运筹学第九章动态规划应用举例

合集下载

动态规划的应用举例大全

动态规划的应用举例大全
多背包问题
在0/1背包问题的基础上,通过动态规 划的方式解决多个约束条件下的物品 选择问题。
排程问题
作业车间调度问题
通过动态规划的方式,求解给定一组作业和机器,如何分配作业到机器上,使得 完成时间最早且总等待时间最小。
流水线调度问题
通过动态规划的方式,解决流水线上的工件调度问题,以最小化完成时间和总延 误时间。
应用场景
在基因组测序、进化生物学和生物分类学等领域中,DNA序列比对是关键步骤。通过比对,可以发现物种之间的相 似性和差异,有助于理解生物多样性和进化过程。
优势与限制
动态规划算法在DNA序列比对中具有高效性和准确性,能够处理大规模数据集。然而,对于非常长的序 列,算法可能需要较长时间来运行。
蛋白质结构预测
应用场景
深度学习中的优化算法广泛应用于语音识别、图像处理、 自然语言处理等领域,动态规划可以帮助提高训练效率和 模型的准确性。
自适应控制和系统优化
问题描述
动态规划方法
自适应控制和系统优化是针对动 态系统的优化和控制问题。在这 些问题中,动态规划可以用于求 解最优控制策略和系统参数调整。
通过定义状态转移方程和代价函 数,将自适应控制和系统优化问 题转化为动态规划问题。状态表 示系统的当前状态和参数,代价 函数描述了在不同状态下采取不 同行动的代价。
考虑风险因素和概率
动态规划可以考虑到风险因素和概率,以制定最优的风险评估和管 理策略。
考虑风险承受能力和资本充足率
动态规划可以考虑到风险承受能力和资本充足率,以制定最优的风 险评估和管理策略。
04 动态规划在生物信息学中 的应用
DNA序列比对
算法描述
DNA序列比对是生物信息学中常见的问题,通过动态规划算法可以高效地解决。算法将DNA序列视为字符串,并寻 找两个或多个序列之间的最佳匹配。

动态规划算法应用场景

动态规划算法应用场景

动态规划算法应用场景动态规划(Dynamic Programming)在数学上属于运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法,同时也是计算机科学与技术领域中一种常见的算法思想。

动态规划算法与我们前面提及的分治算法相似,都是通过组合子问题的解来求解原问题的解。

但是两者之间也有很大区别:分治法将问题划分为互不相交的子问题,递归的求解子问题,再将他们的解组合起来求解原问题的解;与之相反,动态规划应用于子问题相互重叠的情况,在这种情况下,分治法还是会做很多重复的不必要的工作,他会反复求解那些公共的子问题,而动态规划算法则对相同的每个子问题只会求解一次,将其结果保存起来,避免一些不必要的计算工作。

Tips: 这里说到的动态规划应用于子问题相互重叠的情况,是指原问题不同的子问题之间具有相同的更小的子子问题,他们的求解过程和结果完全一样。

动态规划算法更多的时候是用来求解一些最优化问题,这些问题有很多可行解,每个解都有一个值,利用动态规划算法是希望找到具有最优值的解。

接下来,就让我们具体看看动态规划算法的求解思路及相关应用场景。

1. 动态规划算法求解分析1.1 适用问题首先,在利用动态规划算法之前,我们需要清楚哪些问题适合用动态规划算法求解。

一般而言,能够利用动态规划算法求解的问题都会具备以下两点性质:最优子结构:利用动态规划算法求解问题的第一步就是需要刻画问题最优解的结构,并且如果一个问题的最优解包含其子问题的最优解,则此问题具备最优子结构的性质。

因此,判断某个问题是否适合用动态规划算法,需要判断该问题是否具有最优子结构。

Tips: 最优子结构的定义主要是在于当前问题的最优解可以从子问题的最优解得出,当子问题满足最优解之后,才可以通过子问题的最优解获得原问题的最优解。

重叠子问题:适合用动态规划算法去求解的最优化问题应该具备的第二个性质是问题的子问题空间必须足够”小“,也就是说原问题递归求解时会重复相同的子问题,而不是一直生成新的子问题。

九章二节动态规划应用举例

九章二节动态规划应用举例

第二节动态规划应用举例
本节将通过动态规划的三种应用类型——资源分配问题、复合系统可靠性问题、设备更新问题,进一步介绍动态规划的特点和处理方法。

资源分配问题的应用很广泛,例如:
1.某学生正在备考4门功课,还剩7天时间,每门功课至少复习1天。

若他已估计出各门功课的复习天数与能提高的分数之间的关系,问他应怎样安排复习时间可使总的分数提高最多?
2.背包问题:旅行者携带的背包中能装的物品重量为a,现他要从n种物品中挑选若干数量装入背包,问他应如何挑选可使所带的物品总价值最大?
可靠性问题的应用很广泛,例如:
1.某重要的科研攻关项目正在由3个课题组以3种不同的方式进行,各组已估计出失败的概率。

为减少失败的概率,选派了2名高级专家去充实科研力量。

若可估计出各组增加专家后的失败概率,问应如何分派专家可使总的失败概率最小?
2.已知x
1+x
2
+…+x
n
=c,求z=x
1
x
2
…x
n
的最大
值。

动态规划算法原理与的应用

动态规划算法原理与的应用

动态规划算法原理与的应用动态规划算法是一种用于求解最优化问题的常用算法。

它通过将原问题划分为子问题,并将每个子问题的解保存起来,以避免重复计算,从而降低了问题的时间复杂度。

动态规划算法的核心思想是自底向上地构建解,以达到求解整个问题的目的。

下面将介绍动态规划算法的原理以及一些常见的应用。

1.动态规划算法的原理1)将原问题划分为多个子问题。

2)确定状态转移方程,即找到子问题之间的关系,以便求解子问题。

3)解决子问题,并将每个子问题的解保存起来。

4)根据子问题的解,构建整个问题的解。

2.动态规划算法的应用2.1最长公共子序列1) 定义状态:假设dp[i][j]表示序列A的前i个字符和序列B的前j个字符的最长公共子序列的长度。

2) 确定状态转移方程:若A[i] == B[j],则dp[i][j] = dp[i-1][j-1] + 1;若A[i] != B[j],则dp[i][j] = max(dp[i-1][j],dp[i][j-1])。

3) 解决子问题:从前往后计算dp数组中每个元素的值。

4) 构建整个问题的解:dp[m][n]即为最终的最长公共子序列的长度,其中m和n分别为序列A和序列B的长度。

2.2背包问题背包问题是指给定一个背包的容量和一些物品的重量和价值,要求在不超过背包容量的情况下,选择若干物品放入背包中,使得背包中物品的总价值最大。

该问题可通过动态规划算法求解,具体步骤如下:1) 定义状态:假设dp[i][j]表示在前i个物品中选择若干物品放入容量为j的背包中,能够获得的最大价值。

2) 确定状态转移方程:考虑第i个物品,若将其放入背包,则dp[i][j] = dp[i-1][j-wi] + vi;若不将其放入背包,则dp[i][j] = dp[i-1][j]。

3) 解决子问题:从前往后计算dp数组中每个元素的值。

4) 构建整个问题的解:dp[n][C]即为最终的背包能够获得的最大价值,其中n为物品的个数,C为背包的容量。

动态规划算法详解及经典例题

动态规划算法详解及经典例题

动态规划算法详解及经典例题⼀、基本概念(1)⼀种使⽤多阶段决策过程最优的通⽤⽅法。

(2)动态规划过程是:每次决策依赖于当前状态,⼜随即引起状态的转移。

⼀个决策序列就是在变化的状态中产⽣出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。

假设问题是由交叠的⼦问题所构成,我们就能够⽤动态规划技术来解决它。

⼀般来说,这种⼦问题出⾃对给定问题求解的递推关系中,这个递推关系包括了同样问题的更⼩⼦问题的解。

动态规划法建议,与其对交叠⼦问题⼀次重新的求解,不如把每⼀个较⼩⼦问题仅仅求解⼀次并把结果记录在表中(动态规划也是空间换时间的)。

这样就能够从表中得到原始问题的解。

(3)动态规划经常常使⽤于解决最优化问题,这些问题多表现为多阶段决策。

关于多阶段决策:在实际中,⼈们经常遇到这样⼀类决策问题,即因为过程的特殊性,能够将决策的全过程根据时间或空间划分若⼲个联系的阶段。

⽽在各阶段中。

⼈们都须要作出⽅案的选择。

我们称之为决策。

⽽且当⼀个阶段的决策之后,经常影响到下⼀个阶段的决策,从⽽影响整个过程的活动。

这样,各个阶段所确定的决策就构成⼀个决策序列,常称之为策略。

因为各个阶段可供选择的决策往往不⽌⼀个。

因⽽就可能有很多决策以供选择,这些可供选择的策略构成⼀个集合,我们称之为同意策略集合(简称策略集合)。

每⼀个策略都对应地确定⼀种活动的效果。

我们假定这个效果能够⽤数量来衡量。

因为不同的策略经常导致不同的效果,因此,怎样在同意策略集合中选择⼀个策略,使其在预定的标准下达到最好的效果。

经常是⼈们所关⼼的问题。

我们称这种策略为最优策略,这类问题就称为多阶段决策问题。

(4)多阶段决策问题举例:机器负荷分配问题某种机器能够在⾼低两种不同的负荷下进⾏⽣产。

在⾼负荷下⽣产时。

产品的年产量g和投⼊⽣产的机器数量x的关系为g=g(x),这时的年完善率为a,即假设年初完善机器数为x,到年终时完善的机器数为a*x(0<a<1);在低负荷下⽣产时,产品的年产量h和投⼊⽣产的机器数量y 的关系为h=h(y)。

运筹学教案动态规划

运筹学教案动态规划

运筹学教案动态规划一、引言1.1 课程背景本课程旨在帮助学生掌握运筹学中的动态规划方法,培养学生解决实际问题的能力。

1.2 课程目标通过本课程的学习,学生将能够:(1)理解动态规划的基本概念和原理;(2)掌握动态规划解决问题的方法和步骤;(3)能够应用动态规划解决实际问题。

二、动态规划基本概念2.1 定义动态规划(Dynamic Programming,DP)是一种求解最优化问题的方法,它将复杂问题分解为简单子问题,并通过求解子问题的最优解来得到原问题的最优解。

2.2 特点(1)最优子结构:问题的最优解包含其子问题的最优解;(2)重叠子问题:问题中含有重复子问题;(3)无后效性:一旦某个给定子问题的解确定了,就不会再改变;(4)子问题划分:问题可以分解为若干个子问题,且子问题之间是相互独立的。

三、动态规划解决问题步骤3.1 定义状态状态是指某一阶段问题的一个描述,可以用一组变量来表示。

3.2 建立状态转移方程状态转移方程是描述从一个状态到另一个状态的转换关系。

3.3 确定边界条件边界条件是指初始状态和最终状态的取值。

3.4 求解最优解根据状态转移方程和边界条件,求解最优解。

四、动态规划应用实例4.1 0-1背包问题问题描述:给定n个物品,每个物品有一个重量和一个价值,背包的最大容量为W,如何选择装入背包的物品,使得背包内物品的总价值最大。

4.2 最长公共子序列问题描述:给定两个序列,求它们的最长公共子序列。

4.3 最短路径问题问题描述:给定一个加权无向图,求从源点到其他各顶点的最短路径。

5.1 动态规划的基本概念和原理5.2 动态规划解决问题的步骤5.3 动态规划在实际问题中的应用教学方法:本课程采用讲授、案例分析、上机实践相结合的教学方法,帮助学生深入理解和掌握动态规划方法。

教学评估:课程结束后,通过课堂讨论、上机考试等方式对学生的学习情况进行评估。

六、动态规划算法设计6.1 动态规划算法框架介绍动态规划算法的基本框架,包括状态定义、状态转移方程、边界条件、计算顺序等。

10运筹学-动态规划

10运筹学-动态规划
动态规划
动态规划问题实例 动态规划的基本概念与原理 动态规划应用举例

引言
动态规划是解决多阶段决策过程最优化的一种方法。该方法 是由美国数学家贝尔曼(R. E. Bellman)等人在20世纪50年代 初提出的。并成功地解决了生产管理、工程技术等方面的许
多问题,从而建立了运筹学的一个新的分支,即动态规划。
式中opt 可根据题意取 max 或 min.
例如,例1的基本方程为:
f k ( sk ) min{d k ( sk , uk ) f k 1 ( sk 1 )} k 5,4,3,2,1 uk f 6 ( s6 ) 0
最优性原理:无论过去的状态和决策如何,从眼下直到最后 的诸决策必构成最优子策略。
(1)k=5 时,状态 S5 {E1 , E2} 最短路。
它们到F 点的距离即为
f 5 ( E1 ) 4,
f5 ( E2 ) 3;
* * u5 ( E1 ) F , u5 ( E2 ) F.
2
4
C1
8 3
5 4 5 3 4 8
* u5 ( E1 ) F ,
B1
D1 D2 D3
动态规划应用举例
例1 最短路线问题
2 4
C1
8 3
5 4
B1
D1 D2 D3
5 6
2 1
3
6
5 8 7 7
C2 C3
5
3 4 8
E1
3
4
A B2
F E2
3
C4
4
2
4
C1
8 3
5 4 5 3 4 8
B1
D1 D2 D3
5 6 2 1

动态规划及其应用ppt课件

动态规划及其应用ppt课件
问题。
ppt精选版
3
例题
• 例1、数字三角形

(图2-1)示出了一个数字三角形。 请编一个程序计算从顶至底的某
处的一条路径,使该路径所经过的数字的总和最大。
• ●每一步可沿左斜线向下或右斜线向下走;
• ●1<三角形行数≤100;
• ●三角形中的数字为整数0,1,…99;
• 输入数据:
• 由INPUT.TXT文件中首先读到的是三角形的行数。
ppt精选版
11
每一个花瓶的形状和颜色也不相同,因此,当各个花瓶 中放入不同的花束时会产生不同的美学效果,并以美 学值(一个整数)来表示,空置花瓶的美学值为0。在 上述例子中,花瓶与花束的不同搭配所具有的美学值, 可以用如下表格表示。比如杜鹃花放在花瓶2中,会 显得非常好看,但若放在花瓶4中则显得很难看。
End; {for}
ppt精选版
7
例题
• 有一个体积为V背包,现在有n个物品,他 们格子有自己的体积vi,和各自的价值wi。 现在需要选出一些物品装进背包,你的任 务是使装进物品的价值最大。
ppt精选版
8
• 状态:f[I,j](i表示处理第几个物品,j表示已 用了多大空间)
• 转移:f[I,j]=max(f[i-1,j-v[i]]+c[i],f[i-1,j]) • 边界:f[0,0]=0;
我们采用动态规划中的顺推解法。按三角形的 行划分阶段。若行数为n, 则可把问题看作一个n-1 个阶段的决策问题。从始点出发,依顺序求出第 一阶段、第二阶段,……,第n-1阶段中各决策点 至始点的最佳路径,最终求出始点到终点的最佳 路径。
ppt精选版
5
• 状态:f[I,j]表示,走到第i行第j列最大得分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档