C v k m t x +-= 由于0)0(,)0(0==x v v ,故得0v k mC =,从而 )).(()(0t v v kmt x -=当0)(→t v 时, ).(05.1100.67009000)(60km k mv t x =⨯⨯=→所以,飞机滑行的最长距离为1.05km. 【详解2】 根据牛顿第二定律,得 kv dtdvm -=, 所以.dt mk v dv -= 两端积分得通解t mkCe v -=,代入初始条件00v vt ==解得0v C =,故 .)(0t mk ev t v -=飞机滑行的最长距离为 ).(05.1)(000km kmv ekmv dt t v x tm k==-==∞+-∞+⎰或由t m ke v dt dx-=0,知)1()(000--==--⎰t m kt t m ke mkv dt e v t x ,故最长距离为当∞→t 时,).(05.1)(0km mkv t x =→【详解3】 根据牛顿第二定律,得 dt dxk dt x d m -=22,022=+dtdxm k dt x d , 其特征方程为02=+λλm k ,解之得mk -==21,0λλ, 故 .21t mk eC C x -+=由 002000,0v e mkC dt dxv x t tm kt t t =-====-===,得 ,021kmv C C =-= 于是 ).1()(0t m ke k mv t x --= 当+∞→t 时,).(05.1)(0km kmv t x =→所以,飞机滑行的最长距离为1.05km.【评注】 本题求飞机滑行的最长距离,可理解为+∞→t 或0)(→t v 的极限值,这种条件应引起注意. (17)(本题满分12分) 计算曲面积分 ,)1(322233dxdy zdzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.【分析】 先添加一曲面使之与原曲面围成一封闭曲面,应用高斯公式求解,而在添加的曲面上应用直接投影法求解即可.【详解】 取1∑为xoy 平面上被圆122=+y x 所围部分的下侧,记Ω为由∑与1∑围成的空间闭区域,则dxdy zdzdx y dydz x I ⎰⎰∑+∑-++=1)1(322233.)1(3221233dxdy z dzdx y dydz x ⎰⎰∑-++-由高斯公式知dxdydz z y x dxdy z dzdx y dydz x ⎰⎰⎰⎰⎰Ω∑+∑++=-++)(6)1(322222331=rdz r z dr d r )(62011022⎰⎰⎰-+πθ=.2)]1()1(21[12232210ππ=-+-⎰dr r r r r而⎰⎰⎰⎰≤+∑=--=-++123322133)1(322y x dxdy dxdy zdzdx y dydz x π,故 .32πππ-=-=I【评注】 本题选择1∑时应注意其侧与∑围成封闭曲面后同为外侧(或内侧),再就是在1∑上直接投影积分时,应注意符号(1∑取下侧,与z 轴正向相反,所以取负号).(18)(本题满分11分)设有方程01=-+nx x n,其中n 为正整数. 证明此方程存在惟一正实根n x ,并证明当1>α时,级数∑∞=1n n x α收敛.【分析】 利用介值定理证明存在性,利用单调性证明惟一性.而正项级数的敛散性可用比较法判定. 【证】 记.1)(-+=nx x x f n n 由01)0(<-=n f ,0)1(>=n f n ,及连续函数的介值定理知,方程01=-+nx x n存在正实数根).1,0(∈n x当x>0时,0)(1>+='-n nx x f n n ,可见)(x f n 在),0[+∞上单调增加, 故方程01=-+nx x n存在惟一正实数根.n x由01=-+nx x n与0>n x 知n n x x nn n 110<-=<,故当1>α时,αα)1(0n x n <<. 而正项级数∑∞=11n n α收敛,所以当1>α时,级数∑∞=1n n x α收敛.【评注】 本题综合考查了介值定理和无穷级数的敛散性,题型设计比较新颖,但难度并不大,只要基本概念清楚,应该可以轻松求证.(19)(本题满分12分)设z=z(x,y)是由0182106222=+--+-z yz y xy x 确定的函数,求),(y x z z =的极值点和极值. 【分析】 可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值.【详解】 因为 0182106222=+--+-z yz y xy x ,所以 02262=∂∂-∂∂--xz z x z yy x , 0222206=∂∂-∂∂--+-yzz y z yz y x . 令 ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0,0yz xz得⎩⎨⎧=-+-=-,0103,03z y x y x 故 ⎩⎨⎧==.,3y z y x将上式代入0182106222=+--+-z yz y xy x ,可得⎪⎩⎪⎨⎧===3,3,9z y x 或 ⎪⎩⎪⎨⎧-=-=-=.3,3,9z y x 由于 02)(22222222=∂∂-∂∂-∂∂-xzz x z x z y ,,02222622=∂∂∂-∂∂⋅∂∂-∂∂∂-∂∂--yx z z x z y z y x z y x z 02)(22222022222=∂∂-∂∂-∂∂-∂∂-∂∂-yzz y z y z y y z y z ,所以 61)3,3,9(22=∂∂=x zA ,21)3,3,9(2-=∂∂∂=y x zB ,35)3,3,9(22=∂∂=yzC , 故03612>=-B AC ,又061>=A ,从而点(9,3)是z(x,y)的极小值点,极小值为z(9,3)=3. 类似地,由61)3,3,9(22-=∂∂=---x zA ,21)3,3,9(2=∂∂∂=---y x zB ,35)3,3,9(22-=∂∂=---yzC ,可知03612>=-B AC ,又061<-=A ,从而点(-9, -3)是z(x,y)的极大值点,极大值为 z(-9, -3)= -3.【评注】 本题讨论由方程所确定的隐函数求极值问题,关键是求可能极值点时应注意x,y,z 满足原方程.(20)(本题满分9分) 设有齐次线性方程组)2(,0)(,02)2(2,0)1(212121≥⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n x a n nx nx x x a x x x x a n n n ΛΛΛΛΛΛΛΛΛ试问a 取何值时,该方程组有非零解,并求出其通解.【分析】 本题是方程的个数与未知量的个数相同的齐次线性方程组,可考虑对系数矩阵直接用初等行变换化为阶梯形,再讨论其秩是否小于n ,进而判断是否有非零解;或直接计算系数矩阵的行列式,根据题设行列式的值必为零,由此对参数a 的可能取值进行讨论即可.【详解1】 对方程组的系数矩阵A 作初等行变换,有.0002111122221111B a na a a a a n n n na aA =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ 当a=0时, r(A)=1<n ,故方程组有非零解,其同解方程组为,021=+++n x x x Λ 由此得基础解系为,)0,,0,1,1(1T Λ-=η ,)0,,1,0,1(2T Λ-=η,)1,,0,0,1(,1T n ΛΛ-=-η于是方程组的通解为,1111--++=n n k k x ηηΛ 其中11,,-n k k Λ为任意常数.当0≠a 时,对矩阵B 作初等行变换,有.10000120002)1(10000121111⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--++→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛn n n a n a B 可知2)1(+-=n n a 时,n n A r <-=1)(,故方程组也有非零解,其同解方程组为⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x ΛΛΛ由此得基础解系为Tn ),,2,1(Λ=η, 于是方程组的通解为ηk x =,其中k 为任意常数.【详解2】 方程组的系数行列式为1)2)1((22221111-++=+++=n a n n a an nnna aA ΛΛΛΛΛΛΛΛ. 当0=A ,即a=0或2)1(+-=n n a 时,方程组有非零解. 当a=0时,对系数矩阵A 作初等行变换,有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000000111122221111ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛn nnnA , 故方程组的同解方程组为 ,021=+++n x x x Λ 由此得基础解系为,)0,,0,1,1(1T Λ-=η ,)0,,1,0,1(2T Λ-=η,)1,,0,0,1(,1T n ΛΛ-=-η于是方程组的通解为,1111--++=n n k k x ηηΛ 其中11,,-n k k Λ为任意常数.当2)1(+-=n n a 时,对系数矩阵A 作初等行变换,有 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a na a a a a n n n n a a A ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ0002111122221111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→10001200001000121111ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛn n a , 故方程组的同解方程组为⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x ΛΛΛ由此得基础解系为Tn ),,2,1(Λ=η, 于是方程组的通解为ηk x =,其中k 为任意常数.【评注】 矩阵A 的行列式A 也可这样计算:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a n n n n a a A ΛΛΛΛΛΛΛΛ22221111=aE +⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n nnnΛΛΛΛΛΛΛΛ22221111,矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n nnnΛΛΛΛΛΛΛΛ22221111的特征值为2)1(,0,,0+n n Λ,从而A 的特征值为a,a,2)1(,++n n a Λ, 故行列式.)2)1((1-++=n a n n a A (21)(本题满分9分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=51341321a A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化. 【分析】 先求出A 的特征值,再根据其二重根是否有两个线性无关的特征向量,确定A 是否可相似对角化即可.【详解】 A 的特征多项式为513410)2(251341321-------=------=-λλλλλλλλaa A E=).3188)(2(51341011)2(2a a++--=------λλλλλλ当2=λ是特征方程的二重根,则有,03181622=++-a 解得a= -2.当a= -2时,A 的特征值为2,2,6, 矩阵2E-A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----321321321的秩为1,故2=λ对应的线性无关的特征向量有两个,从而A 可相似对角化.若2=λ不是特征方程的二重根,则a 31882++-λλ为完全平方,从而18+3a=16,解得 .32-=a当32-=a 时,A 的特征值为2,4,4,矩阵4E-A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---1321301323秩为2,故4=λ对应的线性无关的特征向量只有一个,从而A 不可相似对角化.【评注】 n 阶矩阵A 可对角化的充要条件是:对于A 的任意i k 重特征根i λ,恒有.)(i i k A E r n =--λ 而单根一定只有一个线性无关的特征向量.(22)(本题满分9分)设A,B 为随机事件,且21)(,31)(,41)(===B A P A B P A P ,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧=求:(I )二维随机变量(X,Y)的概率分布; (II )X 和Y 的相关系数.XY ρ【分析】 先确定(X,Y)的可能取值,再求在每一个可能取值点上的概率,而这可利用随机事件的运算性质得到,即得二维随机变量(X,Y)的概率分布;利用联合概率分布可求出边缘概率分布,进而可计算出相关系数.【详解】 (I ) 由于121)()()(==A B P A P AB P , ,61)()()(==B A P AB P B P所以, 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y X P , ,121)()()(}1,0{=-====AB P B P B A P Y X P )(1)(}0,0{B A P B A P Y X P +-=====32)()()(1=+--AB P B P A P (或32121611211}0,0{=---===Y X P ), 故(X,Y)的概率分布为 YX 0 10 32121 1 61121 (II) X, Y 的概率分布分别为X 0 1 Y 0 1P 43 41 P 65 61 则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ 【评注】 本题尽管难度不大,但考察的知识点很多,综合性较强.通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意.(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x xx F ββ 其中未知参数n X X X ,,,,121Λ>β为来自总体X 的简单随机样本,求:(I ) β的矩估计量; (II ) β的最大似然估计量.【分析】 先由分布函数求出概率密度,再根据求矩估计量和最大似然估计量的标准方法进行讨论即可.【详解】 X 的概率密度为.1,1,0,),(1≤>⎪⎩⎪⎨⎧=+x x x x f βββ(I ) 由于1);(11-=⋅==⎰⎰+∞++∞∞-βββββdx x x dx x xf EX , 令X =-1ββ,解得 1-=X X β,所以参数β的矩估计量为 .1ˆ-=X X β (II )似然函数为⎪⎩⎪⎨⎧=>==+=∏其他,0),,,2,1(1,)();()(1211n i x x x x x f L i n nni i ΛΛββββ 当),,2,1(1n i x i Λ=>时,0)(>βL ,取对数得∑=+-=ni i x n L 1ln )1(ln )(ln βββ,两边对β求导,得∑=-=n i i x n d L d 1ln )(ln βββ, 令0)(ln =ββd L d ,可得 ∑==n i ixn 1ln β, 故β的最大似然估计量为.ln ˆ1∑==n i iXnβ 【评注】 本题是基础题型,难度不大,但计算量比较大,实际做题时应特别注意计算的准确性.。

华东师范大学数学系《数学分析》(第4版)(下册)配套题库-章节题库(第17~23章)【圣才出品】

华东师范大学数学系《数学分析》(第4版)(下册)配套题库-章节题库(第17~23章)【圣才出品】
3
p
x y p1
p 1
x y
3 , p 2
x2 y2 2
x2 y2 2
显然,上式右端第一项的极限为 0,而欲使第二项的极限为 0,必须让 p≥3(对此可作 极坐标变换),于是当 p≥3 且 p∈N+时,fx(x,y)在原点连续,同理可证,当 p≥3 且 p ∈N+时,fy(x,y)在原点也连续。
(2)对于 p 的哪些值,fx(0,0)与 fy(0,0)都存在? (3)对于 p 的哪些值,f(x,y)在原点有一阶连续偏导数?并给出证明。
解:(1)由 0≤|f(x,y)|≤|x+y|p≤(|x|+|y|)p 可知,当 p∈N+且 p≥1 时,有
lim f x, y 0 f 0,0
x, y0,0

x y2
1
lim
sin
0
x, y0,0 x2 y2
x2 y2
所以 f(x,y)在点(0,0)可微。
2.设函数
f
x,
y
x
yp
sin
1 ,当x2 y2 0时 x2 y2
0,当x2 y2 0时
其中 p∈N+,问:
(1)对于 p 的哪些值,f(x,y)在原点连续?
x2 y2
fy 0,0 y
lim
x, y0,0
x y2
x2 y2
sin
x2
1
y2

0
x y2
x2 y2
1 sin x2 y2
x2 y2 2 xy x2 y2
2
x2 y2 x2 y2
2
x2 y2
由迫敛性知
2 / 115
圣才电子书 十万种考研考证电子书、题库视频学习平台

2004-2005 学年第二学期大学数学分析试题及答案

2004-2005 学年第二学期大学数学分析试题及答案
2004——2005 学年第二学期数学分析试题 A(0401,0402)
一:填空(20 分)
1、函数 f (x) = e x 的带有拉格朗日型余项的麦克劳林公式为

2、设 f(x)为区间 I 上的可导函数,则 f 为 I 上的凸函数的充要条件为 f (x)
f (x1) + f (x1)(x2 − x1)
n+1
,
n
=
(4
1,2,
分)
n
所以当 x (0,2) 时,
f (x) = x = 4 (−1)n+1 sin nx = 4 sin x − 1 sin 2x + 1 sin 3x + (6 分)
n
2 2 2 2 3 2
5、因 an
=
n(n
1 + 1)(n
+
2)
=
1 2
1
n(n
+
1)

(n
由罗尔定理存在 (,1) (0,1) 使得 F ( ) = 0 ,即 f ( ) = − f ( ) (4 分)
23
n
,当 x = −1时
二:判断(16 分)
1、实轴上的任一有界点集 S 至少有一个聚点。( )
2、设 H = { ( 1 , 1 ) n+2 n
n = 1, 2, } ,则 H 能覆盖区间 (0,1)。( )
3、黎曼函数
f
(x)
=
1 , q
x = p , p, q互素, q p q
在 区 间 [0 , 1] 上 可 积 , 且
连续及连续函数的局部保号性,存在 x0 的某领域 (x0 − , x0 + ) (当 x0 = a 或

2004年数学四试题分析、详解和评注数一至数四真题+详解

2004年数学四试题分析、详解和评注数一至数四真题+详解

2004年数学四试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)把答案填在题中横线上) (1) 若5)(cos sin lim 0=--®b x ae xxx ,则a =1,b =4-. 【分析】本题属于已知极限求参数的反问题. 【详解】因为5)(cos sin lim 0=--®b x ae xxx ,且0)(cos sin lim 0=-×®b x x x ,所以,所以0)(lim 0=-®a e x x ,得a = 1. 极限化为极限化为极限化为 51)(cos lim )(cos sin lim00=-=-=--®®b b x x xb x a e x x x x ,得b = -4. 因此,a = 1,b = -4. 【评注】一般地,已知)()(lim x g x f = A ,(1) 若g (x ) ® 0,则f (x ) ® 0; (2) 若f (x ) ® 0,且A ¹ 0,则g (x ) ® 0. 完全类似的例题见《数学复习指南》P36例1.60,P43第1(3)题,P44第2(10)题、 第6题,《数学题型集粹与练习题集》P19例1.34,《数学四临考演习》P79第7题, 《考研数学大串讲》P12例17、19. (2) 设1lnarctan 22+-=xxxee e y ,则1121+-==e e dx dy x . 【分析】本题为基础题型,先求导函数即可. 【详解】因为)1ln(21arctan 2++-=xxex e y ,111222++-+=¢xx xx ee ee y ,所以,1121+-==e e dx dy x . 【评注】 本题属基本题型,主要考查复合函数求导. 类似例题在一般教科书上均可找到. (3) 设ïîïíì³-<£-=21,12121,)(2x x xe x f x ,则21)1(221-=-òdx x f . 【分析】本题属于求分段函数的定积分,先换元:x - 1 = t ,再利用对称区间上奇偶函数,再利用对称区间上奇偶函数 的积分性质即可. 【详解】令x - 1 = t , òòò--==-121121221)()()1(dt x f dt t f dx x f)}DX }DX }DX })2)2sin(||-3sin 2sin )(11(222)(21412+y x 22+++222222d y x d y x d y x òpp p22+y xdPdQ Q P dPdQ Q P dP dQ Q PdPQ dP dQ Q P -))e)(20) (本题满分本题满分13分) 设线性方程组设线性方程组ïîïíì=+++++=+++=+++,14)4()2(3,022,0432143214321x x μx λx x x x x x x μx λx 已知T T)1,1,1,1(--是该方程组的一个解,试求是该方程组的一个解,试求(Ⅰ) 方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解;方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解; (Ⅱ) 该方程组满足32x x =的全部解.的全部解.【分析】 含未知参数的线性方程组的求解, 当系数矩阵为非方阵时一般用初等行变换法化增广矩阵为阶梯形, 然后对参数进行讨论. 由于本题已知了方程组的一个解, 于是可先由它来(部分)确定未知参数.【详解】 将T T)1,1,1,1(--代入方程组,得μλ=.对方程组的增广矩阵A 施以初等行变换, 得÷÷÷øöçççèæ------®÷÷÷øöçççèæ++=1212)12(2001131012011422302112011λλλλλλλλλλA ,(Ⅰ) 当21¹λ时,有时,有÷÷÷÷÷÷øöççççççèæ--®2121100212101001001A , 43)()(<==A r A r ,故方程组有无穷多解,且T ξ)0,21,21,0(0-=为其一个特解,为其一个特解,对应的齐次线性方程组的基础解系为对应的齐次线性方程组的基础解系为 T Tη)2,1,1,2(--=,故方程组的全部解为,故方程组的全部解为T T k ηk ξξ)2,1,1,2()0,21,21,0(0--+-=+= (k 为任意常数).当21=λ时,有时,有÷÷÷÷÷øöçççççèæ--®00000113102121101A , 42)()(<==A r A r ,故方程组有无穷多解,且T ξ)0,0,1,21(0-=为其一个特解,为其一个特解,11111113求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布. 【分析】本题的关键是求出),(Y X 的概率分布,于是只要将二维随机变量),(Y X 的各取值对转化为随机事件A 和B 表示即可.表示即可.【详解】 (Ⅰ) 因为因为 121)|()()(==A B P A P AB P , 于是于是 61)|()()(==B A P AB P B P ,则有则有 121)(}1,1{====AB P Y X P ,61)()()(}0,1{=-====AB P A P B A P Y X P ,121)()()(}1,0{=-====AB P B P B A P Y X P ,32)]()()([1)(1)(}0,0{=-+-=È-=×===AB P B P A P B A P B A P Y X P ,( 或 32121611211}0,0{=---===Y X P ),即),(Y X 的概率分布为:的概率分布为:YX0 1 0 1 32 12161121(Ⅱ) 方法一:因为方法一:因为 41)(==A P EX ,61)(==B P EY ,121)(=XY E ,41)(2==A P EX ,61)(2==B P EY , 163)(22=-=EX EX DX ,165)(22=-=EY EY DY ,241)(),(=-=EXEY XY E Y X Cov ,所以X 与Y 的相关系数的相关系数 1515151),(==×=DY DX Y X Cov ρXY .X 0 1 Y 0 1 P 43 41 P 65 61, E(XY)=15×DY DX 4,121=,的概率分布为:的概率分布为:Z 0 1 2 P3241 121ïîïíì<<=其他,,,00,1)|(|x y xx y f X Y 当10<<<x y 时,随机变量X 和Y 的联合概率密度为的联合概率密度为xx y f x f y x f XY X 1)|()(),(|==在其它点),(y x 处,有0),(=y x f ,即,即ïîïíì<<<=.x y x y x f 其他,,010,1),( (Ⅱ) 当10<<y 时,Y 的概率密度为的概率密度为òò-===+¥¥-1ln 1),()(yY y dx xdx y x f y f ;当0£y 或1³y 时,0)(=y f Y.因此.因此îíì<<-=.y y y f Y 其他,,010,ln )((Ⅲ) òòòò->+==>+xxY X dy xdxdxdy y x f Y X P 112111),(}1{ 2ln 1)12(121-=-=òdx x .【评注】本题考查了二维连续型随机变量的边缘概率密度, 条件概率密度, 联合概率密度的相互关系,以及二维连续型随机变量取值于一个区域的概率的计算,属于综合性题型.相互关系,以及二维连续型随机变量取值于一个区域的概率的计算,属于综合性题型. 原题可见《考研数学大串讲》(2002版, 世界图书出版公司)P.242例5, 以及文登数学辅导班上讲授的例子.。

华东师范大学《数学分析》与《高等代数》考研真题(1997年-2013年)

华东师范大学《数学分析》与《高等代数》考研真题(1997年-2013年)
x →+∞
续.
19
五、设 f ( x) 在 [a, b] 上二阶可导,且 f ( x) ≥ 0 , f ′′( x) < 0 . 证明: f ( x) ≤
2 b f (t )dt , x ∈ [ a, b] . b − a ∫a
六、设 f ( x , y ) 在 D = [ a, b] × [ c, d ] 上有二阶连续偏导数.
15
六、 ( 15 分)假设 σ 是 n 维欧氏空间 V 的线性变换, τ 是同一空间 V 的变换 . 且对
∀α , β ∈ V , 有 (σα , β ) = (α ,τβ ).
证明: 1) τ 是线性变换, 2) σ 的核等于 τ 的值域的正交补.
七、 (15 分)证明:任意方阵可表为两个对称方阵之积,其中一个是非奇异的。
n →∞ a≤ x≤ b a≤ x≤ b a≤ x≤ b n →∞
八、设 S ⊂ R 2 , P0 ( x0 , y0 ) 为 S 的内点, P 1 ( x1 , y1 ) 为 S 的外点. 证明:直线段 P0 P 1 至少与 S 的边界 ∂S 有一个交点.
华东师范大学 1997 年攻读硕士学位研究生入学试题
考试科目:数学分析
一、 (12 分)设 f ( x) 是区间 I 上的连续函数. 证明:若 f ( x) 为一一映射,则 f ( x) 在 区间 I 上严格单调.
二、 (12 分)设
⎧1, x为有理数 D ( x) = ⎨ ⎩0, x为无理数
证明:若 f ( x) , D ( x) f ( x) 在点 x = 0 处都可导,且 f (0) = 0 ,则 f '(0) = 0.
二、(10 分)证明:方程组
⎧ a11 x1 + a12 x2 + ... + a1n xn = 0 ⎪a x + a x + ... + a x = 0 ⎪ 21 1 22 2 2n n ⋯ (1) ⎨ ............ ⎪ ⎪ ⎩ as1 x1 + as 2 x2 + ... + asn xn = 0

华东师范大学2000至2009年数学分析,高等代数试题

华东师范大学2000至2009年数学分析,高等代数试题

华东师范大学2000年攻读硕士学位研究生入学试题考试科目:数学分析一.(24分)计算题: (1)011lim();ln(1)x x x→-+(2)32cos sin ;1cos x xdx x⨯+⎰ (3)设(,)z z x y =是由方程222(,)0F xyz x y z ++=,所确定的可微隐函数,试求grad Z.二.(14分)二、设 n n ne )11(+=,*N n ∈;1)11(++=n n nE ,*N n ∈;证明: (1)}{n e 是严格递增的;(2)}{n E 是严格递减的; (3)用对数函数x ln 的严格递增性质证明:111ln 11n n n⎛⎫<+< ⎪+⎝⎭,对一切n ∈N *成立. 三.(12分)设f 在[],a b 中任意两点之间都具有介值性,而且f在(),a b 内可导,'|()|f x K ≤(正常数), (,).x a b ∈证明f 在点a 右连续(同理在点b 左连续). 四.(14分)设12(1).nn I x dx =-⎰证明:(1)1221n n nI I n -=+,n=2,3…;(2)2,3n I n≥n=1,2,3….五(12分)设S 为一旋转曲面,由平面光滑曲线{(),[,](()0)z y f x x a b f x ==∈≥饶x 轴旋转而成。

试用二重积分计算曲面面积的方法,导出S 的面积公式为'22()1()baA f x fx dx π=+⎰(提示:据空间解几知道S 的方程为222()y z f x +=)六(24分)级数问题:(1)设sin ,0()1,0xx f x x x ⎧≠⎪=⎨⎪=⎩,求()(0)k f。

(2)设1nn n a =∑收敛,lim 0n n na →∞=证明:111()nnn n n n n n a a a +==-=∑∑。

(3)设{()}n f x 为[],a b 上的连续函数序列,且()(),[,]n f x f x x a b ⇒∈证明:若()f x 在[],a b 上无零点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华东师范大学2004数学分析试题
华东师范大学2004数学分析
一、(30分)计算题。

1、求
2
1
20)2
(cos lim x x x x -→
2、若)),
sin(arctan 2ln x x e y x
+=-求'
y .
3、求
⎰--dx
x xe x
2)1(.
4、求幂级数∑∞
=1
n n
nx 的和函数)(x f . 5、
L
为过
)
0,0(O 和
)0,2

A 的曲线
)
0(sin >=a x a y ,求
⎰+++L
dy y dx y
x .
)2()(3
xdx
a x da dy x a y cos sin ,sin ===
6、求曲面积分⎰⎰++S
zdxdy dydz z x )2(,其中)
10(,22
≤≤+=z y x
z ,
取上侧.
.
二、(30分)判断题(正确的证明,错误的举出反例)
1、若},,2,1,{ =n x n
是互不相等的非无穷大数列,则}
{n
x 至少存在一个聚点).
,(0
+∞-∞∈x
2、若)(x f 在),(b a 上连续有界,则)(x f 在),(b a 上一致连
续. 3、若
)
(x f ,
)
(x g 在]
1,0[上可积,则
∑⎰=∞→=-n i n dx
x g x f n i g n i f n 1
10)()()1()(1lim .
4、若∑∞=1n n
a 收敛,则∑∞
=1
2n n
a 收敛.
5、若在
2
R 上定义的函数
)
,(y x f 存在偏导数
),(y x f x ,)
,(y x f y 且),(y x f
x
,
)
,(y x f y 在(0,0)上连续,则),(y x f 在
(0,0)上可微.
6、),(y x f 在2
R 上连续,}
)
()(|),{(),(22
2
r y y x x y x y x D r
≤-+-=
若⎰⎰=>∀∀r
D dxdy y x f r y x ,0),(,0),,(0
0 则.),(,0),(2
R y x y x f ∈=
三、(15分)函数)(x f 在).,(+∞-∞上连续,且,)(lim A x f x =∞

求证:)(x f 在).,(+∞-∞上有最大值或最小值。

四、(15分)求证不等式:].
1,0[,122∈+≥x x x
五、设)
(x f
n
,
,2,1=n 在],[b a 上连续,且)
(x f
n
在],[b a 上一致
收敛于
)
(x f .若
]
,[b a x ∈∀,
)(>x f .求证:
,
0,>∃δN 使
],[b a x ∈∀,
N
n >,.
)(δ>x f
n
六、(15分)设}{n
a 满足(1);
,2,1,1000 ++=≤≤k k n a a n k
(2)级数∑∞
=1
n n a 收敛.
求证:0
lim =∞
→n
n na
.
七、(15分)若函数)(x f 在),1[+∞上一致连续,求证:
x
x f )(在),1[+∞上有界.
八、(15分)设),,(),,,(),,,(z y x R z y x Q z y x P 在3
R 有连续偏导数,而且对以任意点)
,(00,
0z y x 为中心,以任意正数r
为半径的上半球面,
,)()()(:02202020z z r z z y y x x S
r
≥=-+-+-
恒有⎰⎰r
S .0),,(),,(),,(=++dxdy z y x R dzdx z y x Q dydz z y x P
求证:
.
0),,(),,(,0),,(),,,(=+=∀z y x Q z y x P z y x R z y x y x。

相关文档
最新文档