华东师大数学分析习题解答2
数学分析课本(华师大三版)-习题及答案20+22

习 题 二十、二十二1.计算下列第一型曲线积分.(1) ,其中L 是的上半圆周. ()x y ds L +∫x y R 22+=2 (2) x y d L 22+∫s 2,其中L 是的右半圆周. x y R 22+= (3) e d x y L 22+∫s 2,其中L 是圆,直线x y a 22+=y x =以及x 轴在第一象限中所围成图形的边界. (4) xyds L ∫,其中L 是由所构成的矩形回路.x y x y ====004,,,2(5) ,其中: xds L∫ (a) L 是上从原点O 到点y x =2(,)00B (,)11间的一段弧.(b) L 是折线OAB 组成,A 的坐标为(,,B 的坐标为.)10(,)11(6),其中∫L ds y 2L 为曲线)cos 1()sin (t a y t t a x −=−=,,其中,0>a π20≤≤t .(7) ,其中L 是螺旋线弧段(x y z d L 222++∫)s cos sin ,,x a t y a t z bt ===)(π20,0≤≤>t a .(8) ,其中∫L yzds x 2L 为折线,这里依次为点(0,0,0),(0,0,2),(1,0,2),(1,3,2)ABCD D C B A ,,,2.计算下列第二型曲线积分.(1),其中∫−L ds y x )(22L 为在抛物线上从点(0,0)到点(2,4)的一段弧.2x y =(2) ,其中L 为xdy ydx L −∫① 沿直线从点(,到点(,;)00)12② 沿抛物线x y =24从点到点; (,)00(,)12③ 沿折线从点(,经点(,到点(,.)00)02)12(3) xydx L ∫,其中L 是由所构成的沿逆时针方向的矩形回路.x y x y ====004,,,2(4) x dy y dxx y L 225353−+∫,其中L 是沿星形线在第一象限中从点(,x R t y R t ==cos sin 33,)R 0到(,)0R 的弧段(R >0).(5) ,其中L 是从点到xdx ydy zdz L ++∫A (,,)111B (,,)234的直线段. (6) ,其中L 为曲线∫−+Lydz zdy dx x 2θθκθsin cos ,a z a y x ===,上对应θ从0到π的一段弧.3.设质点受力F 作用,力的方向指向原点,大小等于质点到原点的距离.(1) 计算当质点沿椭圆在第一象限中的弧段从(,到(,时,F 所作的功;x a t y b t ==cos sin ,)a 0)0b (2) 计算当质点沿椭圆逆时针方向运动一圈时,力F 所作的功.4.利用格林公式计算下列积分.(1) ()()x y dx x y dy L +++∫222,L 是沿逆时针方向,以为顶点的三角形. A B C (,)(,)(,)113125,, (2)()()x y dx x y dy L ++−∫,L 是方程x y +=1所围成的顺时针方向的闭路.(3) []e ydx y y x L (cos (sin )1−−−∫dy x ,L 是沿y =sin 上从点(,)π0到点的一段弧.(,)00(4) dy ye x x dx e y x xy x y x x x L )2sin ()sin 2cos (222−+−+∫,其中L 为正向星形线)0(323232>=+a a yx . (5) dy y x x y dx x y xy x L )3sin 21()cos 2(223+−+−∫,其中L 为在抛物线上由点(0,0)到22y x π=)1,2(π的一段弧. (6) ,其中dy y x dx y x L ∫+−−)sin ()(22L 为在圆周22x x y −=上由点(0,0)到点(1,1)的一段弧.5.验证下列曲线积分与路径无关,并求它们的值.(1) ,L 是从点经圆周上半部到点的弧段.()()12222++−∫xe dx x e y dy y y L O (,)00+−2)2(x 42=y A (,)40 (2),L 是从点到点的任意弧段. e ydx ydy x L (cos sin )−∫(,)00(,)a b (3) ydx xdy x −∫22112(,)(,)沿右半平面的任意路线.(4) ,L 是从点经抛物线到点的弧段.()(x y xdx ydy L22++∫)(,)00y x =2(,)11 (5) ∫++L y x xcdxydy 322)(,L 是从点到点的不经过原点的弧段.(,)11(,)22 6.求椭圆所围图形的面积.x a t y b t ==cos sin , 7.求下列微分方程的通解.(1) .()()x xy y dx x xy y dy 222222+−+−−=0 (2) [][]e e x y y dx e e x y dy x y x y ()()−+++−+=1100=.(3) .()()x xy dx x y y dy 43224465++− 8.下列各式是否为某函数的全微分,若是,求出原函数.(1) ; (2)x dx y dy 22+xdx ydy x y ++22. 9.求下列第一型曲面积分.(1),其中S 是球面:. zds S ∫∫x y z R 222++=2 (2)(243x y z d S ++∫∫)s ,其中S 是平面x y z 2341++=在第一卦限的部分. (3) ,其中S 是锥面(xy z d S 222++∫∫)s z x y =+22)介于之间的部分.z z ==01、 (4) ,其中S 是由曲面和平面所围立体的表面.∫∫+Sds y x )(22x y z 2220+−=z h h =>(0(5) ,其中S 是锥面(xy yz zx dsS ++∫∫)z x y =+22x 被柱面所截得的部分.x y a 222+=(6) ∫∫SxyzdS ,其中S 是由平面0,0,0===z y x 及1=++z y x 所围成的四面体的整个边界曲面.(7) ,其中S 为锥面∫∫++S ds zx yz xy )(z x y =+22x )0被柱面所截得的有限限部分.x y a 222+= 10.计算下列第二型曲面积分.(1) , 其中S 是三个坐标平面与平面所围成的正方体的表面的外侧.()()()x yz dydz y zx dzdx z xy dxdy S222−+−+−∫∫x a y a z a a ===>,,(0(2) ,其中S 是由平面 xydydz yzdzdx xzdxdy S++∫∫x y z ===00,,与平面x y z ++=1所围成的四面体表面的外侧.(3),其中S 是上半球面yzdzdx S ∫∫z a x y =−−222的下侧. (4) e x y dxdy z S 22+∫∫,其中S 是锥面z x y =+22与平面所围成立体边界曲面的外侧.z z ==12, 11.利用奥-高公式计算下列第二型曲面积分. (1) x dydz y dzdx z dxdy S333++∫∫,其中S 是球面:的外侧.x y z a a 22220++=>() (2) xdydz y dzdx z dxdy S 222++∫∫,其中S 是锥面与平面所围成的立体表面的外侧.x y z 22+=2)z h =(h >0 (3) ()()x y dxdy x y z dydz S−+−∫∫,其中S 为柱面及平面所围立体的表面外侧.x y 221+=z z ==0,1(4) ,其中S 为三个坐标平()()()x y z dxdy y z z dzdx S+++++−∫∫23212面与平面x y z ++=1所围成的四面体的外侧.(5)∫∫++S yzdxdy dzdx yxzdydz 24,其中为平面S 0,0,0===z y x ,所围成的立方体的表面外侧.1,1,1===z y x 12.利用斯托克斯公式计算下列第二型曲线积分. (1) x y dx dy dz L 23++∫,其中L 为坐标平面上圆周,并取逆时针方向. Oxy x y a 22+=2 (2) ()()()y z dx x z dy x y d L 222222+++++∫z ,其中L 是x y z ++=1与三个坐标平面的交线. (3) x yzdx x y dy x y d L 2221+++++∫()(z ),其中L 为曲面与曲面的交线,且从面对z 轴正向看去取顺时针方向.x y z 2225++=z x y =++221 13.验证下列的空间曲线积分与路径无关,并求它们的值.(1) . 22000xe dx z x e dy y zdz y y x y z −−+−−∫(cos )sin (,,)(,,) (2) . xdx y dy z dz +−∫23111234(,,,)(,,) 14.求下列各式的原函数.(1) yzdx xzdy xydz ++.(2) . ()()(x yz dx y xz dy z xy dz 222222−+−+−)15.计算,其中为圆周 ∫L ds x 2S ⎩⎨⎧=++>=++.0),0(2222z y x a a z y x 16. 若dy cx Y dy ax X +=+=,,且L 为包围坐标原点的简单的封闭曲线,计算∫+−=L YX YdX XdY I 2221π. 17.证明:若L 为封闭的曲线且l 为任意的方向,有∫=Lds l 0),cos(. 18.若半径为的球面上每点的密度等于该点到球的某一直径上距离的平方,求球面的质量.a 19.为了使线积分()F x y ydx xdy L (,)+∫与积分路径无关,可微函数F x y (,)应满足怎样的条件?20.设磁场强度为E x y z (,,),求从球内出发通过上半球面的磁通量.x y z a z 22220++=≥,。
数学分析习题选解第二章(华东师大版)

数学分析习题选解第二章 数列极限 §1.1 数列极限的概念习题Page. 271. 2. 3. 4. 5. 6. 7. 8. 9.§1.2 收敛数列的性质习题Page. 331. 2. 3. 4. 5. 6. 7. 8. 9.§1.3 数列极限存在的条件习题Page.381. 2. Page.393. 证明下列数列极限存在并求其值:(3) !nn c a n =,(0c >),123,n =证明:(法1)11(1)!1n n n c ca a n n ++==++ , (1) 于是,当1n c >-时,1n n a a +≤,即当1n c >-时,{}n a 单调减少;而0!nn c a n =>,即有下界,由单调有界定理,知lim n n a →∞存在,记lim n n a a →∞=,在(1)中,令n →∞,因为lim 01n cn →∞=+,所以,00a a =⋅=,故lim 0n n a →∞=。
(法2)当[]1n c >+时:[][][][][]()0!1212!c n n c c c c c c c c ca n c c c n n c <==≤++而[][]()lim0!c n c cn c →∞=,由两边夹定理,lim 0n n a →∞=。
4. 5.6. 证明:若单调数列{}n a 含有一个收敛子列,则{}n a 收敛。
证明:设{}n a 所含有的一个收敛子列为{}k n a ,记lim kn k a a →∞=。
来证lim n n a a →∞=,0ε∀>,lim k n k a a →∞= ,0K ∴∃>,当k K >时,有:k n a a ε-<,即k n a a a εε-<<+,n a 单调数列,不妨设n a ↑,(n a ↓同理讨论), 则当1K n n +>时,有:1K n n a a a ε+≥>-,而11n K n n n K +>>>+,所以,n n n a a a ε≤<+,取1K N n +=,当n N >时,有:1K n n n n a a a a a εε+-<≤≤<+,n a a ε∴-<。
华东师范大学数学系《数学分析》(第4版)(下册)课后习题-曲面积分(圣才出品)

的上半部分并取外侧为正向;
其中 S 是球面
并取外侧
为正向。
解:(1)因
所以原积分 (2)由对称性知只需计算其中之一即可。 由于
因此原积分=3 × 8=24。 (3)由对称性知,
(4)作球坐标变换,令
则
故
4 / 19
圣才电子书 十万种考研考证电子书、题库视频学习平台
(5)由轮换对称知只计算
面所围的立方体表面并取外侧为正向; 其中 S 是以原点为中心,边长为 2 的立方体
表面并取外侧正向; 其中 S 是由平面 x=y=z=0 和 x+y+z=1 所围的四面
3 / 19
圣才电子书
体表面并取外侧为正向;
十万种考研考证电子书、题库视频学习平台
其中 S 是球面
解:(1)因
从而
(2)面积 S 由两部分 组成,其中 面上的投影区域都是
由极坐标变换可得
它们在:xOy
1 / 19
圣才电子书 十万种考研考证电子书、题库视频学习平台
2.求均匀曲面 解:设质心坐标为
x≥0,y≥0,z≥0 的质心。 ,由对称性有:
其中 S 为所求曲面的面积, 而
解:
十万种考研考证电子书、题库视频学习平台
由柱面坐标变换
z=z,0≤0≤2π,0≤r≤h,r≤z≤h
(5)原曲线不封闭,故添加辅助曲面
有
2.应用高斯公式计算三重积分
≤1 与
所确定的空间区域。
解:
其中 V 是由 x≥0,y≥0,0≤z
3.应用斯托克斯公式计算下列曲线积分: 其中 L 为 x+y+z=1 与三坐标面的交线,
则
D 为 S 在 xOy 面投影
所以质心坐标为
20-2华东师大数学分析的练习和课件(历史上最好的-最全面的)学习的最好资料

x y2 B(1,1) A(1,0)
B(1,1)
A(1,0)
在 OA 上, y 0, x从 0 变到 1 ,
2xydx x2dy
1
(2x
0
x2
0)dx
OA
0
B(1,1)
0.
在 AB 上, x 1, y 从 0 变到 1 ,
A(1,0)
2xydx x2dy
1
(2 y 0 1)dy 1.
Pdx Qdy Rdz
{
P[
(t
),
(t
),
(t
)]
(t
)
Q[ (t), (t), (t)] (t)
R[ (t), (t), (t)] (t)}dt
例1 计算 xydx,其中L为抛物线 y2 x上从 L
A(1,1)到B(1,1)的一段弧.
B(1,1)
解 (1) 化为对x的定积分,y x.
AB
0
原式 0 1 1.
问题:被积函数相同,起点和终点也相同,但 路径不同而积分结果相同.
练习 : P206 例2
例3 计算第二型曲线积分
I xydx ( x y)dy x2dz, L
L是螺旋线: x a cos t, y a sin t, z bt 从 t 0 到 t π上的一段(参见图 20-5).
A(a,0)
a3 (1 cos2 )d(cos ) 4 a3 .
0
3
(2) L : y 0,
x 从 a 变到 a,
原式
a
0dx 0.
a
B(a,0)
A(a,0)
问题:被积函数相同,起点和终点也相同,但 路径不同积分结果不同.
数学分析课后习题答案(华东师范大学版)

152P.182 习题1.验证下列等式 (1)C x f dx x f +='⎰)()( (2)⎰+=C x f x df )()(证明 (1)因为)(x f 是)(x f '的一个原函数,所以⎰+='C x f dx x f )()(.(2)因为C u du +=⎰, 所以⎰+=C x f x df )()(.2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点)5,2(.解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='=⎰⎰22)()(.于是知曲线为C x y +=2, 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以有 C +=225, 解得1=C , 从而所求曲线为12+=x y3.验证x x y sgn 22=是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0<x 时, 22x y -=, x y -='; 当0=x 时, y的导数为02sgn lim 0sgn )2(lim020==-→→x x x x x x x , 所以⎪⎩⎪⎨⎧=<-=>='||0000x x xx x xy 4.据理说明为什么每一个含有第一类间断点的函数都没有原函数?解 由P.122推论3的证明过程可知:在区间I 上的导函数f ',它在I 上的每一点,要么是连续点,要么是第二类间断点,也就是说导函数不可能出现第一类间断点。
因此每一个含有第一类间断点的函数都没有原函数。
5.求下列不定积分⑴C x x x x dx x dx x xdx dx dx x x x +-+-=-+-=-+-⎰⎰⎰⎰⎰-31423233233421)11(153⑵C x x x dx x x x dx xx ++-=+-=-⎰⎰||ln 343)12()1(2332122⑶C gxC x gdx x ggxdx +=+⋅==⎰⎰-22212122121 ⑷⎰⎰⎰+⋅+=+⋅+=+dx dx dx x x x x x x x x)9624()3)32(22()32(222C x x x ++⋅+=9ln 96ln 624ln 4 ⑸C x dx x dx x +=-=-⎰⎰arcsin 23112344322⑹ C x dx x dx x x dx x x +-=+-=+-+=+⎰⎰⎰)arctan 1(31)111(31)1(311)1(322222 ⑺ C x x dx x xdx +-=-=⎰⎰tan )1(sec tan 22 ⑻C x x dx x dx x xdx +-=-=-=⎰⎰⎰)2sin 21(21)2cos 1(2122cos 1sin 2 ⑼ C x x dx x x dx xx x x dx x x x +-=+=--=-⎰⎰⎰cos sin )sin (cos sin cos sin cos sin cos 2cos 22 ⑽C x x dx x x dx x x x x dx x x x +--=-=⋅-=⋅⎰⎰⎰tan cot )cos 1sin 1(sin cos sin cos sin cos 2cos 22222222 ⑾ C C dt dt tt ttt+=+⋅⋅=⋅=⋅⎰⎰90ln 90)910ln()910()910(3102 ⑿C x dx x dx x x x +==⎰⎰81587158⒀C x dx xdx x x x x dx x x x x +=-=--+-+=+-+-+⎰⎰⎰arcsin 212)1111()1111(222154⒁C x x xdx dx dx x dx x x +-=+=+=+⎰⎰⎰⎰2cos 212sin 1)2sin 1()sin (cos 2⒂C x x dx x x xdx x ++=+=⎰⎰)sin 3sin 31(21)cos 3(cos 212cos cos ⒃ C e e e e dx e e e e dx e e x xx x x x x x x x ++--=-+-=------⎰⎰33333313331)33()(P.188 习题1.应用换元积分法求下列不定积分:⑴C x x d x dx x ++=++=+⎰⎰)43sin(31)43()43cos(31)43cos( ⑵ C e x d e dx xe x x x +==⎰⎰222222241)2(41⑶ C x x x d x dx ++=++=+⎰⎰|12|ln 2112)12(2112⑷ C x n x d x dx x n nn +++=++=++⎰⎰1)1(11)1()1()1(⑸Cx x xd xdx x dx xx++=-+-=-+-⎰⎰⎰3arcsin 313arcsin 3)3113131)31131(2222⑹C C x d dx x x x x +=+=+=++++⎰⎰2ln 22ln 22)32(221222323232⑺C x C x x d x dx x +--=+-⋅-=---=-⎰⎰232321)38(92)38(3231)38()38(3138 ⑻C x C x x d x x dx+--=+-⋅-=---=-⎰⎰-3232313)57(103)57(2351)57()57(5157 ⑼C x dx x dx x x +-==⎰⎰2222cos 21sin 21sin ⑽ C x x x d x dx++-=++=+⎰⎰)42cot(21)42(sin )42(21)42(sin 22ππππ155⑾ 解法一:C xxx d x dxx dx+===+⎰⎰⎰2tan2cos 22cos 2cos 122解法二: ⎰⎰⎰⎰-=--=+xxdxx dx x dx x x dx 222sin cos sin cos 1)cos 1(cos 1 C x x xx d x ++-=--=⎰sin 1cot sin sin cot 2⑿解法一:利用上一题的结果,有C x C x x x d x dx +--=+--=-+--=+⎰⎰)24tan()2(21tan )2cos(1)2(sin 1πππ 解法二: C x x xx d x dx x dx x x dx +-=+=--=+⎰⎰⎰⎰cos 1tan cos cos cos sin 1)sin 1(sin 1222 解法三:⎰⎰⎰+⋅=+=+222)12(tan 2cos )2cos 2(sin sin 1x x dxx x dx x dx C x x x d ++-=+=⎰12tan 2)12(tan 2tan 22⒀ 解法一:⎰⎰⎰---=-=)2()2sec()2sec(csc x d x dx x xdx πππC x x C x x ++-=+-+--=|cot csc |ln |)2tan()2sec(|ln ππ解法二:C x x x x d dx x x dx x xdx ++-=-===⎰⎰⎰⎰1cos 1cos ln 211cos cos sin sin sin 1csc 22C x x +-=|cot csc |ln解法三:⎰⎰++=dx x x x x x xdx cot csc )cot (csc csc cscC x x C xx x x d ++-=+++-=⎰|cot csc |ln cot csc )cot (csc解法四:⎰⎰⎰==dx x x xdx x x xdx 2cos2sin 22sin2cos 2sin 21csc 2156C xC x x d x +=+-=-=⎰|2tan |ln |2cot |ln 2cot 2cot 1⒁C x x d x dx x x +--=---=-⎰⎰22221)1(11211 ⒂ C x dx x dx x x +=+=+⎰⎰2arctan 41)(4121422224⒃C x x x d x x dx +==⎰⎰|ln |ln ln ln ln⒄ C x x d x dx x x +-=---=-⎰⎰25535354)1(1101)1()1(151)1( ⒅ C x x C x x dx x dx x x ++-=++-⋅=-=-⎰⎰|22|ln 281|22|ln 221412)(1412444442483⒆C xx C x x dx x x x x dx ++=++-=+-=+⎰⎰|1|ln |1|ln ||ln )111()1( ⒇C x dx xxxdx +==⎰⎰|sin |ln sin cos cot (21)⎰⎰⎰-==x d x xdx x xdx sin )sin 1(cos cos cos 2245 C x x x x d x x ++-=+-=⎰5342sin 51sin 32sin sin )sin sin 21((22) 解法一:C x x x x d x x dx +-==⎰⎰|2cot 2csc |ln 2sin )2(cos sin解法二:C x x xd x x xdx x x dx +===⎰⎰⎰|tan |ln tan tan cos sin cos cos sin 2 解法三:⎰⎰+=xx dxx x x x dx cos sin )cos (sin cos sin 22C x x dx xxx x +-=+=⎰|cos |ln |sin |ln )sin cos cos sin (157(23) C e e de e dx e e e dx xx x x x x x+=+=+=+⎰⎰⎰-arctan 1122 (24) C x x x x x x d dx x x x ++-=+-+-=+--⎰⎰|83|ln 83)83(83322222(25) C x x x dx x x x dx x x x dx x x ++-+++=+++-+=+++-+=++⎰⎰⎰2323232)1(2312|1|ln ))1(3)1(211()1(3)1(2)1()1(2(26)⎰+22ax dx解 令t a x tan =, 则C a x x C t t t a tdt a a x dx+++=++==+⎰⎰||ln |tan sec |ln sec sec 221222(27)C a x x a a x x d a a x dx ++=+=+⎰⎰21222212222322)(1)(1)(解法2 令t a x tan =, 则C ax a x C t a tdt a t a tdt a a x dx ++=+===+⎰⎰⎰222223322322sin 1cos 1sec sec )( (28)⎰-dx xx 251解 令t x sin =, 则Cx x x C t t t td t tdt dt t t t dx x x +---+--=+-+-=--===-⎰⎰⎰⎰25223221253225525)1(51)1(32)1(cos 51cos 32cos cos )cos 1(sin cos cos sin 1(29)⎰-dx xx31解 令t x =61, 则6t x =, 56t dx =158Ct t t t t t dt t t t t dt tt t t t dt t t t dt t t dx x x++--+++-=-++++-=-++++-=-+-=-⋅=-⎰⎰⎰⎰⎰|11|ln 26)357(6)11)1((611)1)(1(6111)(61613572246224622422533其中61x t = (30)⎰++-+dx x x 1111解 令t x =+1, 则21t x =+, tdt dx 2=,Cx x x C x x x C t t t dt t t dt t t t tdt t tdt t t dx x x +++++-=+++++-+=+++-=++-=+-=+-=+-=++-+⎰⎰⎰⎰⎰|11|ln 414|11|ln 4141|1|ln 44)1442()142(2)121(21111111122.应用分部积分法求下列不定积分: ⑴C x x x dx x x x x xdx +-+=--=⎰⎰221arcsin 1arcsin arcsin⑵C x x x dx x x x x xdx +-=⋅-=⎰⎰ln 1ln ln⑶Cx x x x x xdx x x x x x xd x x xdx x x x x d x xdx x +-+=-+=+=-==⎰⎰⎰⎰⎰sin 2cos 2sin cos 2cos 2sin cos 2sin sin 2sin sin cos 222222 ⑷ C x x x dx x x x x xd dx x x +--=+-=-=⎰⎰⎰223223412ln 121ln 211ln 21ln ⑸C x x x x x xdx x x dx x ++-=-=⎰⎰2ln 2)(ln ln 2)(ln )(ln 222 ⑹ ⎰⎰⎰+-==dx xx x x xdx xdx x 2222121arctan 21arctan 21arctan C x x x x dx x x x +--=+--=⎰)arctan (21arctan 21)111(21arctan 21222 C x x x +-+=21arctan )1(212159⑺ ⎰⎰⎰+=+dx x dx x dx x x ln 1)ln(ln ]ln 1)[ln(ln C x x dx xdx x x x x x +=+⋅-=⎰⎰)ln(ln ln 1ln 1)ln(ln⑻⎰⎰--=dx xx x x x dx x 2221arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰----+=dx xx x x x x 22221112arcsin 12)(arcsinC x x x x x +--+=2arcsin 12)(arcsin 22⑼⎰⎰⎰-==xdx x x x x xd xdx 23tan sec tan sec tan sec sec⎰⎰⎰+-=--=xdx xdx x x dx x x x x sec sec tan sec )1(sec sec tan sec 32 |tan sec |ln sec tan sec 3x x xdx x x ++-=⎰所以C x x x x xdx +++=⎰|)tan sec |ln tan sec 21sec 3 ⑽⎰⎰+⋅-+=+dx ax x x a x x dx a x 222222⎰+-+-+=dx ax a a x a x x )(2222222⎰⎰+++-+=dx ax a dx a x a x x 2222222)ln(2222222a x x a dx a x a x x ++++-+=⎰所以C a x x a a x x dx a x +++++=+⎰))ln((212222222 类似地可得C a x x a a x x dx a x +-+--=-⎰))ln((212222222 3.求下列不定积分:160⑴ C x f a x df x f dx x f x f a aa++=='+⎰⎰1)]([11)()]([)()]([ ⑵C x f x df x f dx x f x f +=+=+'⎰⎰)(arctan )()]([11)]([1)(22⑶C x f x f x df dx x f x f +=='⎰⎰|)(|ln )()()()( ⑷ C e x df e dx x f e x f x f x f +=='⎰⎰)()()()()(4.证明:⑴ 若⎰=dx x I n n tan , ,3,2=n ,则21tan 11----=n n n I x n I 证 ⎰⎰⎰----=-=dx x dx x x dx x x I n n n n 22222tan sec tan )1(sec tan22tan tan ---=⎰n n I x d x .因为⎰⎰-----=x d x n x x d x n n n tan tan )2(tan tan tan 212,所以x n x d x n n 12tan 11tan tan ---=⎰. 从而21tan 11----=n n n I x n I . ⑵ 若⎰=dx x x n m I n m sin cos ),(,则当0≠+n m 时,),2(1sin cos ),(11n m I nm m n m x x n m I n m -+-++=+-)2,(1sin cos 11-+-++-=-+n m I nm n n m x x n m , ,3,2,=m n证 ⎰⎰+-+==x d x n dx x x n m I n m nm 11sin cos 11sin cos ),( ]sin cos )1(sin [cos 112211⎰+-+--++=dx x x m x x n n m n m ])cos 1(sin cos )1(sin [cos 112211⎰--++=-+-dx x x x m x x n n m n m ))],(),2()(1(sin [cos 1111n m I n m I m x x n n m ---++=+-161所以),2(1sin cos ),(11n m I n m m n m x x n m I n m -+-++=+-, 同理可得)2,(1sin cos ),(11-+-++-=-+n m I nm n n m x x n m I n mP.199 习题1.求下列不定积分:⑴ ⎰⎰⎰-+++=-+-=-dx x x x dx x x dx x x )111(1111233 C x x x x +-+++=|1|ln 2323 ⑵ 解法一:C x x dx x x dx x x x +--=---=+--⎰⎰|3|)4(ln )3142(127222解法二:⎰⎰⎰+-++--=+--dx x x dx x x x dx x x x 12732112772211272222 ⎰⎰---++-+-=)27(41)27(123127)127(21222x d x x x x x dC x x x x +--++-=34ln 23|127|ln 212 ⑶ 解22311)1)(1(111xx CBx x A x x x x +-+++=+-+=+ 去分母得 )1)(()1(12x C Bx x x A ++++-=令1-=x ,得1=A . 再令0=x ,得1=+C A ,于是32=C . 比较上式两端二次幂的系数得 0=+B A ,从而1-=B ,因此⎰⎰⎰+---+=+dxx x x x dx x dx 2312311311162⎰⎰+-++---+=dx x x dx x x x x 22112111261|1|ln 31⎰+-++--+=dx x x x x 43)21(121)1ln(61|1|ln 3122C x x x x +-++-+=312arctan 311)1(ln 6122 ⑷ 解 ⎰⎰⎰⎰+--++=+--+=+dx xx dx x x dx x x x x dx 42424224112111211)1()1(211 ⎰⎰⎰⎰++-+-=+--++=22222222221)1(211)1(211112111121x x x x d x x x x d dx x x x dx x x x⎰⎰-++-+--=2)1()1(212)1()1(2122xx x x d x x x x d C xx x x x x +++-+--=2121ln 24121arctan221C x x x x x x ++++---=1212ln 8221arctan 42222 ⑸⎰+-22)1)(1(x x dx解 令22222)1(11)1)(1(1++++++-=+-x EDx x C Bx x A x x , 解得41=A , 41-==CB , 21-==E D , 于是 ⎰⎰⎰⎰++-++--=+-dx x x dx x x x dx x x dx 22222)1(1211141141)1)(1(163C x x x x x x x +++-++-+--=)1(arctan 411141arctan 41)1ln(81|1|ln 41222 C x x x x x ++-+-+-=)11arctan 21|1|(ln 4122⑹⎰⎰⎰++-+++=++-dx x x dx x x x dx x x x 222222)122(125)122(2441)122(2 其中1221)122()122()122(24222222++-=++++=+++⎰⎰x x x x x x d dx x x x ⎰⎰⎰+++=++=++)12(]1)12[(12]1)12[(4)122(1222222x d x dx x dx x x)12arctan(1)12(122+++++=x x x 参见教材P.186 例9或P.193关于k I 的递推公式⑺. 于是,有C x x x x x dx x x x ++-+++-++-=++-⎰)12arctan(251)12(1225122141)122(22222 C x x x x ++-+++=)12arctan(25)122(23522.求下列不定积分⑴⎰-x dx cos 35解 令2tan xt =,则C t t t d tdt t dt t t dx x dx+=+=+=++--=-⎰⎰⎰⎰2arctan 21)2(1)2(2141121135cos 3522222 C x+=)2tan 2arctan(21 ⑵⎰⎰⎰⎰+=+=+=+)tan 32(tan cos )tan 32(sin 3cos 2sin 2222222x xd x x dx x x dx x dx164C x x x d +=+=⎰)tan 23arctan(61)tan 231()tan 23(612 ⑶ ⎰⎰⎰++-+=+=+dx xx xx x x x x xdx x dx sin cos cos sin sin cos 21sin cos cos tan 1 )sin cos )cos (sin (21)sin cos cos sin 1(21⎰⎰⎰+++=++-+=x x x x d dx dx x x x x C x x x +++=|)sin cos |ln (21另解:设⎰+=x x xdx I sin cos cos 1,⎰+=x x xdxI sin cos sin 2,则C x dx x x xx I I +=++=+⎰sin cos sin cos 21,C x x x x x x d dx x x x x I I ++=++=+-=-⎰⎰|sin cos |ln sin cos )sin (cos sin cos sin cos 21所以C x x x I x dx +++==+⎰|)sin cos |ln (21tan 11⑷⎰⎰⎰-+++-+-=-+22221)1(11xx dx x dx x x dx xx x⎰⎰⎰-++-++---+-=2221231)12(211x x dxx x dx x dx x x其中(利用教材P.185例7的结果)]1)21(512arcsin 45[21)21(451222x x x x dx x dx x x -+-+-=--=-+⎰⎰ 2222121)1(1)12(x x x x x x d x x dx x -+=-+-+=-++-⎰⎰512arcsin)21(45122-=--=-+⎰⎰x x dxxx dx所以有165⎰-+dx xx x 221C x x x x x x x +-+-+--+-+--=512arcsin 231221]1)21(512arcsin 45[2122C x x x x +-++--=21432512arcsin 87 ⑸C x x x x x d xx dx ++++=-++=+⎰⎰|21|ln 41)21()21(222⑹⎰+-dx xxx 1112 解 令 x x t +-=11,则2211tt x +-=,22)1(4t tdtdx +-=,代入原式得 ⎰⎰⎰⎰---=--=+-⋅⋅⎪⎪⎭⎫ ⎝⎛-+=+-dt t t dt t t dt t t t t t dx x xx 222222222222)1(114)1(4)1(411111⎰⎰⎰⎰-+-++--=---=dt t t t dt t dt t dt t ]12)1(1)1(1[114)1(141142222222C t t t t dt t t dt t +++---+=-++--=⎰⎰1111|11|ln ])1(1)1(1[112222 C xx x x +---+=221|11|ln总 练 习 题求下列不定积分: ⑴C x x x dx x xx dx xx x +--=--=--⎰⎰-4312134541121414334132454)2(12166⑵]11arcsin [21arcsin 21arcsin 2222⎰⎰⎰--==dx x x x x dx x dx x x 其中)2sin 21(2122cos 1cos cos sin 1222t t dt t dt t t t dx x x -=-==-⎰⎰⎰)1(arcsin 212x x x --=所以]11arcsin [21arcsin 222⎰⎰--=dx xx x x dx x xC x x x x x +---=)]1(arcsin 21arcsin [2122 C x x x x x +-+-=22141arcsin 41arcsin 21 ⑶⎰+xdx 1解 令u x =,则udu dx 2=C u u du uu udu xdx ++-=+-=+=+⎰⎰⎰|)1|ln (2)111(2121 C x x ++-=|)1|ln (2⑷⎰⎰⎰⎰===xx x x de x x d x e dx x x e dx x e sin sin sin sin sin 2sin sin 2cos sin 22sin C x e C e x e x d e x e x x x x x +-=+-=-=⎰)1(sin 2)sin (2)sin sin (2sin sin sin sin sin⑸C x e C e u e du u e u x dx e x u u u x+-=+-==⎰⎰)1(2)(22)(令 ⑹C x x d x x x dx x xdx +-=--=-=-⎰⎰⎰1arcsin )1(1111112222 解法二:令t x sec =,C xC t dt t t t t x xdx +=+==-⎰⎰1arccos tan sec tan sec 12167⑺⎰⎰⎰++=+-=+-x x x x d dx x x x x dx x x sin cos )sin (cos sin cos sin cos tan 1tan 1C x x ++=|sin cos |lnC x dx x dx x x +-=-=+-⎰⎰|)4cos(|ln )4tan(tan 1tan 1ππ ⑻ C x x x dx x x x dx x x x +-----=-+-+-=--⎰⎰23232)2(123|2|ln )2(2)2(3)2()2( ⑼C x x x d x xdx x x dx ++=+==⎰⎰⎰32224tan 31tan tan )tan 1(cos sec cos ⑽ ⎰⎰⎰-==dx x dx x dx x 2224)22cos 1()(sin sin⎰⎰++-=+-=dx x x dx x x )24cos 12cos 21(41)2cos 2cos 21(412 C x x x C x x x x ++-=+++-=4sin 3212sin 4183)84sin 22sin (41 ⑾ ⎰+--dx x x x 43523 解⎰⎰-+-=+--dx x x x dx x x x 223)2)(1(5435令22)2(21)2)(1(5-+-++=-+-x C x B x A x x x去分母得:)1()2)(1()2(52++-++-=-x C x x B x A x 解得:32-=A ,32=B ,1-=C 所以⎰⎰⎰⎰---++-=+--dx x dx x dx x dx x x x 223)2(121321132435 C x x x +-++-=21|12|ln 32 ⑿⎰+dx x )1arctan(解 令u x =+1,du u dx )1(2-=168⎰⎰⎰⎰-⋅=-⋅=+du u du u u du u u dx x arctan 2arctan 2)1(2arctan )1arctan(122)1ln(arctan 2]arctan )1[(C u u u u u u +++--+= C x x x x x ++++-+=)22ln()1arctan(⒀ ⎰⎰⎰+-=+-+=+dx x x x dx x x x x dx x x )22(2222433433747 C x x ++-=)2ln(214144 另解:C x x dx x dx x x x dx x x ++-=+-=+⋅=+⎰⎰⎰)2ln(2141)221(4122444443447 ⒁⎰++dx x x x2tan tan 1tan 解 令u x =tan⎰⎰⎰⎰++-+=+++=++du u u du u du u u u u dx x x x 222221111111tan tan 1tanC x x C u u ++-=++-=31tan 2arctan32312arctan32arctan⒂ ⎰⎰-+---=-dx x x x dx x x 10021002)1(1)1(2)1()1( C x x x +-+---=979899)1(971)1(491)1(991 ⒃⎰⎰⎰-+-=-=dx x x xx x d x dx x x 2211arcsin 1arcsin arcsin C xx x x +-+--=|11|ln arcsin 2⒄⎰⎰⎰--+=--+=-+2)]1ln()1[ln(21)]1ln()1[ln(11lndx x x dx x x x dx x x x C x xxx dx x x x x x x ++-+-=-++---+=⎰11ln 21)1111(21)]1ln()1[ln(21222169⒅⎰⎰⎰+==x d xx dx xx dx xx tan tan tan 1cos tan 1cos sin 1247C x x ++=)tan 511(tan 22⒆ ⎰⎰⎰⎰+-++=+-+=+-dx x x e dx x e dx x x x e dx x x e xx x x22222222)1(21)1(21)11( C xe dx x e x e dx x e x d e dx x e x x x x x x ++=+-+++=+++=⎰⎰⎰⎰2222221111111 ⒇ ⎰=dx uv I n n ,x b a u 11+=,x b a v 22+=解 ][221211⎰⎰⎰--===dx v b u n u v b u d v b dx uv I n nn n n ])([2][21122111121⎰⎰---+-=-=dx uv b a b a v b n u v b dx u uv b n u v b n nn n ])([21122111----=n n nI b a b a n I nb u v b 所以])([)12(2112211---+=n n n I b a b a n u v b n I。
华东师大数学分析答案完整版

华东师大数学分析答案完整版一、填空题1. 极限的定义是当自变量趋近于某个值时,函数的值趋近于另一个确定的值。
2. 函数在某一点连续的充分必要条件是左极限、右极限和函数值在该点相等。
3. 无穷小量与无穷大量的关系是无穷小量的倒数是无穷大量,无穷大量的倒数是无穷小量。
4. 函数的导数表示函数在某一点的瞬时变化率。
5. 微分表示函数在某一点的微小变化量。
6. 函数的积分表示函数在某个区间上的累积变化量。
7. 变限积分的导数是原函数的导数。
8. 无穷级数的收敛性可以通过比较判别法、比值判别法等方法进行判断。
9. 函数的泰勒级数表示函数在某一点的幂级数展开。
10. 傅里叶级数表示周期函数的三角级数展开。
二、选择题1. 下列函数中,连续的是(A)。
A. f(x) = x^2B. f(x) = 1/xC. f(x) = sin(x)D. f(x) = |x|2. 下列极限中,存在的是(B)。
A. lim(x→0) 1/xB. lim(x→∞) x^2C. lim(x→0) sin(x)/xD. lim(x→∞) e^(x)3. 下列函数中,可导的是(A)。
A. f(x) = x^3B. f(x) = |x|C. f(x) = sin(1/x)D. f(x) = x^(1/3)4. 下列积分中,收敛的是(C)。
A. ∫(1/x) dxB. ∫(1/x^2) dxC. ∫(e^(x)) dxD. ∫(1/x^3) dx5. 下列级数中,收敛的是(B)。
A. ∑(1/n)B. ∑(1/n^2)C. ∑(1/n^3)D. ∑(1/n^4)三、解答题1. 求函数 f(x) = x^3 3x + 2 在 x = 1 处的导数。
解答:f'(x) = 3x^2 3,代入 x = 1,得 f'(1) = 0。
2. 求不定积分∫(e^x) dx。
解答:∫(e^x) dx = e^x + C,其中 C 为任意常数。
华东师范大学数学分析试题解答

cos x(1 cos2 x) d (cos x)
1 cos2 x
t(t 2 1) dt
1t2
t
2t 1 t2
dt
= 1 cos2 x ln(1 cos2 x) C 2
yzF1 2xF2 xyF1 2zF 2
zxF1 2 yF2 xyF1 2zF2
,证明:
绕 x 轴曲线旋转而成,试用二重积分计算曲面面积的方法,导出 S
的面积公式为:
A
2
b
a
f
(x)
1 f '(x)2 dx
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
华东师大数学分析答案完整版

又
是’
的
最
小
上
界
!
这 两种定义是等价的!!$$中的!(#相当于!!$中的"!在上述定义中可以限定#%###其中
## 为充分小的正数!定义!$$在某些证明题中使用起来更方便些 !
*" 确界原理)设 ’ 是非空数集#若 ’ 有上界#则 ’ 必有上确界*若 ’ 有下界#则 ’ 必有下确界!
确界原理是实数系完备性的几个等价定理中的一个!
3" 单调性
设 -%,!$$#$#.#若 对 ,$! #$$ #.#$! %$$ #有
!!$,!$!$$,!$$$#则称 , 在. 上是递增函数! !$$,!$!$%,!$$$#则称 , 在. 上是严格递增函数!
类似可定义递减函数与严格递减函数!
4" 奇偶性
设 . 是对称于原点的数集#-%,!$$#$#.! !!$若,$#.#都有 ,!($$%,!$$#则称,!$$是偶函数! !$$若 ,$#.#都 有 ,!($$% (,!$$#则 称 ,!$$是 奇 函 数 !
分析 !本题主要考察函数 的 有 界 性#要 充 分 利 用 已 知 条 件 给 出 的 不 等 式 #积 极 构 造 出 类 似 的 不 等
%$ %
第一章!实数集与函数
式 #以 证 出 结 论 !
证 明 ! , (%#;’.:#,$# !%#;$#则 存 在’# !##!$#使 $%%&’!;(%$
再
取
中
点%!&;! $
#又
可
得
区
间
(%$
#;$’#使
,!$$在
其
上
无
界
#这
样
继
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学分析选论》习题解答第 二 章 连 续 性1. 设ny x ℜ∈,,证明:)||||||||(2||||||||2222y x y x y x +=-++.证 由向量模的定义, ∑∑==-++=-++ni i ini i iy x y x y x y x 121222)()(||||||||∑=+=+=ni i iy x y x 12222)||||||||(2)(2. □2*. 设nn x S ℜ∈ℜ⊂点,到集合S 的距离定义为),(inf ),(y x S x Sy ρ=ρ∈.证明:(1)若S 是闭集,S x ∉,则0),(>S x ρ; (2)若dSS S ⋃=( 称为S 的闭包 ),则{}0),(|=ρℜ∈=S x x S n.证 (1)倘若0),(=S x ρ,则由),(S x ρ的定义,S y n ∈∃,使得,2,1,1),(=<ρn ny x n . 因 S x ∉,故x y n ≠,于是x 必为S 的聚点;又因S 是闭集,故S x ∈,这就导致矛盾.所以证得0),(>S x ρ.(2)S x ∈∀.若S x ∈,则0),(=ρS x 显然成立.若S x ∉,则dS x ∈(即x为S 的聚点),由聚点定义,∅≠⋂ε>ε∀S x U );(,0 ,因此同样有0),(),(inf =ρ=ρ∈S x y x Sy .反之,凡是满足0),(=ρS x 的点x ,不可能是S 的外点( 若为外点,则存在正数0ε,使∅=⋂εS x U );(0,这导致0),(inf 0>ε≥ρ∈y x Sy ,与0),(=ρS x 相矛盾).从而x 只能是S 的聚点或孤立点.若x 为聚点,则S S x ⊂∈d;若x 为孤立点,则S S x ⊂∈.所以这样的点x 必定属于S .综上,证得 {}0),(|=ρℜ∈=S x x S n成立. □ 3.证明:对任何nS ℜ⊂,dS必为闭集.证 如图所示,设0x 为dS 的任一聚点, 欲证∈0x dS ,即0x 亦为S 的聚点.这是因为由聚点定义,y ∃>ε∀,0,使得 dSx Uy ⋂ε∈);(0.再由y 为S 的聚点,);();(0ε⊂δ∀x U y U,有∅≠⋂δS y U );(.于是又有∅≠⋂εS x U);(0,所以0x 为S 的聚点,即∈0x dS,亦即dS为闭集. □4.证明:对任何nS ℜ⊂,S ∂必为闭集.证 如图所示,设0x 为S ∂的任一聚点,欲证S x ∂∈0,即0x 亦为S 的界点. 由聚点定义,y ∃>ε∀,0,使S x U y ∂⋂ε∈);(0.再由y 为界点的定义,);();(0ε⊂δ∀x U y U ,在);(δy U 内既有S 的内点,又有S 的外点.由此证得在);(0εx U 内既有S 的内点,又有S 的外点,所以0x 为S 的界点,即S ∂必为闭集. □*5.设nS ℜ⊂,0x 为S 的任一内点,1x 为S 的任一外点.证明:联结0x 与1x 的直线段必与S ∂至少有一交点.0x);(δy U );(0εx USS∂);(δy U);(0εx USdS0x证 如图所示,把直线段10x x 置于一实轴上,并 为叙述方便起见,约定此实轴上的点与其坐标用同一字 母表示.下面用区间套方法来证明∅≠∂⋂S x x 10.记2,],[],[1111011b a c x x b a +==.若S c ∂∈1,则结论成立;若1c 为S 的内点,则取],[],[1122b c b a =;若1c 为S 的外点,则取],[],[1122c a b a =.一般地,用逐次二等分法构造区间套:记2nn n b a c +=( 不妨设S c n ∂∉),并取,2,1,,],[,,],[],[11=⎩⎨⎧=++n S c c a S c b c b a n n n n n n n n 的外点为的内点为.此区间套的特征是:其中每个闭区间的左端点n a 恒为S 的内点,右端点n b 恒为S 的外点.现设y b a n n n n ==∞→∞→lim lim ,下面证明S y ∂∈.由区间套定理的推论,0>ε∀,当n 足够大时,);(],[ε⊂y U b a n n ,因此在);(εy U 中既含有S 的内点(例如n a ),又含有S 的外点(例如n b ),所以10x x 上的点y 必是S 的界点. □ 6.证明聚点定理的推论2和推论3.(1) 推论2 nℜ中的无限点集S 为有界集的充要条件是:S 的任一无限子集必有聚点.证 [必要性] 当S 为有界集时,S 的任一无限子集亦为有界集,由聚点定理直接 推知结论成立.[充分性] 用反证法来证明.倘若S 为无界集,则必能求得一个点列{}S P k ⊂, 使得+∞=∞→||||lim k k P .这个{}k P 作为S 的一个无限子集不存在聚点,与条件矛盾.故S为有界集. □(2)推论3 nℜ中的无限点集S 为有界闭集的充要条件是:S 为列紧集,即S的任一无限子集必有属于S 的聚点.证 [必要性] 因S 有界,故S 的任一无限子集亦有界,由聚点定理,这种无限子集必有聚点.又因子集的聚点也是S 的聚点,而S 为闭集,故子集的聚点必属于S .[充分性] 由上面(1)的充分性证明,已知S 必为有界集.下面用反证法再来证明S 为闭集.倘若S 的某一聚点S P ∉,则由聚点性质,存在各项互异的点列{}S P k ⊂,使 P Pkk =∞→lim .据题设条件,{}kP 的惟一聚点P 应属于S ,故又导致矛盾.所以S 的所有聚点都属于S ,即S 为闭集. □7.设X B A X f X mn⊂ℜ→ℜ⊂,,,:.证明: (1))()()(B f A f B A f ⋃=⋃; (2))()()(B f A f B A f ⋂⊂⋂;(3)若f 为一一映射,则)()()(B f A f B A f ⋂=⋂.证 (1))(,,)(x f y B A x B A f y =⋃∈∃⋃∈∀使.若)(,A f y A x ∈∈则; 若)(,B f y B x ∈∈则.所以,当)()()(,B f A f x f y B A x ⋃∈=⋃∈时.这表示)()()(B f A f B A f ⋃⊂⋃.反之,)(,,)()(x f y X x B f A f y =∈∃⋃∈∀使.若A x A f y ∈∈则,)(;若B x B f y ∈∈则,)(,于是B A x ⋃∈.这表示)()(B A f x f y ⋃∈=,亦即)()()(B f A f B A f ⋃⊃⋃.综上,结论)()()(B f A f B A f ⋃=⋃得证.(2)y x f B A x B A f y =⋂∈∃⋂∈∀)(,,)(使.因A x ∈且B x ∈,故)()()()(B f x f A f x f ∈∈且,即 )()()(B f A f x f y ⋂∈=,亦即 )()()(B f A f B A f ⋂⊂⋂.然而此式反过来不一定成立.例如]2,1[,]1,2[,)(2-=-==B A x x f ,则有]4,0[)()()()(=⋂==B f A f B f A f ; ]1,0[)(,]1,1[=⋂-=⋂B A f B A .可见在一般情形下,)()()(B A f B f A f ⋂⊄⋂.(3))()(B f A f y ⋂∈∀,B x A x ∈∈∃21,,使)()(21x f x f y ==.当f 为 一一映射时,只能是B A x x ⋂∈=21,于是)(B A f y ⋂∈,故得)()()(B A f B f A f ⋂⊂⋂.联系(2),便证得当f 为一一映射时,等式)()()(B A f B f A f ⋂=⋂成立. □8.设mnmnc b a g f ℜ∈ℜ∈ℜ→ℜ,,,,:,且c x g b x f ax ax ==→→)(lim ,)(lim.证明:(1)0||||,||||||)(||lim ==→b b x f ax 当且时可逆;(2)c b x g x fax T])()([lim =T→.证 设[][]T T ==)(,,)()(,)(,,)()(11x g x g x g x f x f x f m m,TTT===],,[,],,[,],,[111m m n c c c b b b a a a .利用向量函数极限与其分量函数极限的等价形式,知道m i c x g b x f i i a x i i ax ,,2,1,)(lim ,)(lim===→→.(1)||||)()(lim||)(||lim 221221b b b x f x f x f mm ax ax =++=++=→→ .当0||||=b 时,由于||)(||||||||)(||x f b x f =-,因此由0||)(||lim =→x f ax ,推知m i x f i ax ,,2,1,0)(lim2==→,即得0)(lim=→x f ax .(2)类似地有cb c b c b x g x f x g x f x g x fm m m m ax ax T→T→=+=++= 1111])()()()([lim ])()([lim .□9.设mn D f D ℜ→ℜ⊂:,.试证:若存在证数r k ,,对任何D y x ∈,满足ry x k y f x f ||||||)()(||-≤-,则f 在D 上连续,且一致连续.证 这里只需直接证明f 在D 上一致连续即可.0,01>⎪⎭⎫⎝⎛ε=δ∃>ε∀rk ,对任何D y x ∈,,只要满足δ<-||||y x ,便有ε<-≤-ry x k y f x f ||||||)()(||.由于这里的δ只与ε有关,故由一致连续的柯西准则(充分性),证得f 在D 上一致连续. □10.设mnD f D ℜ→ℜ⊂:,.试证:若f 在点D x ∈0连续,则f 在0x 近旁局部有界.证 由f 在点0x 连续的定义,对于1=ε,0>δ∃,当)(0δ∈;x U x 时,满足||)(||1||)(||1||)()(||||)(||||)(||000x f x f x f x f x f x f +≤⇒<-≤-,所以f 在0x 近旁局部有界. □11.设mnf ℜ→ℜ:为连续函数,nA ℜ⊂为任一开集,nB ℜ⊂为任一闭集.试问)(A f 是否必为开集?)(B f 是否必为闭集?为什么?解 )(A f 不一定为开集.例如),(,sin )(ππ-∈=x x x f .这里),(ππ-=A 为开集,但]1,1[)(-=A f 却为闭集.当B 为有界闭集时,由连续函数的性质知道)(B f 必为闭集且有界.但当B 为无界 闭集时,)(B f 就不一定为闭集,例如),(,arctan )(∞+-∞∈=x x x f .这里),(∞+-∞=B 可看作一闭集,而⎪⎭⎫⎝⎛ππ-=2,2)(B f 却为一开集. □ 12.设nn D D ℜ→ϕℜ⊂:,.试举例说明:(1)仅有D D ⊂ϕ)(,ϕ不一定为一压缩映射;(2)仅有存在)10(<<q q ,使对任何D x x ∈''',,满足||||||)()(||x x q x x ''-'≤''ϕ-'ϕ,此时ϕ也不一定为一压缩映射.解 (1)例如),0[,1)(∞+∈+=ϕx x x .这里),0[∞+=D 为一闭域,它虽然满足D D ⊂∞+=ϕ),1[)(,但因|||)()(|x x x x ''-'=''ϕ-'ϕ,所以ϕ不是压缩映射.(注:这也可根据压缩映射原理来说明,由x x =+1无解,即ϕ没有不动点,故ϕ不是压缩映射.)(2) 例如]1,1[,12)(-=∈+=ϕD x x x .它虽然满足)50(||21|)()(|.=''-'=''ϕ-'ϕq x x x x ,但因D D ⊄⎥⎦⎤⎢⎣⎡=ϕ23,21)(,故此ϕ仍不是一个压缩映射. □ 13.讨论b a ,取怎样的值时,能使下列函数在指定的区间上成为一个压缩映射: (1)],[,)(1b a x x x ∈=ϕ; (2)],[,)(22a a x x x -∈=ϕ; (3)],[,)(3b a x x x ∈=ϕ; (4)],0[,)(4a x b ax x ∈+=ϕ.解 (1)由|||)()(|11x x x x ''-'=''ϕ-'ϕ,可知对任何b a ,,1ϕ在],[b a 上都不可能是压缩映射.(2)首先,只有当10≤≤a 时,才能使],[],0[)],[(22a a aa a -⊂=-ϕ.其次,由于对任何],[,a a x x -∈'''都有||2|||||)()(|22x x a x x x x x x ''-'<''-'⋅''+'=''ϕ-'ϕ,因此只要取120<=<a q ,即210<<a ,就能保证2ϕ在],[a a -上为一压缩映射.(3) 由],[],[)],[(3b a b a b a ⊂=ϕ,可知b a ≤≤≤10.再由||21||||x x ax x x x x x ''-'<''+'''-'=''-',又可求得21>a ,即41>a .所以,当取b a ≤≤<141时,就能保证3ϕ在],[b a 上为一压缩映射.(4) 由于0>a ,因此可由a b ab ax b ≤+≤+≤≤20,解出a a ≤2( 即10≤<a ),0≥b .再由||||x x a b x a b x a ''-'=-''-+',可见只要0,10≥<<b a ,就能保证4ϕ在],0[a 上为一压缩映射. □14.试用不动点方法证明方程0ln =+x x 在区间[]3/2,2/1上有惟一解;并用迭代法求出这个解(精确到四位有效数字).解 若直接取x x x x x ln )ln ()(-=+-=ϕ,则因∈>≥=ϕ'x x x ,1231|)(|[]3/2,2/1,可知ϕ在[]3/2,2/1上不是压缩映射.为此把方程改写成xx -=e ,并设xxx x x --=--=ϕe e )()(.由于在[]3/2,2/1上 11|||)(|<≤-=ϕ'-eexx ,且[][]3/2,2/1],[)3/2,2/1(2/13/2⊂=ϕ--ee,所以xx -=ϕe)(在[]3/2,2/1上为一压缩映射,且在[]3/2,2/1上有惟一不动点.取2/10=x ,按kx k x -+=e1迭代计算如下:k k x k k x k k x所以,方程xx -=e 即0ln =+x x 的解(精确到四位有效数字)为17650.=*x . □0 1 2 30.5 0.6065 0.5452 0.5797 4 5 6 7 0.5601 0.5712 0.5649 0.568415 16 170.5672 0.5671 0.567115.设 nB f ℜ→:,其中{}rx x x B n≤ρℜ∈=),(|0为一个n维闭球(球心为0x ).试证:若存在正数)10(<<q q ,使对一切B x x ∈''',,都有||||||)()(||x x q x f x f ''-'≤''-',r q x x f )1(||)(||00-≤-,则f 在B 中有惟一的不动点.证 显然,只需证得了B B f ⊂)(,连同条件便知f 在B 上为一压缩映射,从而有惟一的不动点.现证明如下:)(,x f y B x =∈∀.由r x x ≤-||||0,以及题设条件的两个不等式,得到.r r q r q r q x x q x x f x f x f x y =-+≤-+-≤-+-≤-)1()1(||||||)(||||)()(||||||00000这表示B x f y ∈=)(,即B B f ⊂)(. □。