数字信号处理基础
数字信号处理基础与数字滤波器设计原理

数字信号处理基础与数字滤波器设计原理数字信号处理(Digital Signal Processing,简称DSP)是指对数字信号进行各种算法操作和处理的一种技术方法。
数字滤波器是数字信号处理的重要组成部分,它可以对信号进行滤波、去噪、增强等处理,广泛应用于通信系统、音频处理、图像处理等领域。
本文将介绍数字信号处理的基础知识以及数字滤波器的设计原理。
一、数字信号处理基础数字信号是以离散时间和离散幅度为特点的信号。
与之相对的是模拟信号,模拟信号是连续时间和连续幅度的信号。
数字信号处理主要涉及到离散时间信号的采样、量化和离散化。
其中,采样是指将连续时间信号在一定时间间隔内进行离散采样,量化是指将连续幅度信号离散化为一系列的数字值。
数字信号处理的基础操作包括信号的变换、滤波和频谱分析等。
信号的变换可以将信号从时域转换到频域,常用的变换方法包括傅里叶变换、离散傅里叶变换和小波变换等。
滤波是对信号中某些特定频率成分的增强或抑制,常用的滤波方法有低通滤波、高通滤波、带通滤波和带阻滤波等。
频谱分析可以用于分析信号的频率特性,了解信号中包含的频率成分。
二、数字滤波器的基本概念数字滤波器是数字信号处理中最常用的工具之一,它可以从输入信号中选择性地提取或抑制某些频率成分。
根据滤波器的特性,可以将其分为无限长冲激响应(Infinite Impulse Response,IIR)滤波器和有限长冲激响应(Finite Impulse Response,FIR)滤波器。
无限长冲激响应滤波器是一种递归滤波器,其输出是输入信号与滤波器的冲激响应的卷积运算结果。
无限长冲激响应滤波器具有宽带特性和较好的频率响应,但在实际应用中会引入稳定性问题。
有限长冲激响应滤波器是一种非递归滤波器,其输出仅与输入信号和滤波器的系数有关,不涉及历史输入。
有限长冲激响应滤波器的稳定性较好,容易实现,并且可以通过调整滤波器的系数来实现不同的滤波效果。
三、数字滤波器设计原理数字滤波器的设计过程主要包括滤波器类型的选择、滤波器规格的确定和滤波器参数的计算。
数字信号处理基础

4∆x 3∆x 2∆x ∆x
t
量化误差 量化误差=量化电平-实际电平
最大量化误差为: 其绝对值为:
ε ( n ) max
∆x = ± 2
e = D 2b
一般来说,量化误差很小。通常假设A/D转 换器的位数为无限多,即量化误差为零。
增大程控增益实质上是通过减小动态范围D来减小 离散间隔 ,使得量 化电平更接近真实值
时域乘积对应 频域卷积
+∞
m = −∞
∑
采样结果
ˆ 理想抽样输出为: x(t) =
m=−∞
∑x(t)δ (t −mTs ) = ∑x(mTs )δ (t −mTs )
m=−∞
∞
∞
其频谱为:
1 ∞ 2π ˆ x( jΩ) = x( jΩ− jk ) ∑ Ts k=−∞ Ts
一个连续时间信号经过理想抽样后,其频谱将以抽样频率:
s (t )
时域采样
1
0
Ts
t
采样:就是利用周期性抽样脉冲序列 s (t ) 从连续信号 x(t ) 中抽
取一系列的离散值,得到抽样信号(或称抽样数据信号)即离散 时间信号,以 x(t ) 表示。抽样是模拟信号数字化的第一环节, ˆ 再经幅度量化编码后即得到数字信号 x (n) 。
x(t(t) ) ˆ x
信号数字化出现的问题
主要内容提要
时域采样、混叠和采样定理 量化与量化误差 截断、泄漏和窗函数 频域采样、时域周期延拓和栅栏效应 频率分辨力、整周期截断
引言—— 引言—— 数字信号处理的基本步骤
预处理 A/D 计算机 显示
预处理: 预处理: 电压幅值调理; 滤波; 隔离信号中的直流分量; 解调。 A/D转换: A/D转换: 转换 采样, 量化, 编码等。
数字信号处理第1章

…
x(n )
01 11
y(n )
11 21
z- 1 z- 1
并联型结构
0F 1F
1F 2F
z- 1 z- 1
…
数字信号处理基础-实现结构(IIR)
FIR的特点:
单位脉冲响应序列为有限个; 可快速实现; 可得到线性相位 滤波器阶数较高 IIR的特点: 滤波器阶数较低 可利用模拟滤波器现有形式
a N- 1 aN
x(n -N)
z- 1 b N
z- 1 y(n -N)
直接Ⅰ型结构
…
数字信号处理基础-实现结构(IIR)
y (n) bi x(n 1) ai y (n i )
i 0 i 1
b0 a1 a2 z- 1 z- 1 b1 b2 x(n ) y(n )
M
N
… … …
若ai不等于0,输出依赖于以前的输出信号, 称为递归系统(有反馈)
y(n) ai y (n i) bl x(n l )
i 1 i 0
N
M
通常此时n趋于无穷大时,h(n)也不为0,对 脉冲响应无限长的系统称为IIR(无限长单 位脉冲响应滤波器)
数字信号处理基础-系统实现结构
数字信号处理基础-实现结构(IIR)
y(n) bi x(n i) ai y (n i)
i 0 i 1
x(n) x(n- 1) x(n- 2) b0 z- 1 b 1 z
- 1
M
N
y(n ) a1 a2 z- 1 z
- 1
y(n- 1) y(n- 2)
b2
…
…
…
…
数字信号处理基础

2014-11-25
20
表1.2 要求作公式用的几个Z变换
序列
Z变换
( n)
u ( n)
R N ( n)
1
收敛域
全Z平面
1 (1 z 1 ) (1 z N ) (1 z 1 )
解 由公式得 (n) x(n) y (n)
运算过程如下表格:
2014-11-25 7
m
x ( m ) y ( n m)
m
x(m) y(m) y(-m) y(1-m) y(2-m) y(3-m) y(4-m) y(5-m)
… -3 –2 –1 0 1 2 3 4 5… 3 2 1 2 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2
数学语言描述: y (n) T [ x(n)]
2014-11-25
满足y (n n0 ) T [ x(n n0 )]
11
3 系统的单位脉冲响应
单位脉冲响应是指系统在单位脉冲序列 (n)作用下的响应 数学表达为 h(n) T [ (n)]
说明:线性移不变离散时间系统的输出序列等于输入序列和 系统单位脉冲响应的线性卷积
1 X ( z ) a u (n) z a z (az ) 1 1 az n n 0 n 0 ROC : az 1 1 z a
n n n n 1 n
z
2014-11-25
a的圆外
17
3 Z变换的性质
1)线性
X ( z ) Z [ x(n)] ROC :R1 Y ( z ) Z [ y(n)] ROC :R2 Z [ax(n) by (n)] aX ( z ) bY ( z ) ROC : R1 R2
数字信号处理基础-ppt课件信号分析与处理

4.filtering modified the spectrum of a signal by eliminating one or more frequency elements from it.
5.digital signal processing has many applications, including speech recognition,music and voice synthesis,image processing,cellular phones,modems,and audio and video compression.
2020/4/13
返回
第2章 模数转换和数模转换
2.1 简单的DSP系统(A Simple DSP System) 2.2 采样(Sampling) 2.3 量化(Quantization) 2.4 模数转换(Analog-to-Digital Conversion) 2.5 数模转换(Digital-to-Analog Conversion) 小结 (Chapter Summary)
2020/4/13
1.5 语音、音乐、图像及其他 1.5 SPEECH,MUSIC,IMAGES,AND MORE
DSP在许多领域都有惊人的应用,并且应用的数量与日俱增。
1)利用数字语音信号(speech signals)中的信息可以识别连续语 音中的大量词汇。
2)DSP在音乐和其他声音处理方面有着重要的作用。
数字信号处理基础

数字信号处理基础一、概述数字信号处理(Digital Signal Processing)是一种涉及数字信号的处理技术,包括数字滤波、谱分析、数据压缩、图像处理等等。
数字信号处理广泛应用于通信、音频、视频等领域,尤其在现代通信系统中占据着重要地位。
数字信号处理的基础知识包括离散时间信号、离散时间系统和傅里叶变换等。
本文将对数字信号处理的基础知识做进一步介绍。
二、离散时间信号1. 离散时间信号的定义离散时间信号是指信号的取样点只能在离散的时间间隔内取样。
其数学表达式可表示为:x[n] = x(nT)其中x[n]表示离散时间信号,x为实数或复数的函数,n为离散时间信号的序号,T为采样间隔。
离散时间信号是离散的,与连续时间信号不同,这是数字信号处理的基础。
2. 离散时间信号的分类离散时间信号可以按照实部虚部的性质进行分类。
实部虚部都为实数的信号被称为实信号,实部虚部都为复数的信号被称为复信号。
此外,还有一种称为实部为零的纯虚信号,实部为零,虚部非零。
三、离散时间系统离散时间系统是指离散时间信号在离散时间下的输入和输出之间的关系。
离散时间系统可以分为线性系统和非线性系统。
线性系统满足以下两个性质:1. 叠加性:当系统输入为信号x1[n]和x2[n]时,系统的输出为y1[n]和y2[n],则当输入为x1[n] + x2[n]时,系统的输出为y1[n] +y2[n]。
2. 齐次性:当系统输入为信号ax1[n]时,系统的输出为ay1[n],其中a为实数,则当输入为x1[n]时,系统的输出为y1[n]。
非线性系统不满足上述性质。
四、傅里叶变换傅里叶变换可以将一个信号分解成许多不同频率分量的叠加,包含离散傅里叶变换(Discrete Fourier Transform,DFT)和快速傅里叶变换(Fast Fourier Transform,FFT)两种。
1. 离散傅里叶变换(DFT)离散傅里叶变换可以将离散时间信号变换为频域的信号,公式如下:其中N为信号的长度,k为傅里叶变换的频率。
数字信号处理基础

数字信号处理基础数字信号处理(Digital Signal Processing, DSP)是指通过数字技术对模拟信号进行采样、量化和编码,然后利用数字计算机进行信号处理的技术。
它广泛应用于通信、音视频处理、图像处理等领域。
本文将介绍数字信号处理的基础知识和常用算法。
一、数字信号处理的基础概念1.1 信号的采样与量化在数字信号处理中,信号的采样是指对模拟信号进行时间上的离散,将连续时间信号转化为离散时间信号。
采样定理(奈奎斯特定理)规定,当信号的最高频率不超过采样频率一半时,信号可以完全恢复。
采样频率过低会导致混叠现象,采样频率过高则浪费存储和计算资源。
信号的量化是指将连续幅度的信号转化为离散幅度的信号。
量化过程中,信号的幅度根据一定的精度进行划分,并用一个有限的比特数来表示每个划分区间的取值。
量化误差会引入信号的失真,因此需要在精度和存储空间之间进行权衡。
1.2 Z变换和离散时间信号的频域表示Z变换是一种用于离散时间信号的频域表示的数学工具。
它将离散信号的时间域表达式转化为Z域中的复数函数,其中Z是一个复数变量。
通过对Z变换结果的分析,可以获得信号的频率响应、系统的稳定性等信息。
有限长离散时间信号可以通过离散时间傅里叶变换(Discrete Fourier Transform, DFT)转化为频率域表示。
DFT是Z变换在单位圆上的离散采样。
通过DFT计算,可以得到信号在不同频率下的幅度和相位。
二、数字信号处理常用算法2.1 快速傅里叶变换(Fast Fourier Transform, FFT)FFT是一种高效的计算DFT的算法,它通过将长度N的DFT分解为多个长度为N/2的DFT相加,从而大大减少了计算复杂度。
FFT广泛应用于频谱分析、滤波、信号重建等领域。
2.2 滤波器设计滤波器是数字信号处理中常用的模块,用于对信号进行频率的选择性衰减或增强。
滤波器的设计可以采用时域方法和频域方法。
时域方法包括有限脉冲响应(Finite Impulse Response, FIR)和无限脉冲响应(Infinite Impulse Response, IIR)滤波器设计,频域方法主要是基于窗函数的设计方法。
数字信号处理的基础知识

数字信号处理的基础知识数字信号处理(Digital Signal Processing,简称DSP)是指用数字技术对模拟信号进行处理和分析的一种信号处理方式。
它广泛应用于通信、音频处理、图像处理、雷达信号处理等领域。
本文将介绍数字信号处理的基础知识,包括离散信号和离散时间的概念、采样和量化、数字滤波器以及离散傅立叶变换等内容。
一、离散信号和离散时间在数字信号处理中,信号被看作是在特定时间点上取得离散值的序列,这样的信号称为离散信号。
离散时间则是指在一系列有限时间点上取样的时间。
采样是将连续信号转化为离散信号的过程,通过在一定时间间隔内对模拟信号进行采样,得到离散的信号值。
在采样过程中,采样频率的选择需要根据信号频率的特点来确定,以避免信息的损失。
采样后的信号经过量化,将离散信号的幅度近似表示为有限数量的离散值。
二、数字滤波器数字滤波器是数字信号处理的重要组成部分,用于通过增强或减弱信号的某些频率分量来处理信号。
常见的数字滤波器包括无限脉冲响应滤波器(Infinite Impulse Response,简称IIR)和有限脉冲响应滤波器(Finite Impulse Response,简称FIR)。
无限脉冲响应滤波器是一种反馈滤波器,其输出和输入之间存在无限多个时刻的依赖关系;有限脉冲响应滤波器则是一种前馈滤波器,其输出仅依赖于有限个时刻的输入。
数字滤波器的设计和参数选择需要根据应用的需求和信号特性进行。
三、离散傅立叶变换离散傅立叶变换(Discrete Fourier Transform,简称DFT)是数字信号处理中常用的分析工具。
它将离散信号变换为复数序列,反映了信号在不同频率上的成分。
DFT的快速计算算法即快速傅立叶变换(Fast Fourier Transform,简称FFT),通过巧妙的运算方法大幅度降低了计算复杂度,使得实时处理大规模信号的应用成为可能。
离散傅立叶变换广泛应用于信号滤波、频谱分析、编码压缩等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x(n)
x(t) t nT
Asin( 0nT
)
Asin( 0n )
T 数字频率与模拟频率的关系
T 2 f
fs
fs
离散信号(序列)的基本运算
1) 位移(延时)
x(n) x(nN)
2) 相加与相乘
x1(n) + x2(n) c x(n)
3) 卷积 y(n) x(n) h(n) 卷积的计算
对LTI系统: y(n) = x(n)*h(n) 由z变换的性质:Y(z) = X(z) H(z) H(z)称为LTI离散系统的系统函数 当H(z) ROC包含单位圆时
k
k 0
k 1
k 0
zz bz za
zb
za
a z b
Im[z]
半径为|b|
Re[z]
半径为|a|
双边序列当|a|<|b|时其z变 换存在,收敛域为 |a|<|z|<|b|的环状区域
当|a||b|时没有公共收敛域, 即其z变换不存在!
系统函数H(z) (transfer function, system function)
() phase response
y(n) x(n) h(n)
Y (e j ) H (e j ) X (e j )
real( ) imag( ) abs( ) angle( )
离散系统z域分析
z变换定义及收敛域
X (z) x[n]zn n
收敛域(ROC): R |z| R+
1) 有限长序列 z 变换的收敛域
n0
1
2
1
1}
x(n)={1, 1, 2, -1, 1; n= -1, 0, 1, 2, 3}
典型离散信号(序列)
1. 单位脉冲序列
1 n 0 (n) 0 n 0
2. 单位阶跃序列
1 n 0 u(n) 0 n 0
3. 矩形序列
1 0 n N 1 RN (n) 0 otherwise
选择合适的I和D,就能够任意地改变采样频率fs 一般是先做I倍插值,再做D倍抽取 时域抽取,造成在数字频率域上频谱展宽 时域插值,造成在数字频率域上频谱压缩
加防混叠滤波器的抽取器系统
将待抽取序列的频谱限制在| |范围内
D
x(n) h(n)
↓D
xd (n)
H
(e
j
)
1,
0
| | D
x(n) ↑I xe (n) h(n) xI (n)
1 1 az1
z
z
a
az1 1 za
Im[z]
因果序列仅当 |z|>|a| 时其ZT存在,
其收敛域是半径为|a| 的圆外区域。
|a| Re[z]
3) 反因果序列z变换及其收敛域
f (k) aku(k 1)
1
F (z) aku(k 1)zk ak zk (a1z)k
k
k
k 1
a 1 z 1 a1z
2. 差分方程
y = conv(x, h)
N
M
y(n) bi x(n i) a j y(n j)
i0
j 1
y = filter(b,a,x)
3.离散系统的频率响应
DTFT(h(n)) H (e j) H (e j) e j()
H (e j ) : magnitude response [H,w]=freqz(b,a)
z az
a1z 1 za
Im[z]
Re[z] a
反因果序列仅当 |z|<|a| 时其ZT存在, 其收敛域为半径为|a|的圆内区域。
4)双边序列的z变换及其收敛域
f (k) bku(k 1) aku(k) b1z 1 az1 1
1
F (z) bk zk ak zk (b1z)k (az1)k
fs
If s
If s
H
(e
j
)
I
,
| | I
0,
x(n)
↑I
h(n)
↓D xId (n)
使用一个低通虑波器
无论是抽取还是插值,其输入到输出的变换都相当
于经过一个线性时变系统!!!
离散系统
模拟 前置预 滤波器
xa(t)
PrF
A/D 数字信号 D/A 变换器 处理器 变换器
ADC
DSP
DAC
模拟 模拟 滤波器
数字信号处理基础
1.1 离散时间信号与系统 1.2 数字滤波器
总结
信号的分类
1. 连续时间信号和离散时间信号 2. 周期信号和非周期信号 3. 确定性信号和随机信号 平稳和非平稳(时变)信号 4. 能量信号和功率信号 5. 一维信号、多维信号
离散信号(序列)的表示
2
1
1
1
2
n
-1
0
1
3
-1
x(t) tnT x(n) {1
y(n) x(m)h(n m) m
y = conv(x, h)
4) 抽取(decimation)
x(Dn)
序列 x(D是n) 的x(抽n)取序列
D为正整数
每D个样值抽取一个
5) 插值(interpolation) x(n/I)
序列 x( n是) x的(n插) 值序列
I
I为正整数
每两个样值之间插入(I -1)个零值
f (k) (1 2 3 2 1) k 0
F (z) f (k)zk z2 2z 3 2z1 z2 k ROC 0 z
有限长序列的z变换的收敛域至少是有限z平面
2) 因果序列z变换及其收敛域
f (n) anu(n)
F (z) anu(n)zn (az1)n
n
n0
4. 指数序列 x(n) an , n Z
anu(n):右边指数序列 |a| 1序列有界 anu(n):左边指数序列 |a| 1序列有界
5. 复指数序列
x(n) e( j)n ene jn en (cos n j sin n)
6.正弦型序列
x(n) Asin( n0 ) 0 数字域频率 x(t) Asin( 0t ) 0 模拟角频率
ya(t)
PoF
ห้องสมุดไป่ตู้x [n]
离散时 间系统
y[n]
输入序列
输出序列
y(n) = T{x(n)}
系统性质
1. 线性
T{ax1(n) bx2 (n)} aT{x1(n)} bT{x2 (n)} 2. 时不变 LTI (linear time-invariant)
定义:如T{x(n)}=y(n),则T{x (n-m)}=y(n-m)
3. 因果性(Causality) 定义:系统n时刻的输出只与n时刻及以前的输入有关
因果的LTI:h(n)=0, n<0.
4. 稳定性
有界输入产生有界的输出
LTI系统稳定的充分必要条件 h(n) n
系统的描述
1. 单位脉冲响应h(n) x(n)
y(n)
h(n)
输入序列
输出序列
y(n) x(n) h(n)