元素周期表规律总结

合集下载

化学元素周期表的规律总结

化学元素周期表的规律总结

化学元素周期表的规律总结1、同一周期内,从左到右,元素核外电子层数相同,最外层电子数依次递增,原子半径递减,其中0族元素除外。

2、同一族中,由上而下,最外层电子数相同,核外电子层数逐渐增多,原子半径增大,原子序数也会随之递增,元素金属性递增,非金属性则递减。

元素周期表规律1、原子半径的规律(1)除了第1周期外,其他周期元素(惰性气体元素除外)的原子半径随原子序数的递增而减小;(2)同一族的元素从上到下,随着电子层数增多,原子的半径也会随之增大。

2、元素化合价的规律(1)除第1周期外,同周期从左到右,元素最高正价由碱金属+1递增到+7,非金属元素负价由碳族-4递增到-1(氟无正价,氧无+6价,除外);(2)同一主族的元素的最高正价、负价均相同。

3、单质的熔点规律(1)同一周期元素随原子序数的递增,元素组成的金属单质的熔点递增,非金属单质的熔点递减;(2)同一族元素从上到下,元素组成的金属单质的熔点递减,非金属单质的熔点递增。

4、元素的金属性与非金属性规律(1)同一周期的元素从左到右金属性递减,非金属性递增;(2)同一主族元素从上到下金属性递增,非金属性递减。

5、最高价氧化物和水化物的酸碱性规律元素的金属性越强,其最高价氧化物的水化物的碱性越强;元素的非金属性越强,最高价氧化物的水化物的酸性越强。

6、非金属气态氢化物规律元素非金属性越强,气态氢化物越稳定。

同周期非金属元素的非金属性越强,其气态氢化物水溶液一般酸性越强;同主族非金属元素的非金属性越强,其气态氢化物水溶液的酸性越弱。

7、单质的氧化性、还原性规律一般元素的金属性越强,其单质的还原性越强,其氧化物的氧离子氧化性越弱;元素的非金属性越强,其单质的氧化性越强,其简单阴离子的还原性越弱。

8、热稳定性规律同一周期自左向右依次增加,同一族自上而下减少,与非金属元素电负性变化规律一样。

元素周期表(word高清打印版)--拼音注释元素读音--原周期表规律总结

元素周期表(word高清打印版)--拼音注释元素读音--原周期表规律总结

一、元素周期表基本排列规律1、原子半径由左到右依次减小,上到下依次增大。

2、元素周期表有7个周期,16个族。

每一个横行叫作一个周期,每一个纵行叫作一个族(VIII族包含三个纵列)。

这7个周期又可分成短周期(1、2、3)、长周期(4、5、6、7)。

3、同一周期内,从左到右,元素核外电子层数相同,最外层电子数依次递增,原子半径递减(零族元素除外)。

失电子能力逐渐减弱,获电子能力逐渐增强,金属性逐渐减弱,非金属性逐渐增强。

4、同一族中,由上而下,最外层电子数相同,核外电子层数逐渐增多,原子半径增大,原子序数递增,元素金属性递增,非金属性递减。

二、电子排布规律最外层电子数为1或2的原子可以是IA族、ⅡA族或副族元素的原子;最外层电子数是3~8的原子一定是主族元素的原子,且最外层电子数等于主族的族序数。

序数差规律(1)同周期相邻主族元素的“序数差”规律①除第ⅡA族和第ⅢA族外,其余同周期相邻元素序数差为1。

②同周期第ⅡA族和第ⅢA族为相邻元素,其原子序数差为:第二、第三周期相差1,第四、第五周期相差11,第六、第七周期相差25。

(2)同主族相邻元素的“序数差”规律①第二、第三周期的同族元素原子序数相差8。

②第三、第四周期的同族元素原子序数相差有两种情况:第IA族和第ⅡA族相差8,其它族相差18。

③第四、第五周期的同族元素原子序数相差18。

④第五、第六周期的同族元素原子序数镧系之前相差18,镧系之后相差32。

⑤第六、第七周期的同族元素原子序数相差32。

三、奇偶差规律元素的原子序数与该元素在周期表中的族序数和该元素的主要化合价的奇偶性一致。

若原子序数为奇数时,主族族序数、元素的主要化合价均为奇数,反之则均为偶数(但要除去N元素,它有多种价态,Cl元素也有ClO2)。

零族元素的原子序数为偶数,其化合价视为0。

四、元素金属性、非金属性的强弱规律(1)金属性(原子失电子)强弱比较①在金属活动性顺序中位置越靠前,金属性越强。

化学元素周期表的规律总结

化学元素周期表的规律总结

化学元素周期表的规律总结以《化学元素周期表的规律总结》为标题,本文将对化学元素周期表的规律进行综述性总结。

一、元素周期表的结构化学元素周期表是现代化学中重要的基本工具,也是学习和发现元素性质的最重要的手段之一。

化学元素周期表是按元素的原子序数对元素进行编排的一种构造,分为六排,每排又分为七组,是一个三维的结构。

每排的元素性质,有规则的变化。

每组元素的最外层电子排数相等,前五组为s、p、d、f、g,以此类推,形成“8-8-8”的结构。

二、元素周期表的规律1、周期定律:通过对比组内元素的某些性质,发现循环周期增加,这些性质变化的规律也随之而变化,形成“连续交替”现象。

2、元素排列规律:按照元素周期表的排布,原子序数从小到大,相邻元素之间性质有一定的变化规律,在同一个周期内电荷极性升高,从而可以以此确定元素的原子序数。

3、元素相似性质规律:元素周期表上的元素,在原子序数相同的情况下,性质也会大致相同,两两交替的元素的性质有如下的关系:电荷会比上一个元素的电荷增加1,原子体积比上一个元素减少,沸点会比上一个元素增加,熔点沿着周期横轴发生波动。

三、元素周期表的作用1、元素周期表可以对原子核结构、原子半径、离子解和化合价等元素性质直接起到概括汇总的作用,大大的提高了化学研究的效率,使我们更加清晰的认识化学元素的结构及性质,从而更好的研究化学反应。

2、化学元素周期表可以把元素根据某种规律排列,同一行元素相互比较,更为方便地发现它们之间的联系,比如确定元素的原子序数、确定多原子分子的分子结构。

四、结论化学元素周期表是我们进行化学研究实验时必不可少的工具,它可以把元素根据某种规律排列,研究元素的性质及结构,用于记忆元素的原子序数、元素的熔点、沸点等信息,从而使我们更加系统的理解元素的性质和结构。

通过学习化学元素周期表,还能更好的研究化学反应,更加清晰的认识原子结构,进而为我们未来的化学应用奠定基础。

元素周期表的构成和规律

元素周期表的构成和规律

元素周期表的构成和规律一、元素周期表的构成1.元素周期表是一个表格,其中横向称为周期,纵向称为族。

2.周期表中的元素按照原子序数递增排列,原子序数相同的元素位于同一周期。

3.周期表共有7个周期,从第1周期到第7周期,周期数越大,元素的原子序数越大。

4.周期表共有18个族,包括7个主族、7个副族、1个0族和1个第Ⅷ族。

5.主族元素包括第1A到第7A族,副族元素包括第1B到第7B族,0族元素为稀有气体,第Ⅷ族元素为过渡金属。

二、元素周期表的规律1.周期规律:同一周期内,元素的原子半径随着原子序数的增加而减小;元素的金属性随着原子序数的增加而减弱,非金属性随着原子序数的增加而增强。

2.族规律:同一族元素具有相似的化学性质,族数相同的元素具有相同的最外层电子数。

3.电子层数规律:元素周期表中,电子层数等于周期数。

4.价电子规律:元素的价电子数等于其族序数。

5.原子半径规律:同一主族元素,原子半径随着周期数的增加而增大;同一周期元素,原子半径随着族序数的增加而增大。

6.金属性和非金属性规律:同一周期内,金属性随着族序数的增加而减弱,非金属性随着族序数的增加而增强;同一族内,金属性随着周期数的增加而增强,非金属性随着周期数的增加而减弱。

7.化合价规律:主族元素的化合价等于其最外层电子数;副族元素的化合价较为复杂,具有一定的可变性。

三、重要概念1.原子序数:元素在周期表中的序号,等于其核内质子数。

2.电子层:原子中电子分布的层次,等于元素周期表中的周期数。

3.价电子:原子最外层参与化学反应的电子数,等于元素周期表中的族序数。

4.主族元素:周期表中第1A到第7A族和第1B到第7B族的元素。

5.副族元素:周期表中第1B到第7B族的元素(除主族元素外)。

6.过渡金属:周期表中第Ⅷ族的元素。

7.稀有气体:周期表中0族的元素,具有稳定的电子层结构。

元素周期表是化学中的重要工具,通过其构成和规律,我们可以了解元素的性质、预测化学反应等。

(完整版)元素周期律知识点总结

(完整版)元素周期律知识点总结

中子N(核素) 原子核质子Z → 元素符号原子结构 : 决定原子呈电中性电子数(Z 个):化学性质及最高正价和族序数 体积小,运动速率高(近光速),无固定轨道核外电子 运动特征电子云(比喻) 小黑点的意义、小黑点密度的意义。

排布规律 → 电子层数 周期序数及原子半径表示方法 → 原子(离子)的电子式、原子结构示意图1.微粒间数目关系质子数(Z )= 核电荷数 = 原子数序原子序数:按质子数由小大到的顺序给元素排序,所得序号为元素的原子序数。

质量数(A )= 质子数(Z )+ 中子数(N )中性原子:质子数 = 核外电子数阳 离 子:质子数 = 核外电子数 + 所带电荷数阴 离 子:质子数 = 核外电子数 - 所带电荷数2.原子表达式及其含义 A 表示X 原子的质量数;Z 表示元素X 的质子数; d 表示微粒中X 原子的个数;c± 表示微粒所带的电荷数;±b 表示微粒中X 元素的化合价。

3.原子结构的特殊性(1~18号元素)1.原子核中没有中子的原子:11H 。

2.最外层电子数与次外层电子数的倍数关系。

①最外层电子数与次外层电子数相等:4Be 、18Ar ; ②最外层电子数是次外层电子数2倍:6C ;③最外层电子数是次外层电子数3倍:8O ;④最外层电子数是次外层电子数4倍:10Ne ;⑤最外层电子数是次外层电子数1/2倍:3Li 、14Si 。

3.电子层数与最外层电子数相等:1H 、4Be 、13Al 。

4.电子总数为最外层电子数2倍:4Be 。

5.次外层电子数为最外层电子数2倍:3Li 、14Si6.内层电子总数是最外层电子数2倍:3Li 、15P 。

4.1~20号元素组成的微粒的结构特点(1).常见的等电子体①2个电子的微粒。

分子:He 、H 2;离子:Li +、H -、Be 2+。

决定 X)(A Z 原子(A Z X) 原子核核外电子(Z 个) 质子(Z 个) 中子(A-Z)个 ——决定元素种类 ——决定同位素种类 ——最外层电子数决定元素的化学性质X A Z c ± d±b②10个电子的微粒。

元素周期表规律总结

元素周期表规律总结

元素周期表规律总结元素周期表是由俄罗斯化学家门捷列夫·门捷列耶夫在 1869 年首次提出的,它是化学中最常用的工具之一。

元素周期表将所有已知元素按照原子序数的顺序排列,使得相似性质的元素能够放在一起。

这个表格也展示了元素的化学性质和一些其他的信息。

在元素周期表中,元素周期的重复性是其最显著和最重要的特征之一。

这是由于元素周期表中每一行被称为一个周期,每一列被称为一个族。

每一个周期都有相似的化学性质,而这种相似性质的变化又会在下一个周期中重复。

元素周期表的规律主要有以下几个方面:1. 原子序数:元素周期表按照原子序数的递增顺序排列,即从左到右,从上到下。

原子序数是指元素中原子核中质子的数量,也就是元素的标志性数字。

元素周期表的原子序数从 1 开始,依次增加。

这样的排列方式使得元素周期表更具有系统性,并且便于进行比较和分类。

2. 原子量:元素周期表中的元素按照原子量的递增顺序排列。

原子量是指元素一个原子中质子和中子的总质量。

原子量的增加与元素的原子序数相关。

原子量也是元素周期表中元素分类的重要依据之一。

3. 周期性规律:元素周期表的周期性规律是其最重要的特征之一。

每一个周期都有相似的化学性质,包括和其他元素的反应性、化合价的变化等。

这使得元素周期表成为预测和研究元素性质的重要工具。

其中,周期性规律最为明显的是周期表的主族元素和周期表的过渡元素。

4. 原子半径:元素周期表中,原子半径随着电子层的增加而增加。

这是由于原子核的吸引力减弱、电子云的层次结构变得更复杂而导致的。

原子半径的大小不仅与元素的位置有关,还与周期表中元素的族别、主族元素和过渡元素等有关。

5. 电子亲和能和电离能:元素周期表中,原子的电子亲和能和电离能通常随着元素的原子序数的增加而变化。

电子亲和能是指一个原子在气态中获得一个电子成为阴离子时所释放出的能量,而电离能是指一个原子失去一个电子成为阳离子时所需的能量。

这些性质的变化与元素的电子结构和原子核的吸引力有关。

元素周期表的排列规律

元素周期表的排列规律元素周期表是化学领域中最为重要的工具之一,它以一种系统和有序的方式展示了元素的特性和性质。

元素周期表的排列规律不仅反映了元素的相似性,还揭示了元素的电子结构和化学行为。

本文将探讨元素周期表的排列规律,并分析其背后的科学原理。

一、周期与族元素周期表按照元素的原子序数(即元素的核中所含的质子数)从小到大排列。

元素周期表中的水平行称为周期,垂直列称为族。

每个周期包含一系列元素,而每个族则包含具有类似特性的元素。

根据元素周期表的排列规律,我们可以总结出以下几个规律。

1. 周期数与能级元素周期表中的周期数与元素的能级有关。

第一周期中只有两个元素,氢和氦,对应于它们所拥有的一个和两个能级。

第二周期中有8个元素,这些元素所拥有的能级增加到了2个。

依此类推,以往的周期表中一共有7个周期,分别对应着元素所拥有的能级数。

2. 周期趋势周期表中的周期趋势指的是元素特性随周期数变化的规律。

对于大部分元素而言,原子半径和离子半径随着周期数的增加而减小。

这是由于原子核中的质子数量增加,吸引电子的能力增强所致。

另外,原子电负性和电离能则呈现出相反的趋势,随周期数增加而增大。

3. 族特性元素周期表中的族特性指的是同一个族中元素的类似性。

同一族中的元素具有相似的化学性质,这是由于它们的电子结构相似。

典型的例子是1A族(碱金属)中的元素,它们都是非常活泼的金属。

而8A族(稀有气体)中的元素则非常稳定和不活泼。

二、元素的电子结构元素周期表的排列规律也反映了元素的电子结构。

每个元素都有一个原子核和围绕核旋转的电子。

这些电子分布在不同的能级和轨道中。

按照泡利不相容原理和阻塞原理,每个轨道能容纳的电子数是有限的。

元素周期表的排列方式确保了每个周期中的轨道数和能级数是与元素的电子结构相对应的。

例如,第一周期中的元素氢只有一个电子,它的电子结构为1s1。

第二周期中的元素锂具有3个电子,电子结构为1s2 2s1。

这种按照能级和轨道排列的方式使得每个元素的电子结构可以直观地理解和推导。

元素周期表的全部规律总结

元素周期表的全部规律总结元素周期表是化学中一个重要的基础工具,通过元素周期表可以展示元素的性质和规律。

在元素周期表中,元素按照其原子序数递增的顺序排列,同时具有一些规律,包括周期性表现和族内相似性等。

本文将总结元素周期表中的一些重要规律,帮助读者更深入地了解元素周期表的精彩之处。

周期性表现元素周期表中的元素按照原子序数大小排列,可以看到元素的性质会出现周期性变化。

其中,主要的周期性表现有原子半径、电离能、电负性和金属性等。

•原子半径:原子半径随着周期的增加而递减,在周期表的同一周期内,原子半径会从左至右递减。

这是因为原子核内的正电荷数目增加,吸引外层电子,使得原子半径减小。

而在周期表的同一族内,原子半径会从上至下递增。

原因是原子的外层电子层数增加,电子云外围更为扩散,导致原子半径增大。

•电离能:电离能是指从原子或离子中移去一个电子所需要的能量。

随着周期的增加,电离能会递增,在周期表的同一周期内,电离能会从左至右递增,而在同一族内,电离能会从上至下递减。

这是因为原子核的正电荷数目增加,电子与原子核之间的相互作用增强,因此需要更多的能量去移除外层电子。

•电负性:电负性是元素吸引电子的能力。

在周期表中,从左至右逐渐增大,从下至上逐渐减小。

在同一族内,电负性基本相同。

电负性高的元素更容易得到电子,而电负性低的元素更容易失去电子。

•金属性:元素周期表中,金属性随着周期的增加而递减。

在周期表的左侧是金属性最强的元素,例如金属元素钠、铜等;而在周期表的右侧是非金属元素,如氧、氟等。

组和周期的特点元素周期表中,元素被按照周期数和组数分组。

每个周期表示一个主能级,组数表示元素的价电子数,组内元素有着相似的性质,包括外层电子排布和化学性质。

•主A族元素:主A族元素的元素化合物中,元素以价电子原子形式存在。

主A族元素的氧化状态为1+。

主A族元素在化学反应中往往失去一个电子,形成+1价阳离子。

•主B族元素:主B族元素的元素化合物中,元素以价电子离子形式存在。

元素周期表规律总结(同一主族,对角线规则)

Al3+/Al,-1.66V)。

②铍和铝经浓硝酸处理都表现钝化,而其它碱土金属均易与硝酸反应。

③铍和铝都是两性金属,既能溶于酸也能溶于碱。

④氢氧化物均为两性,而其它碱土金属氢氧化物均为碱性。

⑤BeO和Al2O3都有高熔点和高硬度。

⑥铝和铍的氯化物是共价分子,能通过氯桥键形成双聚分子,易升华、易聚合,易溶于有机溶剂。

3、硼和硅的相似性。

B和Si虽是不同族元素,在周期表中处于相邻族的对角位置,由于离子极化作用相近(Si4+电荷高一些,但半径大;B3+电荷低一些,但半径小),性质上有许多相似之处。

①单质晶体都是高熔点原子晶体;与键强度相关。

②在自然界均以含氧化合物存在。

③卤化物都彻底水解,生成含B─O,Si─O键的化合物(硅酸、硼酸)④都有一系列氢化物,氢化物均有挥发性,不稳定。

⑤含氧酸都是弱酸,含氧酸盐都易水解对角线规则是从有关元素及其化合物的许多性质中总结出来的经验规律;对此可以用离子极化的观点加以粗略的说明。

同一周期最外层电子构型相同的金属离子,从左至右随离子电荷的增加而引起极化作用的增强;同一族电荷相同的金属离子,自上而下随离子半径的增大而使得极化作用减弱。

因此,处于周期表中左上右下对角线位置上的邻近两个元素,由于电荷和半径的影响恰好相反,它们的离子极化作用比较相近,从而使它们的化学性质比较相似。

由此反映出物质的结构与性质之间的内在联系。

三. 周期表中的变化规律(一) 同一元素:r -离子>r原子>r+离子>r2+离子(二) 同一周期1. 短周期:每一个短周期从左到右,有效核电荷依次增大,所以原子半径依次递减.2. 长周期:过渡元素自左至右,电子逐一填入(n-1)d层,而它对核的屏蔽作用较小,所以自左向右半径减小的幅度不如主族元素那么大.3. 内过渡元素:电子填入再次外层的(n-2)f层,由于f电子对核的屏蔽作用更小,使得原子半径由左至右收缩的平均幅度更小.比较短周期和长周期,相邻元素原子半径减小的平均幅度大致是非过渡元素>过渡元素>内过渡元素(~10pm)(~5pm)(<1pm)(三) 同一族1. 主族:同一主族由上而下,原子半径一般是增大的.因为同族元素原子由上而下电子层数增多,所以半径由上至下依次增大.2. 副族:副族元素由上至下,原子半径增大的幅度较小,特别是五,六周期的同族元素原子半径非常接近,这是由于后面要提到的镧系收缩效应所造成的结果.特殊元素集锦1、最活泼的金属元素、最高价氧化物对应的水化物碱性最强的元素、阳离子氧化性最弱的元素是铯(Cs)。

化学元素周期表的规律总结

化学元素周期表的规律总结化学元素周期表是化学家们构建的一个表格,用来描述原子的性质和组成。

它是以元素原子中电子结构不同来构建出来的,可以用来识别元素以及它们之间的关系。

化学元素周期表由元素原子中的量子数决定。

这些量子数可以用来表示原子的状态,包括它的电荷、构造、尺寸和性质。

另外,它还可以用来表示两个原子之间的关系,因为它们的状态会随量子数的变化而变化。

化学元素周期表有很多规律,主要分为五个类别。

第一、周期规律:周期表是一种系统性的划分,可以使我们了解元素在周期表中的组织情况。

周期规律规定,元素质子的数量依次增加,它们的特性也会随之稳定。

第二、组别规律:组别规律是周期表中一种明显的分层模式,它可以清楚的表明原子的性质和结构特征。

元素的组别划分可以根据元素本身的特性和化学性质来进行,它们的性质会随着从左到右排列而变化。

第三、相对原子质量规律:化学元素周期表中每一种元素的原子质量都是一定的,这种定律规定,元素在周期表中的排列是按照它们的相对原子质量来分布的。

第四、元素的特性规律:元素的特性规律是描述根据元素原子中构造和电荷分布所决定的特性随量子数变化而变化的规律。

这可以通过元素中电子结构和电荷密度来体现,因此,我们可以根据不同元素的量子数来推断它们的性质变化趋势。

第五、元素稳定性规律:化学元素稳定性规律规定,元素在周期表中的排列也会随量子数而改变,元素的稳定性也会随着量子数的变化而变化,这也是元素原子中电子结构变化的一个结果。

以上就是化学元素周期表的规律总结,可以看出,化学元素周期表提供了一种系统性的表示,有助于理解元素的特性。

此外,它也是理解物质的组成和变化规律的基础和工具。

只要掌握了化学元素周期表中的规律,就可以更好地了解物质的组成和特性,进而加深对元素之间关系的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识网络 中子N原子核质子Z 原子结构 :电子数(Z 个)核外电子 排布规律 → 电子层数 周期序数及原子半径表示方法 → 原子(离子)的电子式、原子结构示意图随着原子序数(核电荷数)的递增:元素的性质呈现周期性变化①、原子最外层电子的周期性变化(元素周期律的本质)元素周期律 ②、原子半径的周期性变化③、元素主要化合价的周期性变化④、元素的金属性与非金属性的周期性变化①、按原子序数递增的顺序从左到右排列;元素周期律和 排列原则 ②、将电子层数相同的元素排成一个横行; 元素周期表 ③、把最外层电子数相同的元素(个别除外)排成一个纵行。

①、短周期(一、二、三周期) 周期(7个横行) ②、长周期(四、五、六周期) 周期表结构 ③、不完全周期(第七周期) ①、主族(ⅠA~ⅦA 共7个) 元素周期表 族(18个纵行) ②、副族(ⅠB~ⅦB 共7个) ③、Ⅷ族(8、9、10纵行) ④、零族(稀有气体)同周期同主族元素性质的递变规律①、核外电子排布②、原子半径性质递变 ③、主要化合价④、金属性与非金属性⑤、气态氢化物的稳定性⑥、最高价氧化物的水化物酸碱性电子层数 相同条件下,电子层越多,半径越大。

判断的依据 核电荷数 相同条件下,核电荷数越多,半径越小。

决定原子呈电中性 编排依据 X)(A Z 七主七副零和八三长三短一不全最外层电子数 相同条件下,最外层电子数越多,半径越大。

微粒半径的比较 1、同周期元素的原子半径随核电荷数的增大而减小(稀有气体除外) 如:Na>Mg>Al>Si>P>S>Cl.2、同主族元素的原子半径随核电荷数的增大而增大。

如:Li<Na<K<Rb<Cs具体规律 3、同主族元素的离子半径随核电荷数的增大而增大。

如:F --<Cl --<Br --<I --4、电子层结构相同的离子半径随核电荷数的增大而减小。

如:F -> Na +>Mg 2+>Al 3+5、同一元素不同价态的微粒半径,价态越高离子半径越小。

如Fe>Fe 2+>Fe 3+①与水反应置换氢的难易②最高价氧化物的水化物碱性强弱金属性强弱 ③单质的还原性 ④互相置换反应元素周期表有7个周期,有16个族和4个区。

关键词:同一主族 对角线规则一、同一主族元素性质的递变规律同一主族元素结构和性质具有一定的相似性和递变性:从上到下原子半径逐渐增大, 失电子能力逐渐增强,得电子能力逐渐减弱,金属性逐渐增强,非金属性逐渐减弱,对应氢化物的稳定性逐渐减弱,最高价氧化物对应的水化物的酸性逐渐减弱,碱性逐渐增强。

下面以ⅠA 族碱金属和ⅢA 族卤素为例,介绍同主族元素自上而下性质递变规律。

①金属性逐渐增强, 如Li<Na<K<Rb<Cs ,自然界存在的元素中,铯的金属性最强;非 金属性逐渐减弱,如F>Cl>Br>I>At , 自然界存在的元素中,氟的非金属性最强。

②最高价氧化物对应的水化物碱性增强,酸性减弱。

如碱性:元素的金属性或非金属性强弱的判断依据LiOH<NaOH<KOH<RbOH<CsOH;酸性:HClO4>HBrO4>HIO4;高氯酸HClO4在所有含氧酸中酸性最强,HBrO4也是一种强酸,高碘酸实际上化学式为H5IO6,无色晶体,弱酸。

③气态氢化物的稳定性逐渐减弱,如HF>HCl>HBr>HI。

④溶解性碱金属的氢氧化物在水中都是易溶的,溶解时还放出大量的热。

碱土金属的氢氧化物的溶解度则较小,其中Be(OH)2和Mg(OH)2是难溶的氢氧化物。

碱土金属的氢氧化物的溶解度列入表1中。

由表中数据可见,对碱土金属来说,由Be(OH)2到Ba(OH)2,溶解度依次增大。

这是由于随着金属离子半径的增大,正、负离子之间的作用力逐渐减小,容易为水分子所解离的缘故。

至Cs依次增大,少数碱金属盐难溶于水,例如LiF、LiCO3、Li3PO4、NaZn(UO2)3(CH3COO)9·6H2O、KClO4、K2[PtCl6]等。

⑤晶体类型与熔、沸点,碱金属的盐大多数是离子型晶体,它们的熔点、沸点较高。

碱土金属离子带两个正电荷,其离子半径较相应的碱金属小,故它们的极化力较强,因此碱土金属盐的离子键特征较碱金属的差。

但随着金属离子半径的增大,键的离子性也增强。

碱土金属指元素周期表中ⅡA族元素,包括铍(Be)、镁(Mg)、钙(Ca)、锶(Sr)、钡(Ba)、镭(Ra)六种金属元素。

其中铍也属于轻稀有金属,镭是放射性元素。

碱土金属共价电子构型是ns2例如,碱土金属氯化物的熔点从Be到Ba依次增高:氯化物 BeCl2 MgCl2 CaCl2 SrCl2 BaCl2熔点/℃ 405 714 782 876 962⑥热稳定性,碱金属的盐除硝酸盐及碳酸锂外一般都具有较强的稳定性,在800℃以下均不分解。

碱土金属盐的稳定性相对较差,但在常温下还是稳定的,只有铍盐特殊。

过锆的含量。

Zr和Hf的金属半径分别为160pm和159pmY二、探讨对角线规则在周期表中,某元素的性质和它左上方或右下方的另一元素性质相似性,称对角线规则。

这种相似性特别明显地存在于下列三对元素之间:Li Be B CNa Mg Al Si1、锂与镁的相似性。

在IA族中, 锂半径最小, 极化能力强, 表现出与 Na 和 K 等的不同性质, 它与IIA族里的Mg 相似,例如:①锂和镁在过量的氧中燃烧时,并不形成过氧化物,而生成正常的氧化物。

②锂和镁直接和碳、氮化合,生成相应的碳化物或氮化物。

例如:6Li + N2 ==== 2Li3N 3Mg + N2 ==== Mg3N2 ③ Li+和Mg2+离子都有很大的水合能力。

④锂和镁的氢氧化物均为中等强度的碱,在水中溶解度不大。

加热时可分解为Li2O和MgO。

其它碱金属氢氧化物均为强碱,且加热至熔融也不分解。

⑤锂和镁的硝酸盐在加热时,均能分解成相应的氧化物Li2O、MgO及NO2和O2,而其它碱金属硝酸盐分解为MNO2 和O2。

⑥锂和镁的某些盐类和氟化物、碳酸盐、磷酸盐等均难溶于水,其它碱金属相应化合物均为易溶盐。

⑦氯化物都具有共价性,能溶于有机溶剂如乙醇中。

它们的水合氯化物晶体受热时都会发生水解反应:2、铍、铝的相似性表现在:①两种金属的标准电极电势相近(Be2+/Be,;Al3+/Al,)。

②铍和铝经浓硝酸处理都表现钝化,而其它碱土金属均易与硝酸反应。

③铍和铝都是两性金属,既能溶于酸也能溶于碱。

④氢氧化物均为两性,而其它碱土金属氢氧化物均为碱性。

⑤ BeO和Al2O3都有高熔点和高硬度。

⑥铝和铍的氯化物是共价分子,能通过氯桥键形成双聚分子,易升华、易聚合,易溶于有机溶剂。

3、硼和硅的相似性。

B 和Si 虽是不同族元素,在周期表中处于相邻族的对角位置,由于离子极化作用相近(Si4+电荷高一些,但半径大;B3+电荷低一些,但半径小),性质上有许多相似之处。

①单质晶体都是高熔点原子晶体;与键强度相关。

②在自然界均以含氧化合物存在。

③ 卤化物都彻底水解,生成含B ─O ,Si ─O 键的化合物(硅酸、硼酸)④都有一系列氢化物,氢化物均有挥发性,不稳定。

⑤含氧酸都是弱酸,含氧酸盐都易水解对角线规则是从有关元素及其化合物的许多性质中总结出来的经验规律;对此可以用 离子极化的观点加以粗略的说明。

同一周期最外层电子构型相同的金属离子,从左至右随离子电荷的增加而引起极化作用的增强;同一族电荷相同的金属离子,自上而下随离子半径的增大而使得极化作用减弱。

因此,处于周期表中左上右下对角线位置上的邻近两个元素,由于电荷和半径的影响恰好相反,它们的离子极化作用比较相近,从而使它们的化学性质比较相似。

由此反映出物质的结构与性质之间的内在联系。

三. 周期表中的变化规律(一) 同一元素:r -离子>r 原子>r +离子>r 2+离子(二) 同一周期1. 短周期:每一个短周期从左到右,有效核电荷依次增大,所以原子半径依次递减.2. 长周期:过渡元素自左至右,电子逐一填入(n-1)d 层,而它对核的屏蔽作用较小,所以自左向右半径减小的幅度不如主族元素那么大.3. 内过渡元素:电子填入再次外层的(n-2)f 层,由于f 电子对核的屏蔽作用更小,使得原子半径由左至右收缩的平均幅度更小.比较短周期和长周期,相邻元素原子半径减小的平均幅度大致是非过渡元素>过渡元素>内过渡元素(~10pm ) (~5pm ) (<1pm )(三) 同一族1. 主族:同一主族由上而下,原子半径一般是增大的.因为同族元素原子由上而下电子层数增多,所以半径由上至下依次增大.2. 副族:副族元素由上至下,原子半径增大的幅度较小,特别是五,六周期的同族元素原子半径非常接近,这是由于后面要提到的镧系收缩效应所造成的结果.特殊元素集锦1、最活泼的金属元素、最高价氧化物对应的水化物碱性最强的元素、阳离子氧化性最弱的元素是铯(Cs)。

2、最活泼的非金属元素、无正价的非金属元素、无含氧酸的非金属元素、无氧酸(或氢化物)可腐蚀玻璃的元素、气态氢化物最稳定的元素、阴离子的还原性最弱的元素是氟(F)。

3、最强的碱是CsOH;最强的含氧酸是(高氯酸HClO4)最高价氧化物的水化物能与其气态氢化物发生化合反应的短周期元素是(氮N)最高价氧化物的水化物能与其气态氢化物发生氧化还原反应的短周期元素是(硫S)气态氢化物和它的氧化物在常温下生成该元素的单质的元素是(硫S)3、最稳定的气态氢化物是(氟化氢HF,准确的说,氟化氢在0度是液体)气态氢化物中含氢质量分数最大的是(甲烷CH4)最小的是(碘化氢HI)4、形成化合物种类最多的元素是(碳C,两千多万种有机物都是含碳的)、单质是自然界中硬度最大的物质的元素、气态氢化物中氢的质量分数最大的元素是碳(C)。

空气中含量最多的元素是(氮N,在大气中氮气的质量分数75%)或气态氢化物的水溶液呈碱性的元素是氮(N)。

地壳中含量最多的元素是(氧O)地壳中含量最多的金属元素是(铝Al)人体是由80多种元素所组成,为便于研究,将其中占人体体重%以上,每人每日需要量在100mg以上的元素称为常量元素或宏量元素,人体中含量占体重万分之一以下(〈%)的元素称微量元素。

标准健康成年人的元素组成为氧65%、碳18%、氢10%、氮3%、钙%、磷1%、钾%、硫%、钠%氯%、镁%等11种含量大于%的元素称为人体常量元素。

这些常量元素约占体重的%。

凡是占人体总重量的万分之一以下的元素,如铁、锌、铜、锰、铬、硒、钼、钴、氟等,称为微量元素(铁又称半微量元素)。

相关文档
最新文档