气体实验定律PPT教学课件

合集下载

气体的等温变化课件

气体的等温变化课件
在化学反应动力学研究中,气体的等温变化原理被用于研 究化学反应速率与温度的关系,为化学反应机理和动力学 模型的研究提供重要依原理是研究热力学性质 和状态方程的重要基础,如范德华方程、维里方程等。
在日常生活中的应用
压力锅
温度调节
压力锅是利用气体的等温变化原理来 提高烹饪效率的厨房用具。通过加压 烹饪,可以缩短烹饪时间并保持食物 的营养和口感。
验结果的影响。
数据记录
准确记录实验数据,避 免遗漏或误差。
实验后处理
实验结束后,应关闭气 瓶阀门,清理实验装置
,确保实验室整洁。
04
等温变化的实验结果分析
实验数据记录与整理
数据记录
在实验过程中,需要详细记录气体的 温度、压力和体积等数据,确保数据 的准确性和完整性。
数据整理
将实验数据整理成表格或图表形式, 便于分析和比较不同条件下的实验结 果。
在日常生活中,温度调节设备如空调 、暖气等都利用了气体的等温变化原 理。通过调节温度和压力,实现室内 温度的调节和控制。
气球和飞艇
气球和飞艇利用气体的等温变化原理 来调节浮力和姿态。通过充气和放气 ,气球和飞艇可以实现升空、悬浮和 下降等动作。
感谢您的观看
THANKS
如化工、制药、食品加工 等领域,利用等温变化原 理进行气体分离、液化、 压缩等操作。
科学实验研究
在实验室中模拟等温变化 过程,研究气体性质和反 应机理。
02
理想气体定律
理想气体定律的表述
理想气体定律的表述
在等温、等压条件下,气体的体积与气体的物质的量成正比。
公式表示
V1/n1=V2/n2 或 p1V1=p2V2
理想气体定律的适用范围
适用范围

《气体实验定律》课件

《气体实验定律》课件
气体实验定律
本次PPT课件介绍气体实验定律,通过详细讲解气体基本概念、测量方法以及 各个定律的表述、图示和应用范例,帮助您掌握气体的重要性和应用场景。
气体基本概念
气体特征
气体是一种没有定形的物质,具有压强、体积、温度等特征。
气体基本假定
气体的分子间距很大,气体分子间的相互作用力很小,在运动中自由碰撞,其碰撞、弹性和 速率服从一定的统计规律。
利用装置测量气体的体积和摩尔数,验
证摩尔定律。
3
算式推导和应用范例
通过摩尔方程,摩尔分数、分子式、密 度等重要物理量均可计算。
理想气体状态方程
方程表述
最基本的气体定理,表示一定条 件下物质的压强、体积、摩尔数 和温度之间的关系。
实验验证和限制条件
不能过于密集,分子间距离应远 大于分子本身大小,才符合理想 气体状态。
算式推导和应用范例
应用理想气体状态方程,可计算 摩尔质量、分子速率、凝固和沸 点等重要物理量。
总结
1 回顾气体实验定律
玛丽蒙德定律、查理定律、摩尔定律和理想气体状态方程,为研究气体的性质和应用提 供了重要的定律基础。
2 总结应用场景和限制
虽然这些定律和方程都有各自的应用场景,但其在实际应用过程中需要考虑到各种限制 条件,并且需要进行多个参数的测量和计算。
气体标准状态
一个标准大气压下、温度为 0℃ 时,单位体积气体的质量为 1.293g,称为标准状态。
玛丽蒙德定律
定律表述
实验装置图示
相同温度和压强下,不同气体的 体积与它们的摩尔数成直接正比。
摆放实验装置,通过测量容器的 体积变化、压强和物质的摩尔数 的比值,验证定律表述。
算式推导和应用范例
通过玛丽蒙德方程,可计算沸点 和密度等物理量。

高二物理粤教选修同步气体实验定律.pptx

高二物理粤教选修同步气体实验定律.pptx

A.升高到450 K
B.升高了150 ℃
C.升高到40.5 ℃
D.升高了450 ℃
解析:由VV12=TT12得:V1+V112V1=273T+2 27,T2=450 K Δt=(450-300)℃=150 ℃. 答案:AB
4.高空实验火箭起飞前,仪器舱内气体的压强p0=1 atm,温度t0=27 ℃, 在火箭竖直向上飞行的过程中,加速度的大小等于重力加速度g,仪器舱内水银 气压计的示数为p=0.6p0,已知仪器舱是密封的,那么,这段过程中舱内温度是 ()
课堂训练
2.(2012·上海卷)右图为 “研究一定质量气体在压强不变 的条件下,体积变化与温度变化关系”的实验装置示意图.粗细 均匀的弯曲玻璃管A臂插入烧瓶,B臂与玻璃管C下部用橡胶管连 接,C管开口向上,一定质量的气体被封闭于烧瓶内.开始时,B、 C内的水银面等高.
(1)若气体温度升高,为使瓶 内气体的压强不变,应将C管____ (填“向上”或“向下”)移动,直至
(2)对查理定律的解释:从分子动理论的观点来看,一定质量的气体,体 积保持不变而温度升高时,分子的密集程度不变,分子的平均动能增大,因而气 体的压强增大,温度降低时,情况恰好相反.
(3)对盖·吕萨克定律的解释:一定质量的气体温度升高时,要保持压强不 变,那就只能让气体体积增大才行,这时,一方面由于温度升高,分子的平均 动能增大,分子对器壁单位时间内单位面积上的作用力增大,压强有增大的倾 向,另一方面,由于体积的增大,分子的密集程度减小,单位时间内分子对单 位面积的碰撞次数减小,使压强有减小的倾向,这两种倾向抵消,所以压强保 持不变.
解析:对于一定质量气体的等压线,其V-t图象的延长线一定过-273 ℃的点,C正确;由于题目中没有给定压强的变化情况,因此A、B都有可能.

第三章第2节 气体实验定律的图像表示及微观解释精品PPT课件

第三章第2节 气体实验定律的图像表示及微观解释精品PPT课件

活动二 从微观角度解释气体实验定律
问题1
气体实验定律既能用公式表示,也能用图像表示,它 反映了气体宏观物理之间的关系。怎样从微观分子分布与 运动的角度来解释气体实验定律呢?
问题2
气体压强是由于气体分子对容器壁的频繁碰撞造成的, 从微观上看取决于气体分子的密集程度和分子的平均动能 这两个方面。当气体的状态参量发生Βιβλιοθήκη 化时,以上两个方 面如何相互制约呢?
1、 对玻意耳定律的解释:
pV c
一定质量的气体做等温变化时,气体分子的平 均动能是一定的,气体体积越小,分子的密集程 度越大,单位时间内碰撞单位面积器壁的分子数 越多,故而压强越大。
2、 对查理定律的解释:
p c T
一定质量的气体做等容变化时,气体分子的密 集程度不变,当温度升高时,分子热运动的平均 动能增大,分子运动速率增大,这一方面使得分 子撞击到器壁上单位面积上的分子数增多,同时 撞击力也增大,从而使得气体压强增大。
判天地之美,析万物之理
物理学家费尔德曾指出: 当你领悟一个出色的公式时,你会得到
如同听巴哈的乐曲一样的感受。
问题
气体实验定律除了可用十分简洁的公式 表示,还可用什么数学工具更加直观地表 示呢?
2 气体实验定律的图像表示及微观解释
活动一 气体实验定律的图象表示 问题1 气体实验定律的图像一般有三种:p-V图像、
讨论2 一定质量的某种气体装在容积分别为V1、V2、
V3的三个容器中,发生等容变化,相对应的三条等 容线如图所示,则V1、V2、V3的大小关系如何?
V1 V2 V3
问题2
等温变化、等容变化和等压变化可以在其他 两种坐标中表示出来吗? 1、等温线
2、等容线
3、等压线

第八节气体实验定律(共10张PPT)

第八节气体实验定律(共10张PPT)

如果缸内空气变为 0 ℃,问:
(1)重物是上升还是下降?
(2)这时重物将从原处移动多少厘米?
(设活塞与气缸壁间无摩擦)
图 2-8-1
第7页,共10页。
解:(1)缸内气体温度降低,压强减小,故活塞下移, 重物上升.
(2)分析可知缸内气体作等压变化. 设活塞截面积为 S cm2,气体初态体积 V1=10S cm3,温度 T1=373 K, 末态温 度 T2=273 K, 体积设为
V2=hS cm3(h 为活塞到缸底的距离) 据VV12=TT12可得 h=7.4 cm 则重物上升高度 Δh=(10-7.4)cm=2.6 cm.
第8页,共10页。
在静止时,试管内一段水银封闭一段空气,如图 2-8
-2 所示,若试管口向下自由下落,忽略空气阻力,水银
柱相对于管将( A ) A.上升
温度),在体积不变时,一定质量的气体,温度降低时,压
强___减__小___;温度升高时,压强_______增_.大
第2页,共10页。
2.查理定律的微观解释
一定质量 m 的气体的总分子数 N 是一定的,体积 V 保持不变时,其单位体积内的分子数 n _________不_,变当温 度 T 升高时,其分子运动的平均速率 v_____增__大_,则气体 压强 p 也____增__大__;反之当温度 T 降低时,气体压强 p 也 __减__小____.
[例 2]如图 2-8-1 所示的气缸中封闭着温度为 100
1
反之当温度 T 降低时,气体压强 p 也
=500 ℃时,压强为 p =1 体积________;
持压强 p 一定质量
不m变的,气当体温的度总T分升子高数时N,是全一体定分的子,运体动积的V平1均速

13.2-气体实验定律1

13.2-气体实验定律1

试在P-1/V 图上、 P-T图上、
V-T图上分别画出相应的状态变
p
化曲线。
1、P-1/V图 P
1 0
2 V
0
1/V
2、P-T图 P
1 2
0
T
3、V-T图
V 2
1
0
T
练习1、如图所示,水平放置的玻管被h=5cm的水银柱封闭的 空气柱长L1=16cm,当开口向上竖直放置时,空气柱L2多长?( 已知大气压为75cmHg)
L1
h
(1)
h
L2
(2)
练习2、内壁光滑的水平放置的气缸被质量为m的活塞封闭 了体积为V1的空气,当气缸按如图所示放置时,被封空气体 积为V2 。求大气压强(已知活塞的横截面积为S)。


5、图象 P-V图 p
1 O
2 V
(1)在p-V图上,等温线的特征:双曲线;
(2)曲线上的每一点表示一个状态;
p T1 T2<T3
o
v
(3)一定质量的某种气体在不同温度下的等温线 是不同的,温度越高,双曲线顶点离坐标原点越远。
例1、在温度不变的情况下,把一根100cm的上端封闭的 粗细均匀的玻璃管竖直插入水银槽中,管口跟槽内水银面的距 离为管长的一半,如图所示。水银进入管中的深度为25cm,求: 大气压强是多少?
13.2 气体实验定律
(一)玻意耳定律
1、内容:一定质量的某种气体在温度不变的情况下压 强P与体积V成反比
2、公式:p 1/V 写成等式为 PV=C(恒量)
或 P1V1=P2V2 或P1/P2=V2/V1
3、条件:1)质量一定。2)温度不变。
4、等温过程(变化)——气体在温度不变的情况下,发 生的状态变化。

《物理化学1气体》课件

《物理化学1气体》课件

04 气体反应动力学 与速率方程
气体反应速率的概念
反应速率
单位时间内反应物浓度减 少或产物浓度增加的量。
反应速率常数
反应速率与反应物浓度的 乘积,表示反应速率与浓 度的关系。
活化能
反应速率与温度的关系, 表示反应所需的最低能量 。
速率方程的建立与求解
质量作用定律
反应速率与反应物浓度的幂次方 成正比。
《物理化学1气体》ppt课 件
目 录
• 气体的基本性质 • 气体定律与热力学基础 • 气体混合物与分压定律 • 气体反应动力学与速率方程 • 气体化学反应平衡常数与计算
01 气体的基本性质
气体的定义与分类
总结词
气体的定义、分类及特性
详细描述
气体是物质的一种聚集状态,具有无固定形状和体积、流动性强等特性。根据气 体分子间相互作用力的不同,气体可分为理想气体和实际气体。理想气体忽略了 气体分子间的相互作用力,而实际气体则考虑了这种相互作用力。
理想气体定律
理想气体假设
理想气体状态方程,即PV=nRT,其 中P表示压强,V表示体积,n表示摩 尔数,R表示气体常数,T表示温度。
理想气体是一种假设的气体模型,其 分子之间没有相互作用力,分子本身 的体积可以忽略不计。
理想气体状态方程的应用
用于计算气体的压力、体积、温度等 物理量之间的关系,以及气体的热力 学性质。
热力学第一定律
热力学第一定律
01不
能消失,只能从一种形式转化为另一种形式。
内能和热量
02
内能是系统内部能量的总和,热量是系统与外界交换能量的量
度。
热力学第一定律的应用
03
用于计算系统的内能、热量、功等物理量之间的关系,以及系

气体实验定律-PPT课件

气体实验定律-PPT课件

C.气体分子平均速率变大
D.单位时间单位面积器壁上受到气体分子撞击的次 数减少
小结:
• 一定质量的气体在等容变化时,遵守查理定 律. 一定质量的气体在等压变化时,遵守盖 · 吕萨 克定律.

气体实验定律(Ⅱ)
一、等容过程
1.等容过程:气体在体积不变的情况下发 生的状态变化过程叫做等容过程. 2.一定质量气体的等容变化
演示:
• 如图所示,研究瓶中一 定质量的气体,先使U 型管中两侧水银液面等 高,在左侧液面处标上 标记P,然后改变瓶内 气体温度(可分别放入 热水和冰水中),上下 移动A管,使左侧水银 面保持在P处(即使瓶 中气体体积不变).
4.等容线 ( l )等容线:一定质量的某种气体在等容变化 过程中,压强p跟热力学温度 T的正比关系 p- T在直角坐标系中的图象叫做等容线. (2)一定质量气体的等容线 p- T图象,其延长 线经过坐标原点,斜率反映体积大小,如图所 示.
(3)一定质量气体的等容线的物理意义. ①图线上每一个点表示气体一个确定的状态 ,同一根等容线上各状态的体积相 ②不同体积下的等容线,斜率越大,体积越 小(同一温度下,压强大的体积小)如图所 示,V2<V1.
查理定律的微观解释:
一定质量(m)的气体的总分子数(N) 是一定的,体积(V)保持不变时,其单 位体积内的分子数(n)也保持不变,当 温度(T)升高时,其分子运动的平均速 率(v)也增大,则气体压强(p)也增大; 反之当温度(T)降低时,气体压强(p) 也减小。
二、等压过程
1 .等压过程:气体在压强不变的情况下发 生的状态变化过程叫做等压过程. 2.一定质量气体的等压变化.
可得到,气体温度升 高,压强增大;气体 温度降低,压强减小.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、温度 t , T 反映系统内部大量分子作无规则剧烈运动程度
1.摄氏温标( t ) [单位:℃]
2.热力学温标( T ) [单位:K]
两者换算关系: T=273.15+t 状态参量:表征气体有关特性的物理量 如P、V、T等
四.平衡状态
平衡态: 在不受外界影响(即系统与外界没有物质和能
量的交换)的条件下,无论初始状态如何,系统的 宏观性质在经充分长时间后不再发生变化的状态。 准静态过程:如果状态变化过程进行得非常缓慢,以 至过程中的每一个中间状态都近似于平衡态,这样的 过程称为“准静态过程 ”,又称“平衡过程 ”。
气体动理论 §1 分子运动的基本概念
一.热力学系统 热力学研究的对象----热力学系统. 热力学系统以外的物体称为外界。 孤立系统:系统和外界完全隔绝的系统
例:若汽缸内气体为系统,其它为外界
二.系统状态的描述 微观量:分子的质量、速度、动量、能量等。
在宏观上不能直接进行测量和观察。 宏观量: 温度、压强、体积等。
R 称为“普适气体常数 ”
代入: PV PoVo M PoVmol
热学是研究与热现象有关的规律的科学。 热现象是物质中大量分子无规则运动的集体表现。 大量分子的无规则运动称为热运动。
常见的一些现象:
1、一壶水开了,水变成了水蒸气。 2、温度降到0℃以下,液体的水变成了固体的冰块。 3、气体被压缩,产生压强。 4、物体被加热,物体的温度升高。
热现象
热学的研究方法:
在宏观上能够直接进行测量和观察。 宏观量与微观量的关系: 宏观量与微观量的内在联系表现在大量分子杂乱无章 的热运动遵从一定的统计规律性上。在实验中,所测 量到的宏观量只是大量分子热运动的统计平均值。
三.基本原理: 1.自然界中一切物体都是由大量不连续的、彼此间有
一定距离的微粒所组成,这种微粒称为分子. 2.分子间有相互作用力.
(3)实验数据的测量及分析
演示实验 (看课本)

(1)研究的是哪一部分气体?

(2)怎样保证 T 不变?
(3)如何改变 p ? ——根据高度差
(4)如何测 V ?
实 验次
实验数据的处理
数1 2 3 4 5
压强(×105Pa) 3 . 0 2 . 5 2 . 0 1 . 5 1 . 0
体 积 ( L ) 1 . 3 1.6 2 . 0 2 . 7 4 . 0
首先,我们来研究:当温度( T ) 保持不变时,体积( V )和压强( p ) 之间的关系。
气体的等温变化
授 课 1、等温变化:
气体在温度不变的状态下,发生的 变化叫做等温变化。
2、实验研究
2、实验研究
实 验 (1)实验目的:
在温度保持不变时,研究一定质量 气体的压强和体积的关系
(2)实验装置1 实验装置2
在物理学中,当需要研究三个物 理量之间的关系时,往往采用“保持 一个量不变,研究其它两个量之间的 关系,然后综合起来得出所要研究的
几个量之间的关系”,

问题

我们在以前的学习中,也曾经采用
过“控制变量的方法”来研究三个变量 之间的关系:
1、牛顿第二定律(α、F、m);
2、…

引言

今天,我们便来研究气体的三个状 态参量T、V、p之间的关系。
N A 6.022 1023 mol 1
3.2 理想气体 理想气体:在任何情况下都严格遵守“波-马定 律”、“盖-吕定律”以及“查理定律”的气体。 3.3 理想气体物态方程
P1V1 P2V2 恒量 (质量不变) T1 T2 P,V ,T Po ,Vo ,To (标准状态)
标准状态:
Vo
M M mol
Vmol
Po 1.01325 105 Pa
3 m3
PV PoVo M PoVmol
T
To M mol To
其中: M 为气体的总质量。
M mol为气体的摩尔质量。
令: R PoVmol 8.31 (J mol 1 K 1) To
p
p
·A
·A
0
1/V 0
V

需要注意的问题

• 研究对象:一定质量的气体
• 适用条件:温度保持不变化
• 适用范围:温度不太低,压强不太大
思考与讨论
同一气体,不同温度下等温线是不同的, 你能判断那条等温线是表示温度较高的情形 吗?你是根据什么理由作出判断的?
p
23 1 0
结论:t3>t2>t1
V
热物理学
气体实验定律(I)

气体的状态参量

1、温度
热力学温度T :开尔文 T = t + 273 K
2、体积
体积 V 单位:有L、mL等
3、压强
压强 p 单位:Pa(帕斯卡)

问题

一定质量的气体,它的温度、体
积和压强三个量之间变化是相互对应 的。我们如何确定三个量之间的关系 呢?

方法研究

☆ 控制变量的方法
1.宏观法. 最基本的实验规律逻辑推理(运用数学) ------称为热力学。
优点:可靠、普遍。 缺点:未揭示微观本质。 2.微观法.
物质的微观结构 + 统计方法 ------称为统计力学 其初级理论称为气体分子运动论(气体动理论) 优点:揭示了热现象的微观本质。 缺点:可靠性、普遍性差。
宏观法与微观法相辅相成。
p/105 Pa
3
实 验2
1
0
1
2
3
4
V
p/105 Pa
3
实 验2
1
0
0.2
0.4
0.6
0.8
1/V
实验结论

在温度不变时,压强p和体积V成

反比。
玻意耳定律
1、文字表述:一定质量某种气体,在温度不 变的情况下,压强p与体积V成反比。
2、公式表述:pV=常数 或p1V1=p2V2
3、图像表述:
§3 理想气体物态方程
3.1 气体的实验规律 一.气体定律
P1V1 P2V2 恒量 (质量不变) T1 T2
二.阿伏伽德罗定律 在相同的温度和压强下,1摩尔的任何气体所占据的体积 都相同.在标准状态下,即压强P0=1atm、温度T0=273.15K 时, 1摩尔的任何气体的体积均为 v0=22.41L/mol
3.分子永不停息地作无规则的运动.
§2 气体的状态参量 平衡态
一、体积V 气体分子所能达到的空间范围. [单位: m3]
二、压强P 气体作用于容器壁单位面积的垂直作用力. [单位:Pa] 1Pa=1N/ m2
1.1mmHg=133.3Pa 2.标准大气压(atm)
1atm 760mmHg 1.013105 Pa
相关文档
最新文档