浙教版数据的分析初步知识点总结-经典复习教案
第6章数据的分析复习课(教案)

1.理论介绍:首先,我们要回顾数据分析的基本概念。数据分析是指通过数学方法对收集到的数据进行分析、整理和解释,以便发现其中的规律和趋势。它是理解和解决问题的关键,可以帮助我们做出更合理的决策。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过数据分析来帮助我们了解班级同学的阅读习惯,以及如何根据这些数据提出改进建议。
d.能够根据数据进行分析、解决问题,并作出合理的推断。
二、核心素养目标
1.培养学生的数据分析观念,使其能够运用所学知识对现实生活中的数据进行整理、分析和解释,提高解决实际问题的能力;
2.培养学生的数学思维能力,特别是在抽象、推理和模型构建方面的能力,使学生能够运用数学语言和方法描述现象、发现规律;
3.培养学生的空间观念和几何直观,通过绘制和解读统计图,提高学生对数据的直观认识和理解;
b.统计图的选择与解读:学生应学会根据数据的特点选择合适的统计图进行展示,并能从统计图中获取有效信息。
-举例:根据不同数据类型选择条形图、折线图或扇形图,解读统计图中的数据变化和比例关系。
c.数据分析的基本步骤:学生需要掌握数据分析的基本流程,包括数据收集、整理、展示和分析。
-举例:分析班级同学的身高分布,掌握从数据收集到得出结论的整个过程。
3.重点难点解析:在讲授过程中,我会特别强调平均数、中位数和众数这三个重点概念。对于难点部分,比如如何选择合适的统计图来展示数据,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组பைடு நூலகம்论:学生们将分成若干小组,每组讨论一个与数据分析相关的实际问题,例如分析最近一次考试的分数分布。
其次,数据分析的综合运用能力有待提高。在小组讨论环节,虽然学生们能够针对某一问题提出自己的看法,但在将这些零散的观点整合起来,形成一个完整、有逻辑的分析过程时,他们显得有些力不从心。这可能是因为他们在之前的课程中,较少进行这种综合性的数据分析练习。因此,我计划在接下来的课程中,增加一些综合性的案例分析,帮助学生提高这方面的能力。
浙教版数学七年级上册第六章《数据与图表》复习教学设计

浙教版数学七年级上册第六章《数据与图表》复习教学设计一. 教材分析浙教版数学七年级上册第六章《数据与图表》复习教学设计,主要涉及统计表、统计图、平均数、中位数、众数等知识点。
本章内容是对数据的收集、整理、分析的初步学习,旨在让学生了解数据分析的基本方法,培养学生的数据观念和解决问题的能力。
二. 学情分析学生在之前的学习中已经初步接触过统计表、统计图等概念,对平均数、中位数、众数等也有了一定的了解。
但部分学生对这些概念的理解不够深入,对数据分析的方法和技巧掌握不足。
因此,在复习教学中,需要帮助学生巩固基础知识,提高数据分析能力。
三. 教学目标1.理解统计表、统计图的概念和作用,掌握绘制和解读统计表、统计图的方法。
2.掌握平均数、中位数、众数的计算方法,能运用这些方法解决实际问题。
3.培养学生的数据观念和解决问题的能力。
四. 教学重难点1.重点:统计表、统计图的绘制和解读,平均数、中位数、众数的计算及应用。
2.难点:数据分析的方法和技巧,解决实际问题。
五. 教学方法采用讲解、示范、练习、讨论、小组合作等教学方法,以学生为主体,教师为主导,激发学生的学习兴趣,培养学生的动手操作能力和团队协作能力。
六. 教学准备1.教师准备:教材、教学PPT、统计表和统计图的素材、练习题等。
2.学生准备:教材、笔记本、文具。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾统计表、统计图、平均数、中位数、众数等基础知识,激发学生的学习兴趣。
2.呈现(10分钟)教师通过PPT展示各种统计表和统计图,让学生观察和分析,引导学生理解统计表、统计图的概念和作用,掌握绘制和解读统计表、统计图的方法。
3.操练(10分钟)教师给出具体数据,让学生独立或小组合作绘制统计表和统计图,并解读图表所传递的信息。
教师随机挑选学生回答,给予评价和指导。
4.巩固(10分钟)教师给出练习题,让学生独立完成,巩固统计表、统计图的绘制和解读方法,以及平均数、中位数、众数的计算方法。
第20章 数据的分析小结复习 导学案

第20章数据的分析小结复习导学案一、复习导入(一)导入课题:本节课我们一起复习“数据的分析”(板书课题).(二)复习目标:1.复习与回顾本章的重要知识点.2.总结本章的重要思想方法.(三)复习重、难点:重点:平均数、中位数、众数和方差.难点:运用上述知识分析数据.二、分层复习第一层次学习(一)复习指导1.复习内容:P111页到P137页.2.复习时间:10分钟.3.复习指导:通过课本和笔记复习和回顾本章的重要知识点.4.复习参考提纲:(1)n个数据x1,x2,…,xn的算术平均数x= ;如果一组数据中,x1,x2,x3,…,xk出现的次数分别是f1, f2,f3,…,fk,那么这组数据的加权平均数x= .(2)在一组数据中,出现叫做这组数据的众数(一组数据的众数有时不只一个).(3)将一组数据按的顺序排列,把处在最中间的数据(或最中间数据的)叫做这组数据的中位数.(4)数据x1,x2,x3,…,xn的方差S2= .方差是用来反映一组数据的特征数,常常用来比较两组数据的,方差越大,数据的波动;方差越小,数据的波动;方差的单位是原数据单位的 .求方差的一般步骤:第一步:求出;第二步:求出;第三步:求出 .(二)自主复习:学生可参考复习参考提纲进行自学.(三)互助学习:1.师助生:明了学情;差异指导.2.生助生:小组研讨.(四)强化:1. 平均数、中位数、众数和方差.2.强调本章的数学思想方法.第二层次学习(一)复习指导1.复习内容:典例剖析,考点跟踪.2.复习时间:15分钟.3.复习指导:完成所给例题,也可查阅资料或和其他同学研讨.4.复习参考提纲:例1某校田径运动会需要组织一支由64名女生组成的女子方队,并且要求她们个个身高相同,由于年龄的限制,只能从初三学生中选拔,现有一份从该校随机抽取的初三某班15名女生(各班女生人数均超过30人)的身高资料(单位:cm)164 163 158 157 162 154 163 160 163 155 162 162 165 164 163 (1)求出这15名学生身高的平均数、众数和中位数;(2)如果这所学校初三年级一共有10个班,那么该校能完成这项任务吗?试说明理由.例2某校八(7)班50名学生的校服尺码统计得下表:例3为了比较甲、乙两种水稻秧苗是否出苗整齐,每种秧苗各取5株并量出每株的长度如下表所示(单位:厘米)。
初中数学浙教版八年级下册第3章数据分析初步3.3方差和标准差公开课

方差和标准差方差和标准差学习目标1、了解方差,标准差的公式的产生过程。
2、熟练掌握方差和标准差的计算方法及其运用。
3、能通过实例学会用样本方差分析数据的离散程度。
导学过程预习课本P62-64思考:选拔射击手参加比赛时,我们应该挑选测试成绩中曾达到最好成绩的选手,还是成绩最稳定的选手?合作学习甲、乙两名射击手的测试成绩统计如下:(1)甲、乙两名射击手的极差分别是多少?(2)请分别计算两名射击手的平均成绩;(3)请分别计算两名射击手的成绩与平均数的差(即偏差)。
(4)甲、乙两人成绩的偏差的平均数是多少?(5)现要挑选一名射击手参加比赛,若你是教练,你能根据偏差的平均数挑选射击手参加比赛吗?为什么?归纳总结方差的概念:例:为了考察甲、乙两种小麦的长势,分别从中抽出10株苗,测得苗高如下(单位:cm):甲: 12 13 14 15 10 16 13 11 15 11乙: 11 16 17 14 13 19 6 8 10 16哪种小麦长得比较整齐?归纳总结标准差的概念:自我检测已知数据a1,a2,a3,…,a n的平均数为X,方差为Y标准差为Z。
则①数据a1+3,a2 + 3,a3 +3 ,…,a n +3的平均数为____,方差为______,标准差为______。
②数据3a1,3a2 ,3a3 ,…,3a n的平均数为______,方差为______,标准差为______。
③数据2a1-3,2a2 -3,2a3 -3 ,…,2a n -3的平均数为______,方差为______,标准差为______。
自我反思你有什么收获?你还有什疑问?。
初中数学_《数据的分析》复习教学设计学情分析教材分析课后反思

第20章《数据的分析》复习与小结第一课时教学设计一、教学设计思想通过学生的合作交流总结出本节的知识结构,针对本章的主要内容,设计一组思考题,让学生在独立思考的基础上分组讨论交流,并用自己的语言来表达对问题的理解,以达到梳理知识,理解统计的思想和方法,增强统计意识的目的。
最后通过练习巩固本章的知识点。
二、教学目标知识技能:回顾本章主要内容,说出知识之间的联系;说出各统计量在刻画数据特征方面的优点与局限。
会用计算器计算统计量;发展归纳与概括的能力。
体验数据收集、处理、分析和推断过程,理解抽样方法,体验用样本估计总体的过程数学思考:经历总结与反思的过程,结合具体问题情境表述各统计量的意义,进一步发展建立数据分析观念。
问题解决:初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力。
归纳解决实际问题的一般过程积累数学活动的经验。
情感态度:进一步感受知识点之间的联系,感受知识来源于生活又应用于生活。
敢于发表自己的想法、勇于质疑,养成认真勤奋、独立思考、合作交流等学习习惯,形成实事求是的科学态度。
三、教学重点和难点重点是分析数据的集中趋势和波动程度,体会样本估计总体的思想。
难点是能灵活运用本章知识点解题。
解决办法:通过阶梯式问题引导学生复习主要知识点,通过练习来巩固这些知识。
四、教学方法讨论法,在总结讨论的基础上,使学生掌握本章的内容。
五、课时安排1课时六、教具学具准备多媒体我这里报酬不错平均工资是经理应聘者小王第二天,小王高兴的上职员C应聘者小王认为用哪个数据反映该公司员工的收入更合适?庭用水情况进行统计分析,其中3月份比2月份节约用水情况如下表所示: 节水量(m3) 1 1.5 2户数 20 120 60 请问:(1) 抽取的200户家庭节水量的平均数是______,中位数是______,众数是_______.(2) 根据以上数据,估计某市100万户居民家庭3月份比2月份的节水量是_________.让学生举例说明本题中涉及到的平均数、中位数、众数的意义。
浙教版八年级数学下册课件:数据的分析初步-(共19张PPT)

城市 北京 合肥 南京 哈尔滨 成都 南昌 污染指数 342 163 165 45 227 163
则这组数据的中位数和众数分别是( A )
A.164和163
B.105和163
C.105和164
D.163和164
5. (2013•成都)今年4月20日雅安市芦山县发生了 7.0级的大地震,全川人民众志成城,抗震救灾.某班 组织“捐零花钱,献爱心”活动,全班50名学生的捐 款情况如图所示, 则本次捐款金额的
(2)哪段台阶路走起来更舒服?为什么?
解:甲台阶走起来更舒服些,因为它的台阶高度的方差小。
(3)为方便游客行走,需要重新整修上山的小路,对于这两段 台阶,在台阶数不变的情况下,请你提出合理的整修建议。
解:使每个台阶的高度均为15cm,使得方差为0。
3.(2013•扬州)为声援扬州“运河申遗”,某校举办了一次 运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上 (包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中 甲、乙两组学生成绩分布 的条形统计图如图所示.
众数是 7 ,中位数是 6
。
2.某校五个绿化小组一天植树的棵数如下:10,10, 12,x,8。已知这组数据的众数与平均数相等,那么
这组数据的中位数是( C )
(A)x=8 (B)x=9 (C)x=10 (D)x=12
3、华山鞋厂为了了解初中学生穿鞋的鞋号 情况,对永红中学八年级(1)班的20 名男生所穿鞋号统计如下表:
60
7.9.则李刚这8次跳远成绩的方差_______变.(小填 “变大”“不变”或“变小”)
※各数据与平均数的差的平方的平均数叫做这批
数据的方差。公式为:
s 2 1 n(x 1 x )2 (x 2 x )2 (x n x )2
浙教版小学数学六年级下册35《数据整理》知识点总结教案

浙教版小学数学六年级只有一条路不能选择,那就是放弃的路;只有一条路不能拒绝,那就是成长的路。
成功与不成功之间有时距离很短——只要后者再向前几步,加油学习吧!《数据整理》教案教学内容浙教版小学数学六年级下册第117~118页。
教学目标知识和技能借助有趣、真实的情境,激发学生参与统计活动的兴趣,培养学生初步的统计意识。
问题解决与数学思考根据情境让学生经历数据的收集和整理过程,引导学生分析数据,并通过“画一画、说一说”等活动,掌握简单统计图的绘制方法,能根据统计图表提出问题、分析问题、解决问题。
情感、态度和价值观使学生能根据统计表中的数据提出并回答简单的问题,能和同伴交换自己的想法,体会统计与生活的密切联系。
重点难点重点:掌握简单的数据收集和整理方法。
根据统计图表中的数据提出并回答简单的问题。
难点:会对统计图或统计表中的数据进行简单分析,在活动中学会倾听、学会合作。
教学教具课件、统计表、记录单、答题卡。
教学设计一、创设情境,揭示问题。
每个人,都在成长。
成长中,有悲伤,也有快乐。
我们作为一名正在成长中的小学生,其间也经历了许多丰富多彩的事情。
记得小时候,我们出去游玩,坐车不用买车票,去公园不用买门票,只要大人领着就可以。
可是你们知道吗?随着我们身高的增加,就需要买票了。
这就意味着我们从此也能为社会做一点贡献了!老师希望你们每个人都能健康生活、快乐成长!(板书课题:快乐成长﹚那么,你们想知道国家在买票这方面是怎样规定的吗?课件出示:2010年12月1日,铁道部将能买半价票的儿童身高标准调整为120—150厘米。
看了这则信息,你有什么想法?你的身高属于这个范围吗?﹙在小组内讨论一下,再指名说一说。
)生1:看了这则信息,我知道我需要买半价票了。
生2:我的身高是130厘米,我也需要买半价票。
生3:从这则信息中,我知道身高在120—150厘米的需要买半价票,身高低于120厘米则不需要买票,身高高于150厘米的则需要买成人票了。
浙教版 八年级下册课件:第3章 数据的分析初步复习课

甲路段
16 15
14 16
15 14
乙路段
19 10
17
18
15
11
( 解1:x)甲 两15段, 台中位阶数路:1有5,S哪甲2些 相32,同极点差和:2 不x乙 同点15,?中位数:16,S
2 甲
35,
3
极差:9
相同点:两段台阶的平均高度相同;
不同点:两段台阶的中位数、方差和极差不同。
(2)哪段台阶路走起来更舒服?为什么?
解:甲台阶走起来更舒服些,因为它的台阶高度的方差小。
(3)为方便游客行走,需要重新整修上山的小路,对于这两段 台阶,在台阶数不变的情况下,请你提出合理的整修建议。
解:使每个台阶的高度均为15cm,使得方差为0。
时间 (单位:小时)
4
3
2 10
人数 2 4 2 1 1
则这10名学生周末利用网络进行学习的平均时间
是__2__.5____小时.
5. 小刚在“中国梦·我的梦”演讲比赛中,演讲内容、 语言表达、演讲技能、形象礼仪四项得分依次为9.8, 9.4,9.2,9.3. 若其综合得分按演讲内容50%、语言 表达20%、演讲技能20%、形象礼仪10%的比例计算,
A. 1
B. 2
C. 3 D. 4
2、一组数据:1,3,2,5,x 的平均数是3,
则标准差S= 2 。
3、甲、乙两人在相同的条件下练习射靶,各 射靶5次,命中的环数如下: 甲:7 8 6 8 6 乙:9 5 6 7 8
则两人中射击成绩稳定的是 甲 。
4.如果一组数据a1,a2,…an的方差是2,那么一组新
S
1 n
(x1
x)2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)数据按从小到大排列为1,2,4,x,6,9,这组数据的中位数为5,那么这组数据的众数是
A:4 B:5 C:5.5 D:6
4.极差
一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。
表示数据的波动。
例题
(1)右图是一组数据的折线统计图,这组数据的极差是,
平均数是;;
(2)10名学生的体重分别是41、48、50、53、49、53、53、51、67(单位:kg),这组数据的极差是()
A:27 B:26 C:25 D:24
5. 方差
各个数据与平均数之差的平方的平均数,记作s2.用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是
s2=[(x1-)2+(x2-)2+…+(x n-)2];
方差是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。
例题
(1)若样本x1+1,x2+1,…,x n+1的平均数为10,方差为2,则对于样本x1+2,x2+2,…,x n+2,下列结论正确的是()
A:平均数为10,方差为2 B:平均数为11,方差为3
C:平均数为11,方差为2 D:平均数为12,方差为4
(2)方差为2的是()
A.1,2,3,4,5 B.0,1,2,3,5
C.2,2,2,2,2 D.2,2,2,3,3
6.标准差:为了使单位一致,可用方差的算术平方根来表示一组数据偏离平均值的情况,我们把方差的算术平方根称为标准差,记s.
标准差是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐.
(1)关于一组数据的平均数、中位数、众数,下列说法中正确的是()
A.平均数一定是这组数中的某个数
B. 中位数一定是这组数中的某个数
C.众数一定是这组数中的某个数
D.以上说法都不对
(2)选择恰当的统计量分析下面的问题:
○1某次数学考试,小明想知道自己的成绩是否处于中等水平.
○2为筹备班级联欢会,数学课代表对同学爱吃的几种水果做民意调查,假如你是班长,那么最终选择什么水果,最值得关注的调查数据是什么.
○3数学老师对小明参加中考前的5次数学模拟考试成绩进行统计分析,判断小明的数学成绩是否稳定的数据应该是什么.
○4反映一组数据的平均水平.
9.七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”,下表是从七年级400名学生中选出10名学生统计各自家庭一个月的节水情况:
节水量(m 3) 0.2 0.25 0.3 0.4 0.5 家庭数(个)
1
2
2
4
1
那么这组数据的众数和平均数分别是( ) A .0.4和0.34
B .0.4和0.3
C .0.25和0.34
D .0.25和0.3
10.某棵果树前x 年的总产量y 与x 之间的关系如图所示,从目前记录的结果看,前x 年的年平均产量最高,则x 的值为( )
A .3
B .5
C .7
D .9
(第10题) (第15题)
二.填空题
11.数据﹣2,﹣1,0,3,5的方差是
12.若一组2,﹣1,0,2,﹣1,a 的众数为2,则这组数据的平均数为
13.一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组⎩
⎨⎧>-≥-050
3x x 的整数,则这组数据的平均
数是
14.某次数学测验中,某班六位同学的成绩分别是:86,79,81,86,90,84,这组数据的众数是 ,中位数是
15.某校九年级420名学生参加植树活动,随机调查了50名学生植树的数量,并根据数据绘制了如下条形统计图,请估计该校九年级学生此次植树活动约植树 棵. 16.若3,a ,4,5的众数是4,则这组数据的平均数是
17.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九(三)班的演唱打分情况为:89、92、92、95、95、96、97、,从中去掉一个最高分和一个最低分,余下的分数的平均数是最后得分,则该班的得分为
18.一组正整数2、3、4、x 从小到大排列,已知这组数据的中位数和平均数相等,那么x 的值是 19.有5个从小到大排列的正整数,中位数是3,唯一的众数是8,则这5个数的和为 20.甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷)
品种 第1年 第2年 第3年 第4年 第5年 甲 9.8 9.9 10.1 10 10.2 乙
9.4
10.3
10.8
9.7
9.8
经计算,10=甲x ,10=—
乙x ,试根据这组数据估计 中水稻品种的产量比较稳定. 三.解答题
21.在一次考试中,从全体参加考试的1000名学生中随机抽取了120名学生的答题卷进行统计分析.其中,某个单项选择题答题情况如下表(没有多选和不选):
选项 A B C D 选择人数
15
5
90
10
(1)根据统计表画出扇形统计图;
要求:画图前先求角;画图可借助任何工具,其中一个角的作图用尺规作图(保留痕迹,不写作法和证明);统计图中标注角度.
(2)如果这个选择题满分是3分,正确的选项是C ,则估计全体学生该题的平均得分是多少?
22. 2014年5月7日浙江省11个城市的空气质量指数(AQI)如图所示:
(1)这11个城市当天的空气质量指数的极差、众数和中位数分别是多少?
(2)当0≤AQI≤50时,空气质量为优.求这11个城市当天的空气质量为优的频率;(3)求宁波、嘉兴、舟山、绍兴、台州五个城市当天的空气质量指数的平均数.
23.某班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况,八年级300名同学零花钱的最主要用途情况,九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.
根据以上信息,请回答下列问题:
(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少?
(2)补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;
(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数)
24.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.
(1)根据图示填写下表;
(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;
(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.
平均数(分)中位数
(分)
众数(分)
初中部 85
高中部 85 100。