PKPM构件配筋详解(DOC)

合集下载

最新PKPM构件配筋详解

最新PKPM构件配筋详解

P K P M构件配筋详解功能说明这项菜单主要以图形方式显示各构件设计及验算结果,可以直接输出DWG图形文件。

图8.6.4 构件计算配筋简图8.6.4.1 各构件设计及验算结果功能说明简图上各构件的配筋结果表达方式如下:(1)钢筋混凝土梁和型钢混凝土梁(RC-Beam、SRC-Beam)图中:Asul-Asum-Asur:为梁上部左端、跨中、右端配筋面积(cm2);Asdl-Asdm-Asdr:为梁下部左端、跨中、右端配筋面积(cm2);GAsv:为梁加密区抗剪箍筋面积和剪扭箍筋面积的较大值(cm2);GAsvm:为梁非加密区抗剪箍筋面积和剪扭箍筋面积的较大值(cm2);VTAst :为梁受扭纵筋面积(cm2);VTAst1 :为梁抗扭箍筋的单肢箍面积(cm2);G、VT :为箍筋及剪扭配筋标志。

注意事項(1)梁配筋简图如下:图8.6.4.1-1 梁配筋示意图(2)加密区和非加密区箍筋都是按用户输入的箍筋间距计算的,当输入的箍筋间距为加密区间距时,梁端箍筋加密区的计算结果可直接使用;如果非加密区与加密区的箍筋间距不同时,需要对非加密区的箍筋面积按非加密区的间距进行换算后再使用。

当梁受扭时,配置的箍筋单肢面积不应小于VTAst1。

(3)输出的箍筋面积为箍筋间距范围内所有肢的总面积,在确定单肢箍筋的面积时,需要除以箍筋肢数。

(4)输出的纵筋及箍筋面积都满足规范要求的最小配筋率要求,如果计算出的配筋面积小于最小配筋率时,按最小配筋面积来输出。

(5)VTAst和VTAst1都为零时,该行不输出。

功能说明(2)矩形钢筋混凝土柱和型钢混凝土柱(RC-Column、SRC-Column)图中:Asc :为柱1根角筋的总面积(cm2);Asy、Asz:分别为柱B边和H边的单边面积,包括两根角筋面积(cm2);Asvj:为柱节点域抗剪箍筋面积(cm2);GAsv :为柱加密区抗剪箍筋面积(cm2);GAsvm :为柱非加密区抗剪箍筋面积(cm2);Uc :为非地震作用效应荷载组合下柱的轴压比;Ucs :为地震作用效应荷载组合下柱的轴压比;G :为箍筋配筋标志。

(完整word版)PKPM参数(超详细)解析

(完整word版)PKPM参数(超详细)解析

一、总信息1、水平力与整体坐标夹角:该参数为地震力、风荷载作用方向与结构整体坐标的夹角。

抗规》5.1.1 条和《高规》4.3.2 条规定,“一般情况下,应允许在建筑结构的两个主轴方向分别计算水平地震作用并进行抗震验算”.如果地震沿着不同方向作用,结构地震反应的大小一般也不相同,那么必然存在某个角度使得结构地震反应最为剧烈,这个方向就称为“最不利地震作用方向”。

这个角度与结构的刚度与质量及其位置有关,对结构可能会造成最不利的影响,在这个方向地震作用下,结构的变形及部分结构构件内力可能会达到最大. SATWE 可以自动计算出这个最不利方向角,并在WZQ。

OUT 文件中输出。

如果该角度绝对值大于15 度,建议用户按此方向角重新计算地震力,以体现最不利地震作用方向的影响。

一般并不建议用户修改该参数,原因有三:①考虑该角度后,输出结果的整个图形会旋转一个角度,会给识图带来不便;②构件的配筋应按“考虑该角度"和“不考虑该角度”两次的计算结果做包络设计;③旋转后的方向并不一定是用户所希望的风荷载作用方向.综上所述,建议用户将“最不利地震作用方向角"填到“斜交抗侧力构件夹角”栏,这样程序可以自动按最不利工况进行包络设计。

水平力与整体坐标夹角与地震信息栏中斜交抗侧力构件附加地震角度的区别是:水平力不仅改变地震力而且同时改变风荷载的作用方向;而斜交抗侧力仅改变地震力方向(增加一组或多组地震组合),是按《抗规》5.1.1 条2 款执行的。

对于计算结果,水平力需用户根据输入的角度不同分两个计算工程目录,人为比较两次计算结果,取不利情况进行配筋包络设计等;而{斜交抗侧力}程序可自动考虑每一方向地震作用下构件内力的组合,可直接用于配筋设计,不需要人为判断。

只有在风荷载起控制作用时,现有的坐标下风荷载不能起到控制结构的最大受力状态,此时填写一个角度(逆时针为正,顺时针为负),让坐标系发生变化,使风荷载在新的坐标系下(如何计算出风荷载产生的内力最大值的角度值?),能起控制作用(控制结构的最大受力状态),改变参数后,地震作用和风荷载的方向(说明两者方向是一致)将同时改变,但地震作用方向已经不是最不利的方向了,故需要在附加地震作用方向上输入一个相反的角度,使地震作用方向应按原坐标系计算,使地震力最大;如不需要改变风荷载的方向,只需考虑其它角度的地震作用时,则无需改变“水平力与整体坐标的夹角”,只增加附加地震作用方向即可。

PKPM构件配筋详解(DOC)

PKPM构件配筋详解(DOC)
GAsvm:为柱非加密区抗剪箍筋面积(cm2);
Uc:为非地震作用效应荷载组合下柱的轴压比;
Ucs:为地震作用效应荷载组合下柱的轴压比;G:为箍筋配筋标志。
注意事項
(1)圆柱是按等效矩形截面来计算箍筋面积的;
(2)柱子的箍筋是按用户输入的箍筋间距计算的,并满足加密区内最小体积 配箍率的要求控制。柱子的体积配箍率是按普通箍和复合箍的要求取值的。输出 的箍筋面积为箍筋间距范围内所有肢的总面积,在确定单肢箍筋的面积时,需要 除以箍筋肢数;
Aswvl:为地下室外墙或人防临空墙,每延米单侧竖向分布筋面积
(cm2/m)。
功能说明
(5)墙梁(RC Wall-Beam)
墙梁的配筋及输出格式与框架梁一致。需要特别说明的是:墙梁除混
凝土强度等级与剪力墙一致外,其它参数:主筋强度、箍筋强度、墙梁的箍筋间 距等均与框架梁一致。
注意事項
当墙梁的跨高比ln/h》时,墙梁按框架梁来设计;墙梁的跨高比In/h<5时,
(3)Asvj取计算的Asvjz与Asvjy的大值;Asv取计算的Asvz和Asvy的大 值;Asvm取Asvzm与Asvym的大值;
(4)输出的柱子纵筋面积满足规范规定的最小配筋率要求。
图中:
Asw:为墙柱端部边缘构件Lc范围内配筋面积(cm2);
Aswh:为墙柱水平分布筋间距范围内水平分布筋面积(cm2);
Ucs:为地震作用效应荷载组合下柱的轴压比;
G:为箍筋配筋标志。
注意事項
(1)柱配筋简图如下:
图8.641-3柱箍筋简图
(2) 柱子全截面配筋面积计算方法:As=2*( Asx+Asy)-4*Asc
(3)柱子的箍筋是按用户输入的箍筋间距计算的,并满足加密区内最小体积 配箍率的要求控制。柱子的体积配箍率是按普通箍和复合箍的要求取值的。输出 的箍筋面积为箍筋间距范围内所有肢的总面积,在确定单肢箍筋的面积时,需要 除以箍筋肢数。

PKPM结构设计主筋配筋的建议

PKPM结构设计主筋配筋的建议

文章编号:100926825(2010)0920039203PKPM 结构设计主筋配筋的建议收稿日期:2009211225作者简介:谭振军(19812),男,长沙理工大学土木与建筑学院结构工程硕士研究生,湖南长沙 410000袁建伟(19622),男,博士,硕士生导师,副教授,长沙理工大学土木与建筑学院,湖南长沙 410000彭翰旋(19742),男,工程师,湖南城建职业技术学院土木工程系,湖南长沙 410000谭振军 袁建伟 彭翰旋摘 要:通过PKPM 设计实例分析,提出平时设计时不应任意放大钢筋,放大钢筋不仅不经济,而且不能增强结构的抗震性能,以使框架结构设计更加合理,满足技术先进、经济合理、安全适用,确保质量的要求。

关键词:结构设计,抗震,延性中图分类号:TU318文献标识码:A 从事结构设计的人员仅仅掌握了书本中学到的基础专业知识是远远不够的。

在实际设计工作中,设计人员还需要一个不断学习和积累的过程,其中既包括知识,也包括经验。

同时还应该把自己在工作中学到和总结到的知识、经验拿出来与同行分享,共同进步。

笔者就在钢筋混凝土框架结构设计工作中将主筋配筋误区总结出来,不当之处还望指正。

在我们设计过程中,有些设计人员框架梁端、柱端纵向钢筋的配置普遍比较随意,其配筋量比计算值大20%,甚至更多,这个问题普遍存在;同时也有人认为,增大配筋量就是提高了结构的安全度,是强度储备。

笔者认为先不管经济影响,这个观点是完全错误的。

增大配筋量不一定能提高结构的安全度,相反可能是有害的。

1 误区分析采取放大钢筋做法主要是考虑以下产生任意加大配筋量的原因,这里可能存在一个误区,那就是把竖向荷载作用下产生的弯矩和地震作用下产生的弯矩没有完全区分开来,而是将它们混淆在一起。

因此强度储备的概念自然就在我们设计人员中体现出来,配筋时则出现宜大不宜小的情况。

另外就是构件截面设计不尽合理,裂缝计算加大了配筋量。

实际上对于框架结构,或是框架—剪力墙结构(至少要承担20%的地震力)[1],梁端负弯矩都是受地震力控制的。

(整理)PKPM设计基础时的参数分析和最小配筋率使用注意事项.

(整理)PKPM设计基础时的参数分析和最小配筋率使用注意事项.

PKPM设计基础时的参数分析和最小配筋率使用注意独立基础的最小配筋率问题比较复杂,有以下资料供参考:1.当独立基础底板厚度有规定:挑出长度与高度比值小于2.5。

因此不能当做一般的卧于地基上的板来看待2.满足1的要求是基础底面反力可以看作是线性的。

也就是说不考虑基础底板的弯曲或剪切变形。

3.基础底版有最小配筋要求即10@200,这比原来的8@200已经提高。

4.基础底版是非等厚度板,计算配筋率只能按全面积计算,不能按单位长度计算。

本人认为独立基础底板配筋不用按最小配筋率控制。

JCCAD程序中作了选项,如果输入最小配筋率则会按全截面演算最小配筋率。

当进行等强代换后程序还会重新演算最小配筋率。

我院总工要求结构设计人员的一些注意事项6、对小塔楼的界定应慎重,当塔楼高度对房屋结构适宜高度有影响时,小塔楼应报院结构专业委员会确定7、施工图涉及到钢网架、电梯及其它设备予留的孔洞、机坑、基础、予埋件等一定要写明:“有关尺寸在浇筑混凝土之前必须得到设备厂家签字认可方可施工。

”8、砌体结构不允许设转角飘窗。

9、钢结构工程设计必须注明:焊缝质量等级,耐火等级,除锈等级,及涂装要求。

10、砌体工程设计必须注明设计采用的施工质量控制等级。

(一般采用B级)。

11、砌体结构不宜设置少量的钢筋混凝土墙。

12、砌体结构楼面有高差时,其高差不应超过一个梁高(一般不超过500mm)。

超过时,应将错层当两个楼层计入总楼层中。

二.结构计算13、结构整体计算总体信息的取值:(1)混凝土容重(KN/m3)取26~27,全剪结构取27,若取25,对于剪力墙需输入双面粉层荷载。

(2)地下室层数,取实际地下室层数,当含有地下室计算时,不指定地下室层数是不对的,请审核人把关(3)计算振型数,取3的倍数,高层建筑应至少取9个,考虑扭转耦联计算时,振型应不少于15个,对多塔结构不应少于塔数×9。

计算时要检查Cmass-x及Cmass-y两向质量振型参与系数,均要保证不小于90%,达不到时,应增加振型数,重新计算。

PKPM操作指南

PKPM操作指南

PKPM操作步骤2010利用PKPM进行多层框架结构设计的主要步骤一、执行PMCAD主菜单1,输入结构的整体模型(一)根据建筑平、立、剖面图输入轴线1、结构标准层“轴线输入”(正交轴网,2300*24,7500,3000,7500)(梁、墙的网格)1)结构图中尺寸是指中心线尺寸,而非建筑平面图中的外轮廓尺寸2)根据上一层建筑平面的布置,在本层结构平面图中适当增设次梁3)只有楼层板、梁、柱等构件布置完全一样(位置、截面、材料),并且层高相同时,才能归并为一个结构标准层2、“网格生成”——轴线命名(Tab,F5刷新),删除网格(走廊)注:同一位置上在施工图中出现的轴线名称,取决于这个工程中最上一层(或靠近顶层)中命名的名称。

(二)估算(主、次)梁、板、柱等构件截面尺寸,并进行“构件定义”1、梁1)抗震规范第6.3.6条规定:b≥2002)主梁:h = (1/8~1/12)l,b=(1/3~1/2)h3)次梁:h = (1/12~1/16)l,b=(1/3~1/2)h2、框架柱:1)抗震规范第6.3.1条规定:矩形柱b c、h c≥300,圆形柱d≥350 2)控制柱的轴压比柱的轴压比限值,抗震等级为一到四级时,分别为0.7~1.0柱轴力放大系数,考虑柱受弯曲影响,取1.2~1.4楼面竖向荷载单位面积的折算值,取13~15kN/m2柱计算截面以上的楼层数柱的负荷面积3、板楼板厚:h = l/40 ~l/45(单向板) 且h≥60mmh = l/50 ~l/45(双向板) 且h≥80mm(三)选择各标准层进行梁、柱构件布置,“楼层定义”1、构件布置,柱只能布置在节点上,主梁只能布置在轴线上。

2、偏心,主要考虑外轮廓平齐。

(沿柱宽方向(纵向)右偏为正,沿柱高方向(横向)上偏为正,以上均相对于梁。

也可以用“偏心对齐”操作3、楼板生成,楼板错层,楼梯(全房间洞),修改板厚4、本层修改,删除不需要的梁、柱等。

5、本层信息,给出本标准层板厚、材料等级、层高。

【PKPM】混凝土构件配筋及钢构件验算简图

【PKPM】混凝土构件配筋及钢构件验算简图

1.混凝土梁和型钢混凝土梁:Asu1、Asu2、Asu3----为梁上部左端、跨中、右端配筋面积(cm2)Asd1、Asd2、Asd3----为梁下部左端、跨中、右端配筋面积(cm2)Asv----为梁加密区抗剪箍筋面积和剪扭箍筋面积的较大值(cm2)Asv0----为梁非加密区抗剪箍筋面积和剪扭箍筋面积的较大值(cm2)Ast、Ast1----为梁受扭纵筋面积和抗扭箍筋沿周边布置的单肢箍的面积,若Ast和Ast1均为0则不输出这一行(cm2)G、VT----为箍筋和剪扭配筋标志梁配筋计算说明:(1)若计算的ξ值小于ξb,软件按单筋方式计算受拉钢筋面积;若计算的ξ>ξb,程序自动按双筋方式计算配筋,即考虑压筋的作用;(2)单排筋计算时,截面有效高度h0=h-保护层厚度-12.5mm(假定梁钢筋直径为25mm);对于配筋率大于1%的截面,程序自动按双排计算,此时,截面有效高度h0=h-保护层厚度-37.5mm;(3)加密区和非加密区箍筋都是按用户输入的箍筋间距计算的,并按沿梁全长箍筋的面积配箍率要求控制。

若输入的箍筋间距为加密区间距,则加密区的箍筋计算结果可直接参考,如果非加密区与加密区的箍筋间距不同,则应按非加密区箍筋间距对计算结果进行换算;若输入的箍筋间距为非加密区间距,则非加密区的箍筋计算结果可直接参考使用,如果加密区与非加密区的箍筋间距不同,则应按加密区箍筋间距对计算结果进行换算。

2.钢梁:没根钢梁的下方都标有"steel"字样,表示该梁为钢梁。

若该梁与刚性铺板相连,不需验算整体稳定,则R2处的数值以R2字符代替。

输入格式如上图所示。

其中:R1表示钢梁正应力强度与抗拉、抗压强度设计值的比值F1/f。

R2表示钢梁整体稳定应力强度与抗拉、抗压强度设计值的比值F2/f。

R3表示钢梁剪应力强度与抗拉、抗压强度设计值的比值F3/f。

3.矩形混凝土柱和型钢混凝土柱:Asc----为柱一根角筋的面积,采用双偏压计算时,角筋面积不应小于此值,采用单偏压计算时,角筋面积可不受此值控制(cm2);Asx、Asy----分别为该柱B边和H边的单边配筋,包括两根角筋(cm2);Asvj、Asv、Asv0----分别为柱节点域抗剪箍筋面积、加密区斜截面抗剪箍筋面积、非加密区斜截面抗剪箍筋面积,箍筋间距均在Sc范围内。

PKPM剪力墙配筋计算

PKPM剪力墙配筋计算

剪力墙的高宽比、肢长与截面厚度之比及限值1、剪力墙的高宽比高度为剪力墙在竖向的高度,宽度为其在水平截面的长度,当高宽比大于3时,为细高的剪力墙,容易设计成具有延性的弯曲破坏剪力墙(高规条文说明7.1.2)。

当墙的长度很长时,可通过开设洞口将长墙分成长度较小的墙段,使每个墙段成为高宽比大于3的独立墙肢或联肢墙,分段宜较均匀。

设计提示:从提高受力性能的角度,剪力墙的高宽比应尽可能大于3。

但在高层建筑中,剪力墙高宽比一般可满足此条件。

2、剪力墙肢长与截面厚度之比为各肢截面高度与厚度之比。

可用来定义短肢剪力墙。

短肢剪力墙是指截面厚度不大于300mm、各肢截面高度与厚度之比的最大值大于4但不大于8的剪力墙;对于L形、T形、十字形剪力墙,其各肢的肢长与截面厚度之比的最大值大于4且不大于8时,才划分为短肢剪力墙。

短肢剪力墙沿建筑高度可能有较多楼层的墙肢会出现反弯点,受力特点接近异形柱,又承担较大轴力与剪力,因短肢剪力墙抗震性能较差,地震区应用经验不多,为安全起见,本规程规定短肢剪力墙应加强。

(高规条文说明7.1.8)设计提示:在高层剪力墙住宅建筑标准层单位面积含钢量中, 剪力墙墙身用钢量约占45%~ 65%, 剪力墙边缘构件用钢量约占30% ~ 50% (该统计数据为7度抗震设防区的数据) , 因此剪力墙布置时,可通过加长剪力墙墙肢长度, 减少剪力墙数量,减少边缘构件数量,尽可能布置在结构周边外围护墙位置,在结构中部宜减少剪力墙的布置量(如中部楼电梯间附近) , 使结构整体抗侧刚度增加, 降低造价,增加建筑平面布置灵活性。

如图1中所示,由于剪力墙平面外刚度很弱,在x向抗侧刚度时,可以忽略Y 向剪力墙的刚度贡献。

根据此理解,那么对于图1中墙肢长度hw的理解是不是就应当是8米;因为,四米处Y向的墙肢忽略其X向刚度贡献,也就是其不能作为支座存在。

那么在计算约束边缘构件范围Lc时,取用的墙肢长度就应该是8米,而不是四米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

功能说明这项菜单主要以图形方式显示各构件设计及验算结果,可以直接输出DWG图形文件。

图8.6.4 构件计算配筋简图8.6.4.1 各构件设计及验算结果功能说明简图上各构件的配筋结果表达方式如下:(1)钢筋混凝土梁和型钢混凝土梁(RC-Beam、SRC-Beam)图中:Asul-Asum-Asur:为梁上部左端、跨中、右端配筋面积(cm2);Asdl-Asdm-Asdr:为梁下部左端、跨中、右端配筋面积(cm2);GAsv:为梁加密区抗剪箍筋面积和剪扭箍筋面积的较大值(cm2);GAsvm:为梁非加密区抗剪箍筋面积和剪扭箍筋面积的较大值(cm2);VTAst :为梁受扭纵筋面积(cm2);VTAst1 :为梁抗扭箍筋的单肢箍面积(cm2);G、VT :为箍筋及剪扭配筋标志。

注意事項(1)梁配筋简图如下:图8.6.4.1-1 梁配筋示意图(2)加密区和非加密区箍筋都是按用户输入的箍筋间距计算的,当输入的箍筋间距为加密区间距时,梁端箍筋加密区的计算结果可直接使用;如果非加密区与加密区的箍筋间距不同时,需要对非加密区的箍筋面积按非加密区的间距进行换算后再使用。

当梁受扭时,配置的箍筋单肢面积不应小于VTAst1。

(3)输出的箍筋面积为箍筋间距范围内所有肢的总面积,在确定单肢箍筋的面积时,需要除以箍筋肢数。

(4)输出的纵筋及箍筋面积都满足规范要求的最小配筋率要求,如果计算出的配筋面积小于最小配筋率时,按最小配筋面积来输出。

(5)VTAst和VTAst1都为零时,该行不输出。

功能说明(2)矩形钢筋混凝土柱和型钢混凝土柱(RC-Column、SRC-Column)图中:Asc :为柱1根角筋的总面积(cm2);Asy、Asz:分别为柱B边和H边的单边面积,包括两根角筋面积(cm2);Asvj:为柱节点域抗剪箍筋面积(cm2);GAsv :为柱加密区抗剪箍筋面积(cm2);GAsvm :为柱非加密区抗剪箍筋面积(cm2);Uc :为非地震作用效应荷载组合下柱的轴压比;Ucs :为地震作用效应荷载组合下柱的轴压比;G :为箍筋配筋标志。

注意事項(1)柱配筋简图如下:图8.6.4.1-2 柱纵筋简图图8.6.4.1-3 柱箍筋简图(2)柱子全截面配筋面积计算方法:As=2*( Asx + Asy)-4*Asc(3)柱子的箍筋是按用户输入的箍筋间距计算的,并满足加密区内最小体积配箍率的要求控制。

柱子的体积配箍率是按普通箍和复合箍的要求取值的。

输出的箍筋面积为箍筋间距范围内所有肢的总面积,在确定单肢箍筋的面积时,需要除以箍筋肢数。

(4)Asvj取计算的Asvjy与Asvjz的大值;Asv取计算的Asvy和Asvz的大值;Asvm取Asvym与Asvzm的大值;(5)输出的柱子纵筋面积满足规范规定的最小配筋率要求。

功能说明(3)钢筋混凝土圆柱(RC-Column)图中:As:为圆柱全截面配筋面积(cm2);Asvj:为柱节点域抗剪箍筋面积(cm2);GAsv:为柱加密区抗剪箍筋面积(cm2);GAsvm:为柱非加密区抗剪箍筋面积(cm2);Uc:为非地震作用效应荷载组合下柱的轴压比;Ucs:为地震作用效应荷载组合下柱的轴压比;G:为箍筋配筋标志。

注意事項(1)圆柱是按等效矩形截面来计算箍筋面积的;(2)柱子的箍筋是按用户输入的箍筋间距计算的,并满足加密区内最小体积配箍率的要求控制。

柱子的体积配箍率是按普通箍和复合箍的要求取值的。

输出的箍筋面积为箍筋间距范围内所有肢的总面积,在确定单肢箍筋的面积时,需要除以箍筋肢数;(3)Asvj取计算的Asvjz与Asvjy的大值;Asv取计算的Asvz和Asvy的大值;Asvm取Asvzm与Asvym的大值;(4)输出的柱子纵筋面积满足规范规定的最小配筋率要求。

功能说明(4)墙柱(RC Wall-Column)图中:Asw:为墙柱端部边缘构件Lc范围内配筋面积(cm2);Aswh:为墙柱水平分布筋间距范围内水平分布筋面积(cm2);Aswv1:为地下室外墙或人防临空墙,每延米单侧竖向分布筋面积(cm2/m)。

功能说明(5)墙梁(RC Wall-Beam)墙梁的配筋及输出格式与框架梁一致。

需要特别说明的是:墙梁除混凝土强度等级与剪力墙一致外,其它参数:主筋强度、箍筋强度、墙梁的箍筋间距等均与框架梁一致。

注意事項当墙梁的跨高比ln/h≥5时,墙梁按框架梁来设计;墙梁的跨高比ln/h<5时,墙梁按连梁来设计;墙梁的抗震等级同剪力墙。

功能说明(6)混凝土异形柱图中:As:异形柱全截面总配筋面积(cm2);Asv:异形柱加密区斜截面抗剪箍筋面积(cm2);Asv0:异形柱非加密区斜截面抗剪箍筋面积(cm2);Uc:为非地震作用效应荷载组合下柱的轴压比;Ucs:为地震作用效应荷载组合下柱的轴压比。

注意事項异形柱按双偏压计算配筋,斜截面受剪配筋按双剪计算,分别求出两个相互垂直方向的箍筋面积,最后输出二者的较大值。

功能说明(7)斜向构件(如混凝土支撑)图中:Asx、Asy:支撑xy边单边配筋面积(含两根角筋)(cm2);GAsv:支撑箍筋面积(取Asvx与Asvy两者的大值)(cm2);G:箍筋配筋标志。

注意事項支撑按偏心受压(拉)或轴心受拉(压)混凝土构件计算配筋,支撑配筋形式及构造同柱配筋。

功能说明(8)钢梁图中:R1:表示钢梁正应力强度与钢材的抗拉、抗压强度设计值的比值F1/f;R2:表示钢梁整体稳定应力强度与钢材的抗拉、抗压强度设计值的比值F2/f;R3:表示钢梁剪应力强度与钢材的抗剪强度设计值的比值F3/fv;Steel:表示此构件是钢梁。

注意事項F1、F2、F3的具体含义参见第8.7节文本结果内容。

功能说明(9)钢柱和方钢管混凝土柱图中:R1:表示钢柱正应力强度与钢材的抗拉、抗压强度设计值的比值F1/f;R2:表示钢柱y向整体稳定应力强度与钢材的抗拉、抗压强度设计值的比值F2/f;R3:表示钢柱z向整体稳定应力强度与钢材的抗拉、抗压强度设计值的比值F3/f;Uc:为非地震作用效应荷载组合下柱的轴压比;Ucs:为地震作用效应荷载组合下柱的轴压比。

注意事項F1、F2、F3的具体含义参见第8.7节文本结果内容。

功能说明(10)圆钢管混凝土柱图中:R1:表示圆钢管混凝土柱的轴力设计值与其承载力的比值N/Nu,当R1<1.0时代表满足规范要求;Uc:为非地震作用效应荷载组合下柱的轴压比;Ucs:为地震作用效应荷载组合下柱的轴压比。

(11)钢支撑R1:表示钢支撑正应力强度与钢材的抗拉、抗压强度设计值的比值F1/f;R2:表示钢支撑X向整体稳定应力强度与钢材的抗拉、抗压强度设计值的比值F2/f;R3:表示钢支撑Y向整体稳定应力强度与钢材的抗拉、抗压强度设计值的比值F3/f;注意事項F1、F2、F3的具体含义参见第8.7节文本结果内容。

8.6.4.2 墙边缘构件设计配筋图8.6.4.2 墙边缘构件设计配筋可以输出墙边缘构件的主筋面积、箍筋配箍率及边缘构件的配筋范围尺寸等。

(5)当剪力墙的设计方法按考虑翼缘来设计时,输出的主筋面积计算原则如下:第一种(一字型):直接取用端部计算主筋;第二种(L型):取为两个端部计算主筋的较大值;第三种(T型):取为腹板剪力墙端部计算主筋;第四种(端柱):取为端部计算主筋与框架柱计算主筋的较大值;第五种(L端柱):取为两个方向端部计算主筋的较大值;第六种(T端柱):取为腹板剪力墙端部计算主筋。

当剪力墙的设计方法按直线段墙来设计时,输出的主筋面积计算原则如下:第一种(一字型):直接取用直线段墙肢的端部计算主筋;第二种(L型):取为两个直线段墙肢的端部计算主筋之和;第三种(T型):取为腹板直线段墙肢的墙端部计算主筋;第四种(端柱):取为剪力墙端部计算主筋与框架柱计算主筋二者之和;第五种(L端柱):取为两个直线段端部计算主筋与框架柱计算主筋三者之和;第六种(T端柱):取为腹板剪力墙端部计算主筋与框架柱计算主筋二者之和。

(6)图中标注的边缘构件尺寸对于约束和构造边缘构件都适用,区别在于:对于构造边缘构件,某些阴影尺寸参数的值可能取零。

8.6.4.3 梁设计配筋包络图图8.6.4.3 梁设计配筋包络图功能说明这项菜单可以以图形方式查看梁各截面的配筋结果,图面上梁上部负弯矩对应的配筋面积以负数表示,正弯矩对应的配筋面积以正数来表示。

一、 SATWE 配筋简图有关数字说明1.1 梁1.1.1砼梁和劲性梁1321321Ast VTAst Asm Asm Asm As As As GAsv-----其中: As1、As2、As3为梁上部(负弯矩)左支座、跨中、右支座的配筋面积(cm2);Asm1、Asm2、Asm3表示梁下部(负弯矩)左支座、跨中、右支座的配筋面积(cm2);Asv表示梁在Sb范围内的箍筋面积(cm2),取抗剪箍筋Asv与剪扭箍筋Astv的大值;Ast表示梁受扭所需要的纵筋面积(cm2);Ast1表示梁受扭所需要周边箍筋的单根钢筋的面积(cm2)。

G,VT分别为箍筋和剪扭配筋标志。

梁配筋计算说明:(1)对于配筋率大于1%的截面,程序自动按双排筋计算,此时,保护层取60mm;(2)当按双排筋计算还超限时,程序自动考虑压筋作用,按双筋方式配筋;(3)各截面的箍筋都是按用户输入的箍筋间距计算的,并按沿梁全长箍筋的面积配箍率要求控制。

若输入的箍筋间距为加密区间距,则加密区的箍筋计算结果可直接参考使用,如果非加密区与加密区的箍筋间距不同,则应按非加密区箍筋间距对计算结果进行换算;若输入的箍筋间距为非加密区间距,则非加密区的箍筋计算结果可直接参考使用,如果加密区与非加密区的箍筋间距不同,则应按加密区箍筋间距对计算结果进行换算。

1.1.2 钢梁R1-R2-R3其中:R1表示钢梁正应力与强度设计值的比值F1/f;R2表示钢梁整体稳定应力与强度设计值的比值F2/f;R3表示钢梁剪应力与抗剪强度设计值的比值F3/fv。

其中F1,F2,F3,的具体含义:F1=M/(Gb Wnb)F2=M/(Fb Wb)F3(跨中)=V S/(I tw), F3(支座)=V/Awn1.2. 柱1.2.1 矩形混凝土柱和劲性柱在左上角标注:(Uc)、在柱中心标柱:Asv、在下边标注:Asx、在右边标注:Asy、引出线标注:As_cornerA s_cornerAsyj AsyAsx其中:As_corner为柱一根角筋的面积,采用双偏压计算时,角筋面积不应小于此值,采用单偏压计算时,角筋面积可不受此值限制(cm2);Asx,Asy分别为该柱B边和H边的单边配筋,包括角筋(cm2);Asv 表示柱在Sc范围内的箍筋;Uc 表示柱的轴压比。

柱配筋说明:(1)柱全截面的配筋面积为:As=2*(Asx+Asy) - 4*As_corner;(2)柱的箍筋是按用户输入的箍筋间距计算的,并按加密区内最小体积配箍率要求控制;(3)柱的体积配箍率是按双肢箍形式计算的,当柱为构造配筋时,按构造要求的体积配箍率计算的箍筋也是按双肢箍形式给出的。

相关文档
最新文档