反渗透膜分离技术在城市污水处理中的应用
污水处理中的膜分离技术应用

污水处理中的膜分离技术应用污水处理是一项关乎环保和可持续发展的重要任务。
随着工业化和人口增长,污水处理厂承担着越来越大的压力。
为了有效地去除废水中的有害物质,一种被广泛应用的技术是膜分离技术。
本文将探讨膜分离技术在污水处理中的应用,包括其原理、优势和发展趋势。
1. 膜分离技术的原理膜分离技术是通过半透膜的筛选作用将废水中的杂质分离出来。
膜分离技术主要包括微滤、超滤、纳滤和反渗透等过程。
微滤膜的孔径较大,能有效分离悬浮物和胶体颗粒;超滤膜的孔径较小,可去除大部分溶解性有机物和微生物体;纳滤膜则可以进一步去除溶解性无机盐和有机物;反渗透膜则可将污水中绝大部分溶质拦截在膜外,得到清洁水。
2. 膜分离技术在污水处理中的优势膜分离技术在污水处理中具有以下优势:2.1 高效去除污染物膜分离技术能够有效去除污水中的悬浮物、胶体颗粒、有机物和无机盐等污染物,使污水得到有效处理。
2.2 高度自动化膜分离技术可以实现自动化控制,减少人工干预和操作成本,并确保处理过程的稳定性和一致性。
2.3 占地面积小相比传统污水处理工艺,膜分离技术需要的占地面积更小,可以有效节约土地资源。
2.4 产水质量高膜分离技术可以产生高质量的清洁水,满足日常生活用水和工业用水的要求。
2.5 节能环保膜分离技术相比传统的汽提和吸附等工艺,能耗更低,减少了对能源的依赖,同时废膜可回收,降低了环境污染。
3. 膜分离技术的应用领域膜分离技术在污水处理中有广泛的应用,包括城市污水处理厂、工业废水处理、饮用水制备等。
3.1 城市污水处理厂在城市污水处理厂,膜分离技术常用于二次处理过程,能够有效去除残余的悬浮物和有机物,提高出水质量。
3.2 工业废水处理膜分离技术在工业废水处理中被广泛应用。
不同类型的膜可根据废水中的污染物进行选择,如去除重金属离子、有机溶剂等。
3.3 饮用水制备膜分离技术在饮用水制备中也具有重要应用。
通过微滤和超滤膜的组合,能够有效去除水中的病原微生物和悬浮颗粒,提供安全的饮用水。
污水处理中的反渗透处理

它主要用于污水处理、海水淡化 、工业纯水制备等领域。
反渗透技术的原理
反渗透技术的原理基于渗透压和压力 差。当压力超过渗透压时,水分子和 离子会透过半透膜,而溶质和悬浮物 被截留。
在反渗透过程中,需要不断施加压力 ,以克服渗透压,使水分子透过膜。
反渗透技术的分类
根据工作压力,反渗透技术可分为低 压反渗透技术和高压反渗透技术。
详细描述
在城市污水处理厂中,反渗透技术常用于深度处理环节,通 过物理方法去除水中的溶解盐、有机物、重金属等污染物, 使出水水质达到回用标准,可用于绿化、道路清扫等非饮用 水领域。
工业废水处理中的应用
总结词
反渗透技术适用于多种工业废水处理,具有高效、环保的特点。
详细描述
针对不同工业废水的水质特点,反渗透技术可进行针对性的处理。例如,在印 染废水处理中,反渗透技术可有效去除染料及盐类物质;在电镀废水处理中, 可去除重金属离子,使废水达到排放标准。
优化反渗透系统设计
通过改进膜组件、高压泵、能量回收设备等关键部件的设计,提高 系统的能效和产水水质。
膜材料研发
研发具有更高脱盐率和抗污染性能的新型膜材料,提高反渗透系统 的性能。
自动化与智能化控制
采用先进的自动化和智能化控制技术,实现系统的优化运行和远程监 控,提高产水水质和能效。
新型反渗透材料的研发与应用
将纳滤技术与反渗透技术结合使用,利用纳滤技术对特定离子进行选择性分离,降低反渗透系统的进水 盐分浓度,提高系统的脱盐率和能效。
感谢您的观看
THANKS
由多支反渗透膜组成,是实现反渗 透过程的关键部件,能够截留原水 中的溶解盐、有机物、细菌和病毒 等。
清洗系统
在反渗透过程中,定期对反渗透膜 进行清洗,以去除膜表面的污垢和 微生物,恢复其过滤性能。
膜分离技术在废水处理中的应用

膜分离技术在废水处理中的应用
膜分离技术是一种高效的分离技术,因其具有高效、节能、环保的特点,被广泛应用于废水处理领域。
下面,我们来详细探讨膜分离技术在废水处理中的应用。
一、膜分离技术的基本原理
膜分离技术是利用膜的孔径和表面性质,将混合物分离成两部分:通过膜孔径的目标物质和被拦截在膜表面或膜内孔隙中的非目标物质。
其主要分为微滤、超滤、纳滤和反渗透四种类型。
二、膜分离技术在废水处理中的应用
1.废水预处理:膜分离技术在废水预处理中的应用较为常见,主要用于去除废水中的悬浮物、有机物、胶体等杂质,为后续处理提供清洁的水源。
2.反渗透淡化:膜分离技术可以利用反渗透膜将海水、咸水、污水等含盐水体进行淡化,使其达到可用的水质标准。
3.高浓度有机物处理:膜分离技术对高浓度有机物的处理效率较高,可以将废水中的有机物去除到较低的水平。
4.生物质分离:膜分离技术可以帮助分离生物质,包括细胞、酶、蛋白质和 DNA 等,为微生物领域的研究和应用提供重要的技术支持。
5.重金属去除:膜分离技术的过滤效果可以帮助去除污水中的重金属,达到环境保护的标准。
三、膜分离技术的优点
1.高效:膜分离技术的过滤效果较好,可去除废水中的细小颗粒、有机物等杂物。
2.节能:与传统物理化学处理工艺相比,膜分离技术具有很高的节能效果。
3.环保:膜分离技术去除废水中的有害物质,使得废水达到排放标准,保护环境。
4.操作简便:膜分离技术可以实现自动化操作,减少人力成本。
综上所述,膜分离技术在废水处理中具有广泛的应用前景,尤其是在水源短缺、环境保护越来越受到重视的现代社会,膜分离技术将成为废水处理领域的一股强大力量。
城市污水处理中的膜技术应用前景如何

城市污水处理中的膜技术应用前景如何在现代城市的发展进程中,污水处理是一个至关重要的环节。
随着城市化水平的不断提高,城市污水的排放量也日益增加,如何高效、环保地处理这些污水成为了社会关注的焦点。
膜技术作为一种新兴的污水处理技术,正逐渐展现出其独特的优势和广阔的应用前景。
膜技术的原理其实并不复杂,它主要是利用特殊的膜材料,通过物理或化学的方式,将污水中的杂质、污染物等分离出来,从而达到净化水质的目的。
膜技术的种类繁多,常见的有微滤膜、超滤膜、纳滤膜和反渗透膜等。
这些膜的孔径大小不同,能够过滤掉的物质也有所差异。
与传统的污水处理方法相比,膜技术具有诸多显著的优点。
首先,膜技术的处理效果非常出色。
它能够有效地去除污水中的微生物、有机物、重金属离子等污染物,使处理后的水质达到很高的标准,甚至可以直接回用。
其次,膜技术的占地面积相对较小。
在城市土地资源日益紧张的情况下,这一优点显得尤为重要。
再者,膜技术的操作相对简单,自动化程度高,能够大大降低人工成本和劳动强度。
在实际应用中,膜技术已经在城市污水处理的多个领域取得了显著的成效。
例如,在工业废水处理方面,膜技术可以有效地处理含有高浓度有机物和重金属的废水,使其达到排放标准。
在生活污水处理方面,膜技术能够将污水中的有害物质去除,同时保留有益的矿物质,为城市的水资源循环利用提供了有力的支持。
然而,膜技术在城市污水处理中的应用也并非一帆风顺,还面临着一些挑战和问题。
成本问题是制约膜技术广泛应用的一个重要因素。
膜材料的价格相对较高,而且膜在使用过程中容易受到污染和损坏,需要定期更换,这无疑增加了处理成本。
此外,膜技术对预处理的要求也比较高。
如果污水中的杂质过多,容易导致膜的堵塞和损坏,从而影响处理效果和膜的使用寿命。
因此,在应用膜技术之前,需要对污水进行充分的预处理,这也在一定程度上增加了处理的复杂性和成本。
尽管存在这些问题,但随着科技的不断进步和创新,膜技术在城市污水处理中的应用前景依然十分广阔。
膜分离技术在废水处理中的应用

膜分离技术在废水处理中的应用第一章:引言随着工业化进程快速发展,废水在生产过程中成为了一大难题。
废水中含有大量的有害物质和微生物,如污染物、重金属、化学物质等,这些物质可能会对生物造成危害,也对环境造成破坏。
因此,废水处理已成为一种必要的环保措施。
膜分离技术作为一种新兴技术,逐渐在废水处理领域得到了广泛的应用。
第二章:废水处理技术简介废水处理技术包括生物法、化学法、物理法和组合法等。
其中,生物法是处理工业废水的主要方法,但其处理效果受环境因素影响较大,并且不适用于高浓度的废水处理。
化学法可以有效地去除污染物,但是造成的二次污染问题较为严重。
物理法主要是采用物理方法进行过滤、沉淀、吸附等,但存在处理时间长,处理效率低的问题。
因此,组合法已成为目前最为常用的废水处理方法。
第三章:膜分离技术的原理和类型膜分离技术是一种使用半透膜进行物质分离的技术。
其原理是利用半透膜对不同分子量和分子形状的物质进行筛分,实现高效的物质分离。
膜分离技术根据裸膜特性、结构和用途等可分为微滤、超滤、纳滤和反渗透四类。
第四章:膜分离技术在废水处理中的应用4.1 微滤技术微滤技术主要应用于固液处理中,可以有效地去除废水中的悬浮颗粒物、胶体、细菌等微小颗粒物质。
微滤技术适用于工业废水、生活废水等领域,具有处理速度快、处理后的液体清澈透明等特点。
4.2 超滤技术超滤技术可以有效地分离去除水中的高分子化合物或胶体颗粒,如各种颜料、胶体、蛋白质、微生物等。
超滤技术常被用在厂址各类水的处理、水处理厂和制药厂的污水治理等领域。
4.3 纳滤技术纳滤技术可以将废水中的难分解有机物、重金属离子等分子小于1nm(纳米)的物质去除。
纳滤技术常被用于电镀废水、印染废水、有机化工废水等处理过程中。
4.4 反渗透技术反渗透技术可以有效地去除废水中的无机盐、重金属离子等大分子的无机物质,是处理工业废水中水质优化的一种重要技术。
反渗透技术常被用于电子、医药、轻工、印染、城市污水、自来水处理等领域。
反渗透水处理废水的回收及应用

反渗透水处理废水的回收及应用摘要:随着我国城镇化建设与工业生产的快速发展,废水处理工作面临诸多挑战,反渗透技术凭借着较好的应用效果,在废水处理方面发挥了重要作用。
下面文章就对反渗透水处理废水的回收与应用展开探讨。
关键词:反渗透;水处理;废水回收;回收利用引言在工业污水处理中,反渗透处理设备发挥着不可替代的作用,其通过压力将杂质从水源中分离出来,以此来提升工业污水处理的效率。
反渗透处理设备应用于工业污水处理需要以选择合理的渗透膜为基础,通过对压力的有效控制来确保工业污水处理的水平。
1反渗透技术相关概述1.1反渗透技术概念反渗透是一种与常规渗透相反的膜分离技术,利用的也是膜两侧的压力差,只不过在反渗透膜的工作过程中需要外加压力,抵消掉膜两侧原本压力差的情况下推动溶剂在低压区积累,推动溶解物在高压区积累,实现水体中的污染物分离。
反渗透技术最初应用在海水淡化领域中,后来才被应用入污水深度处理领域中。
经过反渗透处理后,生活污水中的溶解污染物、悬浮物、胶体、有机物、无机物都会得到有效分离,且适用于盐度较高的生活污水处理中,是一种出水水质稳定、效率高的深度处理技术。
反渗透技术已经基本在欧美等国的污水处理厂中得到应用,在我国污水处理领域中的应用率也在逐步提升。
1.2反渗透技术的优缺点首先,反渗透技术的优点。
反渗透技术在众多污水处理工艺中,呈现出明显的优势。
反渗透技术使用的设备比较简单,并且在常温下即可进行操作,同时能量的消耗比较少,操作起来也更加方便,适用度高,出水的质量相比于其他工艺也更高。
在实际的应用过程中不难发现,反渗透法作用下的水质符合国家对于水质的卫生标准,同时整个污水处理过程都比较稳定,自动化水平高,系统脱盐率超过了95%。
反渗透装置在脱盐过程中的高效率,也给了水污染治理更多的信心,有力地提高了水污染治理的效果。
其次,反渗透技术的缺点。
反渗透技术的优点明显,但也存在着不可忽视的缺点。
反渗透装置在使用的过程中,能够提高产水率与回收率,但如果长时间使用,也会造成装置受限。
反渗透膜分离技术发展及其在污水处理中的应用

给 水处理 、纯水 和超 纯水 制备 、
市 污 水 处 理 及 利 用 、 T 业 废 水 处 首 e O 0
年 代 , 科 学 家 们 才 开 始 利 用 反 渗 透
或 超 滤 作 为 溶 液 中 溶 质 和 溶 剂 的 有
放 射 性 废 水 处 理 等 方 面 得 到 广
件 : 一 是 必 须 有 一 种 高 选 择 性 和 高
渗透性 ( 般 指 透 水 性 ) 的 选 择 性 一
的应 用 。
效 分 离 方 法 ,并 使 其 成 为 一种 实 验
( ik Fc )定 律 ,这 种 模 型 认 为 溶 剂 和
溶 质 都 可 能 溶 于 均 质 或 非 多 孔 型 膜
表 面 , 以 化 学 位 差 为 推 动 力 ( 用 常 浓 度 差 或压 力 差 来 表 示 ) 分子 扩 散 ,
应 用 于 处 理 镀 铬 、 镀 铜 、镀 锌 等 漂 洗 水 以 及 混 合 电镀 污 水 。 1 6 年 英 95
室技 术 。
叵 渗 透 膜 分 离 技 术 基 本 理 论 反 渗 透 膜 分 离 法 的 基 本 特 点 是
半 透 膜 . 二 是 操 作 压 力 必 须 高 于 溶
液 的渗透 压 。
渗 透 是 指 一 种 溶 剂 ( 水 ) 通 即
一
晕 ~
~
…
河j环境保护 t 一
与 组 分 和 膜 之 间 的 相 互 作 用 密 切 相 关 [ 2 1 。
11 渗 透 原 理 .反 渗 透 现 象 早 在 14 年 已 由 A b 78 be
污水处理中的反渗透技术应用

污水处理中的反渗透技术应用近年来,随着城市化进程的加快和工业化程度的提高,水资源的短缺和污水处理问题日益凸显。
污水处理中的反渗透技术应用逐渐成为解决水资源和环境问题的重要手段。
本文将从反渗透技术的原理、应用实例以及未来发展前景等方面进行论述。
一、反渗透技术的原理反渗透技术即通过半透膜分离技术,将污水中的溶质、悬浮物等物质从水中分离出来的一种方法。
其原理是利用半透膜在两侧形成两个不同浓度和不同压力的溶液,通过渗透压差使得水分子从浓溶液一侧通过半透膜向稀溶液一侧渗透,最终实现污水的纯化和浓缩。
反渗透技术不需要使用化学药剂,对水质无任何二次污染,并且能够高效地去除水中的溶质和悬浮物质,具有广泛的适用性。
二、反渗透技术在污水处理中的应用实例1. 生活污水处理反渗透技术在生活污水处理中广泛应用。
以海水淡化为例,反渗透技术可以将海水中的盐分和杂质去除,得到淡水。
同样,反渗透技术可以将污水中的有机物、重金属以及微生物等污染物去除,使其符合再利用和排放标准。
通过反渗透技术处理后的污水,可用于灌溉农田、工业用水、城市景观用水等领域,实现了水资源的高效利用。
2. 工业污水处理工业污水中常含有大量的有机物、肥料、油脂等难以降解的污染物质,对环境造成严重威胁。
反渗透技术通过膜分离的方式,能够高效去除工业污水中的有机物和颗粒物,使其达到排放标准。
同时,反渗透技术还可以对含盐废水进行处理,去除盐分并得到高纯度的水,可用于工业生产过程中的冷却水、洗涤水等用途。
3. 城市污水处理厂反渗透技术在城市污水处理厂中也得到了广泛应用。
污水处理厂通过反渗透技术可以将处理后的出水与入河水质量相媲美,有效保护水环境。
此外,反渗透技术还可以用于处理工业区和农村地区的污水,解决因生产和生活活动导致的水污染问题。
三、反渗透技术的未来发展前景随着科技的不断进步和应用的推广,反渗透技术在污水处理领域的应用前景十分广阔。
首先,反渗透技术可以与其它净水技术结合,形成多重过滤和处理系统,提高净水效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反渗透膜分离技术在城市污水处理中的应用-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII摘要国内外反渗透膜技术的发展概况,然后详细论述了反渗透膜分离技术。
通过介绍反渗透的基本原理、反渗透装置型式、基本流程,以美国和日本采用反渗透处理生活污水为例,探讨了反渗透膜分离技术在城市污水处理中的应用情况,最后就其发展方向作出了初步地归纳和展望。
关键词:城市污水处理,膜分离技术,反渗透膜,实际应用,前景展望引言近来,物理化学处理技术、光照射技术及膜过滤技术已形成三大水处理技术。
在这些技术中引人注目的是膜分离法污水处理技术[1]。
膜分离是通过膜对混合物中各组分的选择渗透作用的差异,以外界能量或化学位差为推动力对双组分或多组分混合物的气体或液体进行分离、分级、提纯和富集的方法。
而反渗透膜分离技术作为当今世界水处理先进的技术,具有清洁、高效、无污染等优点,已在海水淡化、城市给水处理、纯水和超纯水制备、城市污水处理及利用、工业废水处理、放射性废水处理等方面得到广泛的应用。
膜分离技术作为新的分离净化和浓缩方法,与传统分离操作(如蒸发、萃取、沉淀、混凝和离子交换树脂等)相比较,过程中大多无相变化,可以在常温下操作,具有能耗低、效率高、工艺简单、投资小等特点。
膜分离技术应用到污水处理领域,形成了新的污水处理方法,它包含微滤(MF)、超滤(UF)、渗析(D)、电渗析(ED)、纳滤(NF)、和反渗透(RO)等,本文仅对反渗透(RO)膜法对城市污水处理技术进行探讨。
一、反渗透膜发展概况膜广泛的存在于自然界中,特别是生物体内。
人类对于膜现象的研究源于1748年,但是人类对它的认识和研究则较晚。
1748年,Abbe Nollet观察到水可以通过覆盖在装有酒精溶液瓶口的猪膀肌进入瓶中时,发现了渗透现象。
然而认识到膜的功能并用于为人类服务,却经历了200多年的漫长过程。
人们对膜进行科学研究则是近几十年来的事。
其发展的历史大致为;30年代微孔过滤;40年代透析;50年代电渗析;60年代反渗透;70年代超滤和液膜;80年代气体分离;90年代渗透汽化[2]。
在国外,其发展概况为:1953年美国的Reid 提出从海水和苦盐水中获得廉价的淡水的反渗透研究方案,1960年美国的Sourirajan 和Leob 教授研制出新的不对称膜,从此RO作为经济的淡化技术进入了实用和装置的研究阶段。
20世纪70年代初期开始用RO法处理电镀污水,首先用于镀镍污水的回收处理,此后又应用于处理镀铬、镀铜、镀锌等漂洗水以及混合电镀污水。
1965年英国首先发表了用半透膜处理电泳涂料污水的专利。
此后美国P.P.G公司提出用UF和RO的组合技术处理电泳涂料污水,并且实现了工业化。
1972-1975年J J .Porter 等人用动态膜进行染色污水处理和再利用实验。
1983年L.Tinghuis等人发表了用RO法处理染料溶液的研究结果。
30年来,反渗透(RO)技术先后在含油、脱脂废水、纤维工业废水、造纸工业废水、放射性废水等工业水处理、苦咸水淡化、纯水和高纯水制备、医药工业和特殊的化工过程和高层建筑废水等各类污水处理中得到了广泛的应用。
尤其是近几年,一些新型的膜法污水处理技术逐一问世,如膜蒸馏、液膜、膜生化反应器、控制释放膜、膜分相、膜萃取等[3]。
在我国,膜技术的发展是从1958年离子交换膜研究开始的。
1958年开始进行离子交换膜的研究,并对电渗析法淡化海水展开了试验研究;1965年开始对反渗透膜进行探索,1966年上海化工厂聚乙烯异相离子交换膜正式投产,为电渗析工业应用奠定了基础。
1967年海水淡化会战对我国膜科学技术的进步起了积极的推动作用。
1970年代相继对电渗析、反渗透、超滤和微滤膜及组件进行研究开发,1980年代进入推广应用阶段。
1980年代中期我国气体分离膜的研究取得长足进步,1985年中国科学院大连化物所,首次研制成功中空纤维N2/H2分离器,主要性能指标接近国外同类产品指标,现己投入批量生产,每套成本仅为进口装置的1/3。
进入90年代以来,复合膜的制备取得了较大进展 [2]二、反渗透膜分离技术基本原理反渗透膜分离法的基本特点是其推动力为压力差(1-10MPa),传质机理一般认为是溶剂的扩散传递,透过膜的物质是水溶剂,截留物为溶质、盐(悬浮物、大分子、离子),膜的类型为非对称膜或复合膜。
反渗透的选择透过性与组分在膜的溶解、吸附和扩散有关,因此除与膜孔大小结构有关外,还与膜的化学、物理性质有密切关系,即与组分和膜之间的相互作用密切相关[4]。
反渗透原理:渗透现象早在1748年已由Abbe Nollet首次得到证明,直到20世纪50年代,科学家们才开始利用反渗透或超滤作为溶液中溶质和溶剂的有效分离方法,并使其成为一种实验室技术。
渗透是指一种溶剂(即水)通过一种半透膜进入一种溶液或是从一种稀溶液向一种比较浓的溶液的自然渗透。
但是在浓溶液一边加上适当的压力,即可使渗透停止,此时的压力称为该溶液的渗透压。
若在浓溶液一边加上比自然渗透压更高的压力,扭转自然渗透方向,把浓溶液中的溶剂(水)压到半透膜的另一边稀溶液中,这是和自然界正常渗透过程相反的,此时就称为反渗透。
这就说明,当对盐水一侧施加的压力超过水的渗透压时,可以利用半透膜装置从盐水中获取淡水。
因此,反渗透过程必须具备两个条件:一是必须有一种高选择性和高渗透性(一般指透水性)的选择性半透膜,二是操作压力必须高于溶液的渗透压。
三、反渗透的有关装置(一)反渗透膜类型一般来说,反渗透膜应具备以下性能:①单位面积上透水量大,脱盐率高;②机械强度好,多孔支撑层的压实作用小;③化学稳定性好,耐酸、碱腐蚀和微生物侵蚀;④结构均匀,使用寿命长,性能衰降慢;⑤制膜容易,价格便宜,原料充足。
影响膜性能因素[7]:①回收率;②转变率;③压力;④压密;⑤浓差极化。
据此,目前较常用的膜类型有:①醋酸纤维膜(CA膜)CA膜又可以分为平膜、管式膜和中空纤维膜几类。
CA膜具有反渗透膜所需的三个基本性质:高透水性、对大多数水溶性组分的渗透性相当低、具有良好的成膜性能。
②聚酰胺膜(PA膜)聚酰胺膜又可以分为脂肪族聚酰胺膜、芳香聚酰胺膜(成膜材料为芳香聚酰胺、芳香聚酰胺-酰肼以及一些含氮芳香聚合物)③复合膜这是近些年来开发的一种新型反渗透膜,它是由很薄的而且致密的符合层与高空隙率的基膜复合而成的,它的膜通量在相同的条件下比非对称膜高约50%-100%。
目前复合膜有以下几种:a.交联芳香族聚酰胺复合膜(PA);b.丙烯-烷基聚酰胺和缩合尿素复合膜;c.聚哌嗪酰胺复合膜;d.氧化锆-聚丙烯酸复合膜。
(2)反渗透装置型式1. 板框式反渗透装置这种形式的装置由Aerojet通用公司发展起来的,教适合于小的和低压工厂。
膜支撑体在一种圆形平板上,这块平板称为多孔板,常见的有不锈钢多孔板和聚氯乙烯多孔板,产水通过多孔板汇集起来。
这种装置存在以下缺点:①安装和维护费用高,②进料分布不均匀,③流槽窄,④多级膜装卸复杂,⑤单位体积中膜的比表面积低,产水量少。
尽管有这些缺点,但由于它的结构简单可靠,体积比管式装置小,在小规模的生产场所还是有一定的优势的。
图1 一级反渗透+混床2. 管式反渗透装置这种装置在实际应用中是很有意义的。
它能够处理含悬浮颗粒和溶解性物质的液体,像沉淀一样在管式装置中把料液进行浓缩,运行期间系统处处都可以保持良好的排水作用,适当调节水力条件,常常可以预防溶液的浓缩弄脏或堵塞膜。
其主要优缺点可以归纳如下:优点:①能够处理含悬浮固体的溶液,②合适的流动状态就可以防止浓差极化和膜污染等,并容易调整。
缺点:①设备端部用膜较多,装置制造和安装费用较昂贵。
②单位体积中膜的比表面积小。
③必须把管子外部包起来。
④要使用支撑材料。
3. 螺旋式反渗透装置美国通用原子公司(Gulf General Atomic Co)发展了这种装置。
这种螺旋式结构的中间为多孔支撑材料,两边是膜的“双层结构”,它的末端是冲孔的塑料管。
双层膜的边缘与多孔支撑材料密封形成一个膜袋(收集产水),在膜袋之间再铺上一层隔网,然后沿中心管卷绕这种多层材料(膜/多孔支撑材料/膜/料液隔网),就形成了一个螺旋式反渗透组件。
将卷好的螺旋式组件,放入压力容器中,就成为完整的螺旋式反渗透装置。
使用这种螺旋式反渗透装置时应注意:①中心管主要褶皱处的泄露②膜及支撑材料在粘结线上发生皱纹③胶线太厚可能会产生张力或压力不均匀④支撑材料的移动会使膜的支撑不合理,导致平衡线移动⑤膜上有小孔洞,这是由于膜的质量不合格所致。
目前,美国制作螺旋式组件已实现机械化,采用一种0.91m滚压机,连续喷胶将膜与支撑材料粘密封结在一起,滚转成螺旋式组件,牢固后不必打开即可使用。
图2 反渗透处理工艺在地下水处理中的流程图螺旋式组件的主要优缺点是:优点:①单位体积中膜的表面积比率大②压力导管的设计简单,具有扰性,安装和更换容易,结构可以紧密放在一起。
缺点:①料液含悬浮固体时不适宜②料液流动路线短③压力消耗高④再循环浓缩困难。
4 .中空纤维式反渗透装置美国杜邦公司和道斯化学公司提出用纯中空纤维素作为反渗透膜,制造出中空纤维式反渗透装置。
这种装置类似于一端封死的热交换器,其中含有外径50μm、内径25μm;装成一种圆柱形耐压容器中,或是将中空纤维弯成U形装入耐压容器中,由于这种中空纤维极细,通常可以装填几百万根。
高压溶液从容器旁打进去,经过中空纤维膜的外壁,从中空纤维管束的另一端把渗透液收集起来,浓缩后的料液从另一端连续排掉。
中空纤维式反渗透装置的主要优缺点如下:优点:①单位体积中膜的表面积比率高,一般可达到16000-30000m2/m3,因此组件可以小型化;②膜不需支撑材料,中空纤维本身可以受压而不破裂。
缺点:①膜表面去污困难,料液需经严格预处理;②中空纤维膜一旦损坏是无法更换的。
由此我们可以给优质反渗透装置作出以下要求:①对膜能提供合适的支撑②处理溶液在整个膜面上必须均匀分布③在最小能耗情况下,对处理溶液提供良好的流动状态④单位体积中膜的有效面积比率高⑤组件容易拆卸和更换⑥便于膜的拆卸和组装⑦在运行压力下,有效的工作时安全与可靠性高⑧外部泄露能尽可能从压力的变化上发现⑨建造、维护费用都是方便的。
目前流行的这四种装置的一些主要特性比较见表3-1表1 四种反渗透装置的主要特性比较注:原料液为500mg/L NaCl,脱盐率为92%-96%四、反渗透的流程(1)反渗透的流程的设计依据RO过程应视为一个总的系统,它包含各组成部分及依据。
这些依据可作为设计RO系统时的入门指南。
每一部分与每一交接处都将有合宜的操纵开关及连接,以保证系统的长期使用性能即可靠性。