数字信号处理 第三章 图像信号分析基础
《数字信号处理》 完整加精版

采用抽象算法表达:由软件程序虚拟实现。 在采用硬件电路实现时,由于不需要考虑 物理环境对信号的影响,可以在设计中尽可
能采用低功耗高密度集成。
数字系统的特点
信号采用数字序列表达后,对模拟信号难以 进行的很多处理能够方便地实现,例如: 对信号的乘法调制和各种编码调制、信号的时 间顺序处理、信号的时间压缩/扩张、复杂标准 信号的产生…
时间变量与对应的函数值采用两个相等长度的序列 (一维向量)表示。 两个序列可以进行直接数值设臵:
例:n=[0 1 2 3 4 5 6 7];
x=[1 2 4 6 5 3 1 0];
数字信号的MATLAB表达
坐标区间设臵: n=[n1:n2] 只取整数,设定起点和终点;
信号函数设臵:其序列长度由n序列限定; x=3*n x=exp(j*(pi/8)*n)
设臵好坐标序列t和信号序列x后,可以采 用下列作图语句画出连续时间信号图形: plot(t,x) 该语句通过将离散的信号点之间用直线连 接得到连续图形。
模拟信号的作图表达
例:MATLAB程序
t=[0:0.1:10];x1=[zeros(1,30) ones(1,40) zeros(1,31)]; x2=2-0.3*t;x3=exp(j*(pi/8)*t);x4=exp(-0.2*t).*cos(2*pi*t);
欠采样导致的问题
s N
若原始频谱与镜像频谱混叠,产生混叠失真,则
信号不可恢复!
采样定理
待采样信号必须为带限信号
X 0
M
采样频率应大于信号最高频率的2倍
2 s 2M N Ts
Nyquist 频率
重建滤波器(低通)截止频率应满足:
数字信号处理 第三章 图像信号分析基础讲解

对于连续图像,定义阈值面积函数A(F)为具有灰 度级F的所有轮廓线所包围的面积。对于数字图 像,任一灰度级F的面积函数A(F)即大于或等于 灰度值F的像素点的个数。
曝光过强(过弱)会导致大片白色(黑色),丢失 明暗、对比度、纹理等细节信息,即使采用插值 算法,也难以准确恢复。此时将在直方图的一端 或两端产生尖峰。
3.1.5 灰度直方图
直方图是一幅图像中各像素灰度值出现次数(或 频数)的统计结果,它只反映该图像中不同灰度 值出现的次数(或频数),而未反映某一灰度值 像素所在位置。也就是说,它只包含了该图像中 某一灰度值的像素出现的概率,而丢失了其所在
的卷积。 水印、验证码
三、减法运算
将多幅图像的对应点相减得到新图像。 可去除图像中不需要的加性图案。 可用于运动检测。 可以用来计算物体边界位置的梯度。 新图像的灰度直方图为两个原始图像灰度
直方图的卷积。
四、乘除法运算
乘法运算可以用来去除原始图像中的一部 分:首先构造一副掩膜图像,在需要保留 区域,图像灰度值为1,而在被去除区域, 图像灰度值为0;然后将掩膜图像乘原始 图像。
显然, 若a 1,b 0,图象像素不发生变化; 若a 1,b 0,图象所有灰度值上移或下移; 若a 1,输出图象对比度增强; 若0 a 1,输出图象对比度减小; 若a 0,暗区域变亮,亮区域变暗,图象求补。
三、非线性点运算
s
s
s
O
r
O
r
O
r
s
s
s
O
r
O
数字信号处理基础-ppt课件信号分析与处理

4.filtering modified the spectrum of a signal by eliminating one or more frequency elements from it.
5.digital signal processing has many applications, including speech recognition,music and voice synthesis,image processing,cellular phones,modems,and audio and video compression.
2020/4/13
返回
第2章 模数转换和数模转换
2.1 简单的DSP系统(A Simple DSP System) 2.2 采样(Sampling) 2.3 量化(Quantization) 2.4 模数转换(Analog-to-Digital Conversion) 2.5 数模转换(Digital-to-Analog Conversion) 小结 (Chapter Summary)
2020/4/13
1.5 语音、音乐、图像及其他 1.5 SPEECH,MUSIC,IMAGES,AND MORE
DSP在许多领域都有惊人的应用,并且应用的数量与日俱增。
1)利用数字语音信号(speech signals)中的信息可以识别连续语 音中的大量词汇。
2)DSP在音乐和其他声音处理方面有着重要的作用。
数字图像处理与分析

数字图像处理与分析数字图像处理与分析是一门涉及到数字信号处理、计算机科学、数学和物理学等多个领域的交叉学科。
它使用计算机对数字图像进行处理、分析和应用,既可以改善图像的质量,也可以提取出有用的信息并进行量化分析。
随着数字摄影技术的发展和计算机技术的普及,数字图像处理与分析在生产制造、医学、航空航天、气象地理等领域里得到了广泛的应用。
一、数字图像基础数字图像是由像素点组成的二维阵列,每个像素点代表一个灰度值或颜色值。
图像的分辨率取决于像素的数量,不同的颜色模式可以用不同的方式表示图像中像素的颜色。
灰度图像中每个像素用一个8位二进制数(称为灰度值)表示图像中的亮度,颜色图像则需要三个颜色通道来表示每个像素的颜色。
在数字图像中,可以通过使用图像处理算法来改善图像质量、增强图像细节、提取图像特征以及进行图像分析等处理。
二、图像处理算法图像处理算法是指将数字图像处理任务转换为数学运算的方法。
常见的图像处理算法包括:图像平滑、图像锐化、边缘检测、二值化、形态学处理、频域处理和特征提取等。
其中,图像平滑是为了平滑噪声和细节而进行的处理,图像锐化则是为了提高图像边缘的清晰度和对比度;边缘检测用于在图像中找到物体的边缘并提取有用信息;二值化将图像中的灰度值转换为黑白值,常用于目标检测;形态学处理可以用于填充、锐化、膨胀、腐蚀等操作;频域处理可以在频域中进行图像滤波、增强、去除噪声等处理;特征提取是从图像中提取有意义的信息,用于进一步分析和识别目标等。
三、图像分析图像分析是指使用图像处理算法自动或半自动地解释和理解图像。
图像分析的目的是将数字图像转换为可用于决策和控制的信息,常用于图像识别、目标检测和量化分析等领域。
图像识别可以通过对目标的特征进行匹配来实现,如通过比对目标的轮廓或纹理来进行分类。
目标检测可通过在图像中寻找符合目标特征的像素来实现,如寻找颜色、大小或形状等特征。
量化分析可通过对目标的特征数据进行统计和分析来实现,如测量目标大小、形状、颜色或纹理等。
数字信号处理的基础知识

数字信号处理的基础知识数字信号处理(Digital Signal Processing,简称DSP)是指用数字技术对模拟信号进行处理和分析的一种信号处理方式。
它广泛应用于通信、音频处理、图像处理、雷达信号处理等领域。
本文将介绍数字信号处理的基础知识,包括离散信号和离散时间的概念、采样和量化、数字滤波器以及离散傅立叶变换等内容。
一、离散信号和离散时间在数字信号处理中,信号被看作是在特定时间点上取得离散值的序列,这样的信号称为离散信号。
离散时间则是指在一系列有限时间点上取样的时间。
采样是将连续信号转化为离散信号的过程,通过在一定时间间隔内对模拟信号进行采样,得到离散的信号值。
在采样过程中,采样频率的选择需要根据信号频率的特点来确定,以避免信息的损失。
采样后的信号经过量化,将离散信号的幅度近似表示为有限数量的离散值。
二、数字滤波器数字滤波器是数字信号处理的重要组成部分,用于通过增强或减弱信号的某些频率分量来处理信号。
常见的数字滤波器包括无限脉冲响应滤波器(Infinite Impulse Response,简称IIR)和有限脉冲响应滤波器(Finite Impulse Response,简称FIR)。
无限脉冲响应滤波器是一种反馈滤波器,其输出和输入之间存在无限多个时刻的依赖关系;有限脉冲响应滤波器则是一种前馈滤波器,其输出仅依赖于有限个时刻的输入。
数字滤波器的设计和参数选择需要根据应用的需求和信号特性进行。
三、离散傅立叶变换离散傅立叶变换(Discrete Fourier Transform,简称DFT)是数字信号处理中常用的分析工具。
它将离散信号变换为复数序列,反映了信号在不同频率上的成分。
DFT的快速计算算法即快速傅立叶变换(Fast Fourier Transform,简称FFT),通过巧妙的运算方法大幅度降低了计算复杂度,使得实时处理大规模信号的应用成为可能。
离散傅立叶变换广泛应用于信号滤波、频谱分析、编码压缩等领域。
数字信号处理高西全课后答案ppt

详细描述
线性时不变系统是指系统的输入和输出之间存在线性关系,并且系统的特性不随时间变化而变化。这种系统的行为可以用线性常系数微分方程来描述,同时它的输出不依赖于输入的时间函数,只依赖于输入的初始状态。
线性时不变系统
VS
频域分析可以揭示信号的频率成分和频率域中的每个成分与原始信号之间的关系。通过在频域中对信号进行分析和处理,可以实现信号的滤波、去噪、压缩和恢复等功能。
频域分析在信号处理、图像处理、通信系统等领域得到广泛应用。例如,在图像处理中,频域分析可以用于图像滤波、边缘检测等任务;在通信系统中,频域分析可用于调制解调、频谱分析等。
详细描述
04
第四章 傅里叶变换与频域分析
傅里叶变换的定义
傅里叶变换是一种将时间域信号转换到频域的方法,通过将信号分解成一系列不同频率的正弦和余弦函数的线性组合。
傅里叶变换的性质
傅里叶变换具有一些重要性质,包括线性、对称性、可逆性、Parseval等式等。这变换的定义与性质
离散时间信号
定义
如果信号仅在离散时间点上有定义,则该信号称为离散时间信号。
例子
数字音频、图像数据等。
数学表示方法
通常使用序列形式来表示,例如y[n] = sin(n)。
01
03
02
连续时间信号的数学表示方法
离散时间信号的数学表示方法
其他表示方法
信号的数学表示方法
03
第三章 系统分析基础
总结词
快速傅里叶变换(FFT)算法的基本思想
根据算法实现方式的不同,可以分为按时间抽取(DIT)和按频率抽取(DFT)两种FFT算法。
学习使用MATLAB进行信号处理和图像处理

学习使用MATLAB进行信号处理和图像处理信号处理和图像处理是数字信号处理中的重要分支领域,在现代技术和工程中具有广泛的应用。
MATLAB作为一种强大而灵活的软件工具,已被广泛应用于信号处理和图像处理的研究和应用中。
本文将介绍学习使用MATLAB进行信号处理和图像处理的基本知识和方法。
第一章:MATLAB的基本介绍MATLAB是一种矩阵计算和技术计算的工具,具有强大的数值计算、图像处理和数据分析能力。
在信号处理和图像处理中,MATLAB提供了丰富的函数和工具箱,方便用户进行各种信号处理和图像处理的操作。
本章将介绍MATLAB的基本操作、函数和工具箱的使用方法。
第二章:信号处理基础信号处理是将信号进行获取、采样、传输、处理和分析的过程。
本章将介绍信号处理的基础知识,包括采样定理、信号表示方法、信号滤波和频谱分析等内容。
通过MATLAB中的函数和工具箱,可以实现信号的采样、滤波、频谱分析和可视化等功能。
第三章:图像处理基础图像处理是将数字图像进行获取、增强、压缩、恢复和分析的过程。
本章将介绍图像处理的基础知识,包括数字图像的表示与存储、图像增强、图像压缩和图像恢复等内容。
通过MATLAB中的函数和工具箱,可以实现图像的灰度转换、增强、滤波、压缩和恢复等功能。
第四章:MATLAB在信号处理中的应用本章将介绍MATLAB在信号处理中的具体应用,包括信号的滤波、频谱分析、窗函数设计、时频分析和数字滤波器设计等内容。
通过MATLAB中的信号处理工具箱和函数,可以实现各种信号处理算法和技术的应用和实现。
第五章:MATLAB在图像处理中的应用本章将介绍MATLAB在图像处理中的具体应用,包括图像增强、图像滤波、图像分割、图像压缩和图像恢复等内容。
通过MATLAB中的图像处理工具箱和函数,可以实现各种图像处理算法和技术的应用和实现。
第六章:MATLAB在混合信号和图像处理中的应用本章将介绍MATLAB在混合信号和图像处理中的具体应用,包括音频信号处理、视频信号处理和声音图像处理等内容。
数字图像处理 03图像变换(DCT&DWT变换)

3.3.1 一维离散余弦变换
正变换: f (x)为一维离散函数, x = 0,1,",N −1
∑ F (0) =
1
N −1
f (x) ,
N x=0
u=0
∑ F (u) =
2 N
N −1 x=0
f
(
x)
cos
⎡ ⎢⎣
π
2N
(2x
+
1)u
⎤ ⎥⎦
,
u = 1,2,", N −1
反变换:
∑ f (x) =
+ 1)u
⎤ ⎥⎦
∑ +
2 N
N −1 v=1
F
(0,
v)
cos⎢⎣⎡
π
2N
(2 y +1)v⎥⎦⎤
∑ ∑ +
2 N
N −1 u =1
N −1 v=1
F
(u,
v)
cos⎢⎣⎡
π
2N
(2x
+ 1)u ⎥⎦⎤
cos⎢⎣⎡
π
2N
(2 y
+ 1)v ⎥⎦⎤
6
数字图像处理讲义,2006,陈军波©中南民族大学
3.3离散余弦变换(DCT)
23
数字图像处理讲义,2006,陈军波©中南民族大学
3.4 小波变换简介
S
滤波器组
低通
高通
A
D
图3-19 小波分解示意图
24
数字图像处理讲义,2006,陈军波©中南民族大学
3.4 小波变换简介
在小波分析中,近似值是大的缩放因子计算的系数,表示信 号的低频分量,而细节值是小的缩放因子计算的系数,表示信号 的高频分量。实际应用中,信号的低频分量往往是最重要的,而 高频分量只起一个修饰的作用。如同一个人的声音一样, 把高频 分量去掉后,听起来声音会发生改变,但还能听出说的是什么内 容,但如果把低频分量删除后,就会什么内容也听不出来了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连续图像的灰度直方图可定义为:
A(F) A(F F) d
h(F) lim
A(F)
F 0
F
dF
3.1.5 灰度直方图
一幅连续图像的灰度直方图是其面积函数 的导数的负值。
若将图像看作一个二维随机变量,则面积 函数相当于该随机变量的分布函数,而灰 度直方图相当于其概率密度函数。
随灰度级F的增加,对应的面积A(F)减小。 对于灰度数字图像,任一灰度级F的面积
第三章 图像信号分析基础
3.1 图像信号的数学表示
3.1.1 信号的采样 3.1.2 信号的量化 3.1.3 图像信号的采样 3.1.4 图像信号的量化 3.1.5 灰度直方图
3.1.1 信号的采样
对一时间t为自变量的实数值域内的连续函 数f(t)(信号)以dt为采样周期进行采样, 得到一个数列,即采样值:
离散时间序列、采样数据序列)。 因果系统。
T (t) (t - nT) n-
3.1.1 信号的采样
采样前后的信号之间的关系为
f *(t) f (nT ) (t nT ) n 对一个连续信号进行采样,即让该连续
信号与一个等间隔的脉冲序列共同作用。
任意一个一维序列可以表示成一维单位 冲激的移位加权和。x(nT)为x(t)信号在nT时 刻的值,即权。
f (mT1, nT2 ) (i mT1, j nT2 )
m n
一般取T1=T2
任意一个二维序列可以表示成二维单位冲激的移位加权和。
3.1.1 信号的采样
二维采样矩阵
3.1.1 信号的采样
对模拟信号采样使它离散化的程度取决于采 样器的采样周期T。
采样周期越小,得到的采样序列就越接近原 来的信号,数据量越大。
显然, 若a 1,b 0,图象像素不发生变化; 若a 1,b 0,图象所有灰度值上移或下移; 若a 1,输出图象对比度增强; 若0 a 1,输出图象对比度减小; 若a 0,暗区域变亮,亮区域变暗,图象求补。
三、非线性点运算
s
s
s
O
r
O
r
O
r
s
s
s
O
r
O
r
O
r
三、非线性点运算
非线性点运算的设计思路:基本数学函数的 运用与组合,如三角函数、指数函数、对 数函数、分段函数。
曝光过强(过弱)会导致大片白色(黑色),丢失 明暗、对比度、纹理等细节信息,即使采用插值 Байду номын сангаас法,也难以准确恢复。此时将在直方图的一端 或两端产生尖峰。
3.1.5 灰度直方图
直方图是一幅图像中各像素灰度值出现次数(或 频数)的统计结果,它只反映该图像中不同灰度 值出现的次数(或频数),而未反映某一灰度值 像素所在位置。也就是说,它只包含了该图像中 某一灰度值的像素出现的概率,而丢失了其所在
采样周期大于某个限制时,不能从采样序列 恢复原来的信号。
明文空间vs密文空间
3.1.1 信号的采样
采样定理:对一个频谱有限( max )的连续 信号f(t)进行采样,当采样频率满足
s
2max,s
2
T
条件时,采样序列便能无失真地恢复原来的 连续信号。
3.1.2 信号的量化
连续信号的采样常用A/D转换实现。 A/D转换器包括采样器和量化器两部分组成。 量化器的作用是将离散的模拟量x(n)按照一定的
一、基本概念 二、加法运算 三、减法运算 四、乘除法运算
一、基本概念
代数运算指对两幅或多幅图像进行点对点的四则 运算得到一幅新图像,其中四则运算一般是两幅 或多幅图像的对应点的灰度值的代数运算。
Cx,y Ax,y Bx,y Cx,y Ax,y Bx,y Cx,y Ax,y Bx,y Cx,y Ax,y Bx,y
则有
g(x, y) f (x, y)
即图像不发生任何空间变化。
二、空间变换算法
若令 (x, y) x x0 (x, y) y y0
即
(x, y) 1 0 x0 x
(x, y) 0
1
y0
y
1 0 0 1 1
pr (rk )
nk n
0 rk 1 k 0,1,2,,l 1
其中,归一化操作并不是必须的。
3.1.5 灰度直方图
轮廓线提供了一个确立图像中简单物体边界的 有效方法,使用轮廓线作为边界的技术称为阈值 法。
假设有一图像的直方图如下,背景是浅色的, 物体是深色的,则取双峰之间的谷底灰度作为阈 值可以得到合理的边界。
3.1.5 灰度直方图
Pr(r)
Pr(r)
0
1r
0
(a)
1r (b)
例图:图像灰度分布概率密度函数
3.1.5 灰度直方图
从图像灰度级的分布可以看出一幅图像的灰度分布 特性。例如,从上图中(a)和(b)两个灰度分布概 率密度函数中可以看出: (a)的大多数像素灰度 值取在较暗的区域,所以这幅图像肯定较暗,一 般在摄影过程中曝光偏弱就会造成这种结果;(b) 图像的像素灰度值集中在亮区,因此,图像(b)将 偏亮,一般在摄影中曝光偏强将导致这种结果。 当然,从两幅图像的灰度分布来看图像的质量均 不理想。
3.1.5 灰度直方图
直方图是面积函数的导数,在谷底附近,直方 图的值相对较小,意味着面积函数随阈值灰度 级的变化很缓慢,若选择谷底处的灰度作为阈 值,将可以使其对物体边界的影响达到最小, 使测量物体面积的误差最小。
C#代码
Bitmap MyBitmap = new Bitmap(500, 500); int red = MyBitmap.GetPixel(1, 1).R; int green = MyBitmap.GetPixel(1, 1).G; int blue = MyBitmap.GetPixel(1, 1).B;
二、加法运算
将多幅图像的对应点相加得到新图像。 可以将一幅图像内容加到另一幅图像上,以达到
二次暴光(double exposure)的要求。 可以对同一场景的多幅图像求平均值,以降低加
性(additive)随机噪声。 定理:对M幅加性噪声图像进行平均,可以使图
像的平方信噪比提高M倍。 新图像的灰度直方图为两个原始图像灰度直方图
3.2 图像运算
3.2.1、点运算 3.2.2、代数运算 3.2.3、几何运算
3.2.1 点运算
一、基本概念 二、线性点运算 三、非线性点运算 四、点运算与灰度直方图的关系 五、点运算的作用
一、 基本概念
点运算(point operation)可简单理解为图像像素点 的运算,即按照需要改变像素灰度值的运算,其输入 和输出均为一幅数字图像,且输入像素和输出像素一 一对应,不改变图像的空间关系
四、点运算与灰度直方图
灰度直方图是目的 点运算是使图像满足预期灰度直方图的过
程与方法
五、点运算的作用
点运算常用于增强图像中感兴趣的那部分的 对比度(对比度增强或对比度扩展);也 可以根据灰度的不同级把一幅图像划分成 若干部连续的区域,以便进一步确定它们 的边界,画出轮廓线。
3.2.2 代数运算
除法运算可用于多光谱遥感运算的比值计 算。
3.2.3 几何运算
一、基本概念 二、空间变换算法 三、灰度插值算法
一、基本概念
图像点运算和代数运算不改变图像中各部 分的几何关系。
图像几何运算会改变各部分的空间位置关 系。
图像几何运算的结果一般表现为场景中的 物体在图像内的移动,如转动、扭曲、倾 斜、拉伸、缩放、错切等等。
函数A(F)的值也就是大于等于该灰度值的 像素点的个数。
3.1.5 灰度直方图
1 2 34 5 6 6 4 32 2 1 1 6 64 6 6 3 4 56 6 6 1 4 66 2 3 1 3 64 6 6
1 2 34 5 6 5 4 5 6 2 14
3.1.5 灰度直方图
设r代表图像中像素灰度级,作归一化处理后,r将 被限定在[0, 1]之内。在灰度级中,r=0代表黑, r=1代表白。对于一幅给定的图像来说,每一个 像素取得[0, 1]区间内的灰度级是随机的,也 就是说r是一个随机变量。假定对每一瞬间,它 们是连续的随机变量,那么就可以用概率密度函 数pr(r)来表示原始图像的灰度分布。如果用直角 坐标系的横轴代表灰度级r,用纵轴代表灰度级 的概率密度函数pr(r),这样就可以针对一幅图像 在这个坐标系中作出一条曲线来。这条曲线在概 率论中就是概率密度曲线。
几何运算可能会导致图像的断裂或支解等 现象,因此需要灰度插值算法。
二、空间变换算法
几何运算的空间变换算法一般定义如下:
g(x, y) f [(x, y), (x, y)]
其中
(x, y), (x, y)
分别表示在水平和垂直两个方向上的变 换。
二、空间变换算法
若令
(x, y) x (x, y) y
任一幅图像,都能惟一地确定出一幅与它对应的 直方图, 但不同的图像,可能有相同的直方图。 也就是说,图像与直方图之间是多对一的映射关 系。
由于直方图是对具有相同灰度值的像素统计得到 的, 因此,一幅图像各子区的直方图之和就等 于该图像全图的直方图。
3.1.5 灰度直方图
对于数字图像,灰度直方图可按如下方 法计算
的卷积。 水印、验证码
三、减法运算
将多幅图像的对应点相减得到新图像。 可去除图像中不需要的加性图案。 可用于运动检测。 可以用来计算物体边界位置的梯度。 新图像的灰度直方图为两个原始图像灰度